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Abstract. In this paper we develop a new three-stage, fourth order explicit formula ofRunge-Kutta 
type based on Arithmetic and Harmonic means. The error and stability analyses of this method 
md1cate that the method IS stable and efficient for nonstiff problems. Two examples are given 
which Illustrate the fcurth order accuracy of the method .. 
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1 INTRODUCTION 
rhe requirement of solving initial value problem economically, especially in terms of computing 
:ime, while maintaining the high degree of accuracy of the approximate solution has been given a 
considerable amount of research for the past three decades by many well known authors. Amongst 
them are [5] , [10] , [7] and [4]. By having fewer number of stages we could save the evaluation time 
of derivative functions especially if the function is of a complex form. "It is an intellectual challenge 
to derive Runge Kutta formulas with as few stages as possible because the number of times the 
differential equation is evaluated is a significant measure of work." was quoted in [7]. The existence 
of other form of Runge-Kutta (RK) formulas which are based on other types of means has also 
contributed methods comparable methods to existing ones, [2], [!], [9] which g1ve us several 

alternatives for solving certain types of class of problems better. The absence of five-stage fifth 
order RK methods as proved by [10] is now questionable. This was due to the existence of five-stage 
fifth order method ofRunge-Kutta method based on geometric mean which was developed by Sanugi 
and Yaacob [1995]. Perhaps by using other types of means, including the arithmethic mean in the 
increment function one could also obtain other five-stage, fifth order methods. 

In this paper we establish a new three-stage fourth order methods [12]. The first of its kind was 
developed by [II]. Even though it was mentioned in the paper that the stability region of the 

method RK-N34 is quite small and the numerical results shown are convincing, the class of 
problems that RK-N34 can solve accurately are limited. With that in mind we try to enhance the 
reliablity of this method by adjusting the position of an additional parameter a4 that we introduce 
in the derivative function. For simplicity, we shall address this new method as RK-NHM34. After 

comparing the solutions obtained with the classical Runge-Kutta method, we found that our new 
method RK-NHM34, which based on harmonic mean (with bigger stability region than RK-N34) is 
more reliable for a larger class of initial value problems. 

Typeset by c5fiole'Xtfex 
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2 FORMULATION OF A NEW RK-NHM34 METHOD 
We proposed the scheme as 

(2.I) Yn+ 1 =y,+htwh+OW),n=1, 2, 3, ... 
;=1 

where 

s1 = f(x,, y,), 

52 = f(x, + C1h, Yn + a1hs1), 

S:J = f(x, + c1h,y, + h(a2s1 + a3s2 + ai~))), 
s1 + s2 

G = a1, ~ = ~ + a3 + a4, and h = x,+ 1 - x, 

Without lost of generality (2.I) can be written as [8] (2.2) 

where 

S1 = f(y,), 

52 = f(y, + a1hs1), 

Note that the term C/"1~) is defined as the harmonic mean for two different real numbers s 1, s2. 
1 2 

In order to achieve the fourth order accuracy we need to solve the seven parameters in (2.2) with the 
seven equations of order condition. Using MA THEMA TICA, a symbolic computation package, we 
expand (2.2) andy(x, +h) as Taylor series expansion. On comparison of the coefficients of hi, i = 

I, 2, 3 we obtained the seven equations (mostly nonlinear) shown below. 

(2.3) I-w1-w2-w3 =0 :hf 

(2.4) I- 2a1w2- 2a2w3- 2a4w3 = 0 :h1 f!y 

(2.5) I- fu1~w3 - 3a1a4w3 = 0 :h)!!} 

(2.6) 1- 3afw2- 3aiw3- fu2a3w3- 3afw3 

- ~a4w3 - fu~4w3 - 3a~~ = 0 :h) P!yy 

(2.7) I+ oofa4w3 = 0 :h4ff} 

(2.8) 4 -12a~a3w3- 24a1~a3w3- 24a1afw3- oofa4w3 

-12a1a2w3 - 3fu1a3a4w3 -I2a1a~w3 = 0 :h4j2fy/yy 

(2.9) I - 4afw2 - 4aiw3 - 12aia3 w3 - I2a2aiw3 - 4aiw3 - 12aia3 w3 

-24aia4w3 - 24a2a3a4w3 -12aia4w3 -12a3a~w3 - 4aJw3 = 0 :h4f3!yyy 
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On solving simultaneously using MA THEMA TICA again we obtain two sets of solutions, viz. 

Set I: 1 35 25 15 
al = 3' ~ = 24 ' a3 = 8' a4 = -4. 

1 1 2 
~ =w· ~ =-z· w3 =s 

3 3 1 
al = 1, ~ = 8' a3 = 8, a4 = - 4. 

1 1 2 
wl = 6• w2 = 6' w3 = 3 

Substituting these sets of solution to the scheme (2.1) yield formulas (2.1 0) and (2.11) respectively. 

where 

I 
l.jl,. =TO (s1 + 5s2 + 4s3) 

S1 = f(xn, Y,), 

s2 = f(x,. + 1' Y,. + h 1), 
- 5h 35sl ~- li 2sl~ 

s3 - f(xn + 6 ' Yn + h( 24 + 8 ( 4) sl + ~)). 

and 

(2.11) 

where 

S1 = f(x,., Yn), 

~ = f(x,. + h, Yn + hs1), 

- /( fJ_ h(~ 3sz - (l) ~)) s3 - x, + 2 ' Yn + 8 + 8 4 sl + ~ 

3 ERROR ANALYSIS 
The local truncation error (with respect toy) for formula (2.10) is given as LTE(l) where 

(3.1) LTE(1) = y(x" +h)- Yn+l = 25~20 (396f!y4 +216j2fy/yy +264j3fy~ 

- 68/3 /y/ YY + 141 yyy)hs + fX.h6), 

and the local truncation error due to formula (2.11) is given as LTE(2) where 

(3.2) LTE(2) = y(xn +h)- Yn+l = 28
1
80 (84f!y4 + 24j2fy/yy- 24/3 J}j, 

+ 28P !y!yy- 14/yyyW + fX.h6), 
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If in addition, the function f is linear in y then formula (2.1 0) is a better choice. This is due to the 
coefficient of the first term in LTE(l) which is smaller in magnitude compared to that of LTE(2). 

At this point we have still not decided which of these two formulas is better for general cases. 
In order to make a proper decision we need to analyse the stability regions of both formulas and 
compare to that of the classical RK.4. The one that gives a bigger stability region or a stability region 
at least approximately close to the size of RK4 should be considered in subsequent sections. 

4 STABILITY ANALYSIS 
We apply the test equation y' = A.y, where A. is a complex constant to both formula (2.1 0) 

and (2.11) respectively. From formula (2.1 0), the ratio y;:' gives the stability polynomial 

Q
1
(z) = t z.~ -

1
z5
44 

+ CX:z6) , z = A.h, while formula (2.11) will give the stability polynomial as 
J=O} · 

(1(z) = ± z~ -
4
z5
8 

+ CX:z6). We plot the stability regions and compare to that of R.K-AM4 classic as 
}=01. 

shown in Figure (4.1) and Figure (4.2). 
It is clear that formula (2.1 0) gives bigger stability region compared to its counterpart fonnula 

(2.11). Thus, we will use this formula as our method to solve some initial value problems which 

have their own special characteristic. 

5 THE CONVERGENCE OF RK-NHM34 METHOD 
For the single equation initial value problem 

y' = f(x, y), y(O) = Yo, 

3 

2 

RK-NHM34(i) 

-2,5 -2 -LS -1 -0.5 0 

Figure 4