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Graphical abstract 
 

 

Abstract 
 

Boundary layer flow of convective heat transfer with pressure gradient over a flat plate is 

solved with an application of algorithms of Adams Method (AM) and Gear Method (GM) 

using Homotopy Perturbation Method (HPM). The distributions of temperature and velocity 

in the boundary layer are examined, particularly on the influences due to Prandtl number 

(Pr) and pressure gradient (m). Consequently, the equations of momentum and energy are 

resolved concurrently. These HPM outcomes have been compared with the previous 

published work in the literature; and these are found to be in good agreement with the 

results obtained from numerical methods. 

 

Keywords: Adams Method (AM), Gear Method (GM), Homotopy Perturbation Method 

(HPM), pressure gradient parameter, convective heat transfer 

 

Abstrak 
 

Aliran lapisan sempadan bagi pemindahan haba perolakan dengan kecerunan tekanan 

di atas plat rata diselesaikan dengan penggunaan Kaedah Adam dan Kaedah Gear 

melalui Kaedah Usikan Homotopi.Taburan suhu dan halaju dalam lapisan sempadan dikaji, 

terutamanya terhadap pengaruh bilangan Prandtl (Pr) dan kecerunan tekanan (m). Untuk 

memenuhi matlamat ini, persamaan tidak linear momentum dan tenaga diselesaikan 

secara serentak. Keputusan-keputusan HPM telah dibandingkan dengan kerja-kerja 

penerbitan terdahulu dalam kesusasteraan; dan keputusan ini didapati selari dengan 

keputusan-keputusan yang diperoleh melalui kaedah berangka. 

 

Kata kunci: Kaedah Adams, Kaedah Gear,Kaedah Usikan Homotopi, parameter 

kecerunan tekanan, pemindahan haba perolakan 
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1.0  INTRODUCTION 
 

Nothing is perfect in this world. So, there is always a 

room for improvement. This is a case of 

reinvestigation of the problem posed by Fathizadeh 

and Rashidi in[1]. For this purpose the two main 

algorithms, the Adams and Gear methods have 

been used in [2]. Recently an attempt have been 

made to solve the same problem with laminar 

boundary layer over a permeable surface with 

convective boundary condition using HAM by 

Shagaiya and Daniel in [3] and their reported results 

were not similar as Fathizadeh and Rashidi in [1]. 

Importance of a boundary layer flow cannot be 

avoided in various areas of fluid mechanics since it 

reveals the motion of a viscous fluid closed to a 

body. 

In recent past, researchers have discussed the 

boundary layer flow convection heat and mass 

transfer over a flat plate in[4]–[10], boundary layer 

flow and mass transfer with a stretching or shrinking 

sheet in [11]–[14], as similarity solutions for flow and 

heat transfer over a permeable surface with 

convective boundary condition in [15]. The 

Homotopy Perturbation Method (HPM) is a novel and 

effective method, and has been successfully applied 

to solve various nonlinear complicated engineering 

problems that cannot be solved by analytical 

method used by Ji-Huan [16]–[18], Cai et al. [19], 

Cveticanin [20], El-Shahed [21], Abbasbandy  [22] 

and Belendez et al. [23]. Ji-Huan and others have 

built up further this technique for diverse non linear 

problems [24]–[27]. 

Researchers have implemented some other 

approximation techniques like Variational Iteration 

Method (VIM), Adomian Decomposition Method 

(ADM) and Homotopy Analysis Method (HAM) 

effectively. Yulita Molliq et al. [28] have obtained the 

analytical solutions to fractional heat and wave like 

equations with variable coefficients with the help of 

VIM successfully. We are considering HPM in our 

study. 

The present work deals with an application of 

HPM using the algorithms of Adams and Gear 

methods on boundary layer convective heat transfer 

with pressure gradient over a flat plate. This study is 

motivated by the different results for pressure 

gradient (m) reported in Cebeci and Bradshaw [29], 

Shagaiya and Daniel in [3] and Fathizadeh and 

Rashidi in [1]. 

 

 

2.0  METHODOLOGY 
 

It is a composition of three steps, first one is basics of 

HPM, second one is mathematical formulation and 

third one is boundary layer flow over a flat plate. 

 

 

 

 

2.1  Basics of HPM 

 

The fundamental concepts of this technique are 

given as follows:  

Consider the nonlinear differential equation 

 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω    (1) 

 

with boundary conditions 

 

𝐵(𝑢, 𝜕𝑢/𝜕𝑛) = 0, 𝑟 ∈ Γ    (2) 

 

where  𝐴 is a differential operator, 𝐵 is an operator, 

𝑓(𝑟) is an analytic function,  Γ is the domain Ω 

boundary. 𝐴 can be divided into 𝐿 linear and 𝑁 non 

linear, therefore, Eq.(1) is of the form: 

 

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0    (3) 

 

By the homotopy method[29], a homotopy 

𝜐(𝑟, 𝑃): Ω × [0,1] → 𝑅 is constructed, which satisfies 

 
𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)] = 0, 

𝑝 ∈ [0,1], 𝑟 ∈ Ω     (4) 

 

or 

 

𝐻(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0,(5) 

 

where 𝑝 ∈ [0,1] is a parameter which is embedded, 𝑢0 

is the initial approximated solution of Eq.(1), where  

the boundary conditions are fulfilled. Clearly, from Eq. 

(4 or 5), H takes the forms 

 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0    (6) 

 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0    (7) 

 

the transformation of 𝑝 from 0 to 1 is referred to𝑣(𝑟, 𝑝), 

from 𝑢0(𝑟) to 𝑢(𝑟). Topologically, this is known as 

deformation, besides 𝐿(𝑣) − 𝐿(𝑢0), 𝐴(𝑣) − 𝑓(𝑟) are 

termed homotopic. In this study, the embedding 

parameter 𝑝 as a small parameter and assumed that 

the solution of Eq. (4) or Eq. (5) can be written as a 

power series in 𝑝: 

 
𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯    (8) 

 

Setting 𝑝 = 1 results in the approximate solution of 

Eq.(1): 

 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯   (9) 

 

The coupling of the perturbation method and the 

homotopy method is called the homotopy 

perturbation method, which has eliminated 

limitations of the traditional perturbation methods. On 

the other hand, the proposed technique can take 

full advantage of the traditional perturbation 

techniques. 
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2.2  Mathematical Formulation 

 

The Navier-Stokes equation is considered for the 

boundary layer flow over a flat plate with a pressure 

gradient term. Mathematical formulation for the 

Navier-Stokes equations become under the 

suppositions [30]: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0     (10) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝑑𝑝

𝑑𝑥
+ 𝜐

𝜕2𝑢

𝜕𝑦2
    (11) 

 

and 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= −

𝜅

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
    (12) 

 

where 𝑢 and 𝑣 are the velocity components in 𝑥 − 

and y−directions respectively, 𝜐 is the kinematic fluid 

viscosity, 𝜌 is the fluid density, 𝜇 is the coefficient of 

fluid viscosity, 𝜆 is the relaxation time, 𝑇 is the 

temperature, 𝜅 is the fluid thermal conductivity and 

𝑐𝑝 is the specific heat. Now, the stream function 

𝜓(𝑥, 𝑦) is introduced as: 

 

𝑢 =
𝜕𝜓

𝜕𝑦
,  𝑣 =

𝜕𝜓

𝜕𝑥
     (13) 

 

For an external flow−
1

𝜌

𝑑𝑝

𝑑𝑥
can be replaced by 𝑈∞

𝑑𝑈∞

𝑑𝑥
 

where as in relations with  Eq. (13), the Eq. (10) is 

identically satisfied and the Eqs. (11) and (12) are 

reduced to the following forms: 

 
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2 = 𝑈∞
𝑑𝑈∞

𝑑𝑥
+ 𝜐

𝜕3𝜓

𝜕𝑦3    (14) 

 

and 

 
𝜕𝜓

𝜕𝑦

𝜕𝑇

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2    (15) 

 

Here, we have introduced the dimensionless 

variables 𝜂 and 𝜓 as: 
 

𝜂 = 𝑦√
𝑈∞

𝜐𝑥
, ψ = 𝑓(𝜂)√𝜐𝑥𝑈∞, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 and 

 {𝑈∞ = 𝐶𝑥𝑚 ,    𝑚 =
𝑥

𝑈∞

𝑑𝑈∞

𝑑𝑥
}   (16) 

 

Based on Eq. (16), we have used similarity 

transformation to reduce the governing differential 

equations Eq. (14) and Eq. (15) to an ordinary non-

linear differential equations Eq. (17) and Eq. (18) 

respectively. 

 

𝑓′′′ + (
𝑚+1

2
) 𝑓𝑓′′ + 𝑚(1 − (𝑓′)2) = 0   (17) 

 

𝜃′′ =
Pr (𝑚+1)

2
𝑓𝜃′ = 0    (18) 

 

where𝑓is related to the velocity (𝑢) by 𝑓′ =
𝑢

𝑈∞
.The 

reference velocity is the free stream velocity of 

forced convection [1] and𝑃𝑟 =
𝜇𝑐𝑝

𝜅
 is the Prandtl 

number [31]. The boundary conditions are obtained 

from the similarity variables. 

 

𝑓(0) = 0, 𝑓′(0) = 0, 𝑓′(𝜂∞) = 1, 𝜃(0) = 1, 𝜃(𝜂∞) = 0. (19) 

 

2.3  Boundary Layer Flow Over a Flat Plate 

 

In accordance to HPM technique, then Eq.(17) and 

Eq. (18)become: 

 

(1 − 𝑝)(𝑓′′′ − 𝑓0
′′′) + 𝑝 (𝑓′′′ + (

𝑚+1

2
) 𝑓𝑓′′ + 𝑚(1 − 𝑓′2

)) =

0      (20) 

 

(1 − 𝑝)(𝜃′′ − 𝜃0
′′) + 𝑝 (𝜃′′ + (

𝑃𝑟(𝑚+1)

2
) 𝑓𝜃′) = 0 (21) 

 

𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 + ⋯    (22) 

 

𝜃 = 𝜃0 + 𝑝𝜃1 + 𝑝2𝜃2 + ⋯    (23) 

 

Assuming 𝑓′′′ = 0,𝜃′′ = 0, and substituting 𝑓 from Eq. 

(22) into Eq. (20) and 𝜃 from Eq. (23) into Eq. (21) after 

some simplification, rearrangement and equating 

the similar terms based on powers of 𝑝 −terms, since 

𝑝 ∈ [0,1] is an embedded parameter for 

approximation solution and assumed that the 

solution can be written as a power series in 𝑝, we 

have: 

 
𝑝0: 𝑓0

′′′ = 0,

       𝑓0(0) = 0,   𝑓0
′(0) = 0,   𝑓0

′(𝜂∞) = 1,

       𝜃0
′′ = 0,

       𝜃0(0) = 1,   𝜃0(𝜂∞) = 0.

  (24) 

 

𝑝1: 𝑓1
′′′ = − (

𝑚+1

2
) 𝑓0𝑓0

′′ − 𝑚(1 − (𝑓0′)2),

       𝑓1(0) = 0,   𝑓1
′(0) = 0,   𝑓1

′(𝜂∞) = 0,

       𝜃1
′′ = − (

Pr (𝑚+1)

2
) 𝑓0𝜃0

′ ,

𝜃1(0) = 0,    𝜃1(𝜂∞) = 0.

  (25) 

 

𝑝2: 𝑓2
′′′ = − (

𝑚+1

2
) (𝑓0𝑓1

′′ + 𝑓1𝑓0
′′) + 2𝑚𝑓0

′𝑓1
′,

       𝑓2(0) = 0,   𝑓2
′(0) = 0,   𝑓2

′(𝜂∞) = 0,

       𝜃2
′′ = − (

Pr(𝑚+1)

2
) (𝑓0𝜃1

′ + 𝑓1𝜃0
′ ),

𝜃2(0) = 0,    𝜃2(𝜂∞) = 0.

  (26) 

 

𝑝3: 𝑓3
′′′ = − (

𝑚+1

2
) (𝑓0𝑓2

′′ + 𝑓1𝑓1
′′ + 𝑓2𝑓0

′′)

                   +𝑚(2𝑓0
′𝑓2

′ + (𝑓1
′)2)

       𝑓3(0) = 0,   𝑓3
′(0) = 0,   𝑓3

′(𝜂∞) = 0,

       𝜃3
′′ = − (

Pr(𝑚+1)

2
) (𝑓0𝜃2

′ + 𝑓1𝜃1
′ + 𝑓2𝜃0

′ ),

𝜃3(0) = 0,    𝜃3(𝜂∞) = 0.

  (27) 
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𝑝4: 𝑓4
′′′ = − (

𝑚+1

2
) (𝑓3𝑓0

′′ + 𝑓2𝑓1
′′ + 𝑓1𝑓2

′′ + 𝑓0𝑓3
′′)

                   +2𝑚(𝑓1
′𝑓2

′ + 𝑓0
′𝑓3

′)

       𝑓4(0) = 0,   𝑓4
′(0) = 0,   𝑓4

′(𝜂∞) = 0,

       𝜃4
′′ = − (

Pr(𝑚+1)

2
) (𝑓3𝜃0

′ + 𝑓2𝜃1
′ + 𝑓1𝜃2

′ + 𝑓0𝜃3
′ ),

𝜃4(0) = 0,    𝜃4(𝜂∞) = 0.

 (28) 

 

Solving Eqs. (24)-(28): 

 

𝑓0 =
1

2𝜂∞
(𝜂2)     (29) 

 

𝑓1 =
1

480𝜂∞
2

(−2𝜂5 + 5𝜂2𝜂∞
3 + 6𝜂5𝑚 − 80𝜂3𝑚𝜂∞

2

                       +105𝜂2𝑚𝜂∞
3)

 (30) 

 

𝑓2 =
1

161280𝜂∞
3

(11𝜂8 − 28𝜂5𝜂∞
3 + 26𝜂2𝜂∞

6

          +27𝜂8𝑚2 − 896𝜂6𝑚2𝜂∞
2 + 1764𝜂5𝑚2𝜂∞

3 + ⋯ )
 (31) 

 

𝑓3 =
1

1277337600𝜂∞
4

(−1500𝜂11 + 5445𝜂8𝜂∞
3

         −5742𝜂5𝜂∞
6 + 825𝜂2𝜂∞

9 + 3348𝜂11𝑚3 + ⋯ )
 (32) 

 

𝑓4 =
1

27897053184000𝜂∞
5

(557940𝜂14 − 2730000𝜂11𝜂∞
3

        +4317885𝜂8𝜂∞
6 − 1861860𝜂5𝜂∞

9 + ⋯ )
 (33) 

 

𝜃0 =
1

𝜂∞
(−𝜂 + 𝜂∞)    (34) 

 

𝜃1 =
1

48𝜂∞
2

(𝜂4𝑚𝑃𝑟 − 𝜂𝜂∞
3𝑚𝑃𝑟 + 𝜂4𝑃𝑟 − 𝜂𝜂∞

3𝑃𝑟) (35) 

 

𝜃2 =
1

80640𝜂∞
3

(−40𝜂7𝑚2𝑃𝑟2 + 35𝜂4𝑚2𝑃𝑟2𝜂∞
3

+5𝜂𝑚2𝑃𝑟2𝜂∞
6 + 12𝜂7𝑚2𝑃𝑟 + ⋯ )

 (36) 

 

𝜃3 =
1

58060800𝜂∞
4

(560𝜂10𝑚3𝑃𝑟3 − 600𝜂7𝑚3𝑃𝑟3𝜂∞
3

−75𝜂4𝑚3𝑃𝑟3𝜂∞
6 + 115𝜂𝑚3𝑃𝑟3𝜂∞

9 + ⋯ )
 (37) 

 

𝜃4 =
1

2789705318400𝜂∞
5

(−431200𝜂13𝑚4𝑃𝑟4

         −1724800𝜂13𝑚3𝑃𝑟4 − 2587200𝜂13𝑚2𝑃𝑟4 + ⋯ )
 (38) 

 

 

3.0  RESULTS AND DISCUSSIONS 
 

The value of 𝜂∞has its impact on the boundary layer 

thickness. The work of Cebeci [28] and Bird [32] 

reported the values of 𝜂∞ as 8 and 5.64 for both 

situations when pressure gradient 𝑚 = 0 for velocity 

profile and energy profile as Prandtl number 𝑃𝑟 = 1. 

In Esmaeilpour and Ganji [9] the solution for the 

boundary layer flow with no pressure gradient, the 

𝜂∞is chosenas 5 in generating the velocity and 

temperature. In our case, 𝜂∞has been taken 5.25 and 

5.15 for the velocity and temperature profiles 

respectively. 

 

 

 

 

 

Table 1 Different values for 𝑚 when 𝜂∞ = 5.25 

 

η f(η) Fathizadeh Amber et al. 

  and η∞ = 5.25 

 NM Rashidi [1] HPM 

  𝑚 

  0 0 −0.065 −0.11 

0 0 0 0 0 0 
0.2 0.006641 0.007793 0.00679 0.00377 0.00068 
0.4 0.026676 0.029386 0.02717 0.01545 0.00333 
0.6 0.059722 0.064757 0.06112 0.03553 0.00882 
0.8 0.106108 0.113849 0.10856 0.06452 0.01804 
1 0.165572 0.176556 0.16939 0.10288 0.03184 
1.2 0.237949 0.252703 0.24341 0.15104 0.05111 
1.4 0.329815 0.342031 0.33032 0.20938 0.07667 
1.6 0.420321 0.444188 0.42976 0.27820 0.10938 
1.8 0.529518 0.558712 0.54123 0.35773 0.15001 
2 0.650024 0.685028 0.66410 0.44811 0.19929 
2.2 0.781193 0.822444 0.79764 0.54934 0.25792 
2.4 0.922290 0.970148 0.94102 0.66133 0.32648 
2.6 1.072506 1.127221 1.09331 0.78384 0.40547 
2.8 1.230977 1.292647 1.25349 0.91651 0.49525 
3 1.396808 1.465334 1.42052 1.05885 0.59606 
3.2 1.569095 1.644142 1.59336 1.21023 0.70799 
3.4 1.746950 1.827919 1.77101 1.36994 0.83097 
3.6 1.929525 2.015541 1.95253 1.53717 0.96476 
3.8 2.116030 2.205961 2.13713 1.71108 1.10899 
4 2.305746 2.398258 2.32418 1.89078 1.26311 
4.2 2.498040 2.591683 2.51323 2.07542 1.42645 
4.4 2.692361 2.785712 2.70404 2.26419 1.59826 
4.6 2.882480 2.980074 2.89655 2.45635 1.77768 
4.8 3.085321 3.174772 3.09086 2.65127 1.96382 
5 3.283274 3.370069 3.28711 2.84841 2.15577 

 

 

The aim of this section is to analyze the effects of 

various physical parameters on the function of non–

Newtonian (Navier-Stokes equations) fluid, velocity 

and temperature distributions. The validation of the 

present method using homotopy perturbation 

method is checked with the results of the function of 

non–Newtonian  fluid obtained by Fathizadeh and 

Rashidi [1] and the numerical results reported in it, in 

Table 1,when pressure gradient parameter 𝑚 = 0 

have been taken. Thus it can be observed in fourth 

column of the Table 1, are the results obtained in this 

paper, these seemed to be better than the results 

reported in Fathizadeh and Rashidi work [1] shown in 

the third column of Table 1, these results are more 

closed to the numerical (NM) results in the second 

column. Note that the values in second and third 

columns have been taken from [1].  For the better 

representation of the function of the non–Newtonian 

fluid, two other columns for different values of 𝑚 have 

been given. 
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Table 2 For the different values of 𝑚  when 𝜂∞ = 5.25 

 

η f′(η) Fathizadeh Amber et al. 

  and η∞ = 5.25 

 NM Rashidi [1] HPM 

  𝑚 

  0 0 −0.065 −0.11 
0 0 0 0 0 0 
0.2 0.066408 0.070328 0.067951 0.038199 0.00761 
0.4 0.132764 0.140606 0.135847 0.078978 0.01962 
0.6 0.198937 0.210705 0.203544 0.122279 0.036026 
0.8 0.264709 0.28041 0.270803 0.167995 0.056813 
1 0.32978 0.349425 0.337298 0.215963 0.081951 
1.2 0.393776 0.417375 0.402616 0.265954 0.111382 
1.4 0.456262 0.483811 0.466272 0.31767 0.145008 
1.6 0.516757 0.548225 0.527725 0.370736 0.182683 
1.8 0.574758 0.610057 0.586395 0.424703 0.224197 
2 0.629766 0.668719 0.641694 0.479051 0.269266 
2.2 0.68131 0.723611 0.693055 0.533196 0.317521 
2.4 0.728982 0.77415 0.739966 0.586506 0.368501 
2.6 0.772455 0.819799 0.782012 0.638321 0.421655 
2.8 0.81151 0.860099 0.818912 0.68798 0.476342 
3 0.846044 0.894707 0.850554 0.73485 0.531848 
3.2 0.876081 0.923428 0.877026 0.778362 0.5874 
3.4 0.901761 0.946255 0.898635 0.818047 0.642195 
3.6 0.92333 0.963397 0.915908 0.853565 0.695433 
3.8 0.941118 0.975307 0.929578 0.884736 0.746349 
4 0.955518 0.982693 0.940539 0.911549 0.794251 
4.2 0.966957 0.986519 0.94978 0.934168 0.838553 
4.4 0.975871 0.987979 0.958285 0.952908 0.878796 
4.6 0.982684 0.988443 0.966911 0.968204 0.914666 
4.8 0.98779 0.98937 0.976249 0.98055 0.945998 
5 0.991542 0.992164 0.986487 0.990439 0.972766 

 

 

Table 2, are the results for velocity profile 𝑓′(𝜂) for 

the different values of pressure gradient parameter 𝑚 

at 𝜂∞ = 5.25. Thus it is seen in the second and fourth 

columns of Table 2, are in close agreement with 

those published previously in Fathizadeh and Rashidi 

[1] in the third column. Note that the values in 

second and third columns have been taken from [1]. 

Rest of the columns have been given for the better 

representation of velocity profile 𝑓′(𝜂). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1 Velocity profile for f′(η) for the different values 

of−0.11 ≤ 𝑚 ≤ 0.02 when η∞ = 5.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2 Velocity profile for f′(η) for the different values 

of−0.11 ≤ 𝑚 ≤ 0  when η∞ = 5.25 
 

 

Figures 1 and 2 show that the velocity profiles 

increase with increasing of𝑚 and consequently, the 

momentum boundary layer thickness becomes 

thinner and thinner. 
 

Table 3 For the different values of 𝑚 when 𝜂∞ = 5.15 

 

𝜂 𝜃(𝜂) Fathizadeh Amber et al. 

  and 𝜂∞ = 5.15 

  Rashidi [1] 𝑃𝑟 

   1 0.5 

 NM HPM for 𝑚 

  0 0 0 

0 1 1 1 1 
0.2 0.933592 0.929826 0.932044 0.944699 
0.4 0.867236 0.859703 0.864143 0.88942 
0.6 0.801063 0.789759 0.796441 0.83422 
0.8 0.735291 0.720208 0.729173 0.779194 
1 0.67022 0.651349 0.662666 0.724473 
1.2 0.606224 0.583556 0.597329 0.670223 
1.4 0.543738 0.517278 0.533644 0.616645 
1.6 0.483243 0.453023 0.47215 0.563966 
1.8 0.425242 0.391351 0.413418 0.512438 
2 0.370234 0.332848 0.358032 0.462332 
2.2 0.31869 0.278112 0.306551 0.413927 
2.4 0.271018 0.227721 0.259476 0.367502 
2.6 0.227545 0.182208 0.217212 0.323329 
2.8 0.18849 0.142023 0.180029 0.281655 
3 0.143955 0.107501 0.148027 0.242696 
3.2 0.123918 0.078823 0.121109 0.206624 
3.4 0.088239 0.055982 0.098964 0.173554 
3.6 0.06667 0.038753 0.081069 0.143536 
3.8 0.058882 0.026666 0.066707 0.116553 
4 0.033043 0.018998 0.055013 0.09251 
4.2 0.031482 0.014772 0.045054 0.071243 
4.4 0.024129 0.012791 0.03592 0.052526 
4.6 0.017317 0.011692 0.026858 0.036077 
4.8 0.012211 0.010045 0.017398 0.021588 
5 0.008458 0.006501 0.007485 0.00874 
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Table 3, are the results for energy profile 𝜃(𝜂) for the 

pressure gradient parameter 𝑚 = 0 when Prandtl 

number 𝑃𝑟 = 1 at 𝜂∞ = 5.15. Thus it is seen in the 

second and fourth columns of Table 3, are in close 

agreement with those published previously in 

Fathizadeh and Rashidi [1] in the third column. The 

fifth column are the results of 𝜃(𝜂) taking 𝑚 = 0 When 

𝑃𝑟 = 0.5 at 𝜂∞ = 5.15.  Note that the second and third 

columns have been taken same as in [1]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Energy profile for θ(η) for−0.12 ≤ m ≤ 0.01 when 

η∞ = 5.15 and Pr = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Energy profile for 𝜃(𝜂) for−0.12 ≤ 𝑚 ≤ 0.01 when 

𝜂∞ = 5.15 and 𝑃𝑟 = 0.5 
 

 

Figures 3 and 4 show that the temperature profiles 

decrease with increasing m and hence the thermal 

boundary layer thickness becomes thinner and 

thinner. Where as in comparison of above figures, 3 

have taken with 𝑃𝑟 = 1 and 4 have taken with 𝑃𝑟 =
0.5 which shows the thermal boundary layer thickness 

is more thinner with the higher value of 𝑃𝑟. 

 

 

4.0  CONCLUSION 
 

In this work we have calculated more values of 

velocity (i.e 𝑓0, 𝑓1, 𝑓2, 𝑓3 and 𝑓4) for the better 

approximation of the system. The energy and 

momentum equations with pressure gradient are 

solved with an application of HPM using algorithms of 

Adams and Gear methods. The results generated are 

found to be in good agreement with those results 

which are numerically acquired. Using HPM 

technique, for velocity profile the range of admissible 

pressure gradient (𝑚) was -0.11 to 0.02 (i.e.−0.11 ≤
𝑚 ≤ 0.02). For velocity and energy profiles of the 

value𝜂∞ have been taken to be 5.25 and 5.15 when 

the Prandtl numbers (𝑃𝑟) are 1 and 0.5, for energy 

profile the range of pressure gradient (𝑚)has 

obtained as -0.12 to 0.01 (i.e−0.12 ≤ 𝑚 ≤ 0.01). The 

momentum and thermal boundary layer thicknesses 

decrease with an increase in the value of pressure 

gradient.It could be interesting in future work to have 

a comparison and validation of this work with 

another approximation method known as Variational 

Iteration Method (VIM). 
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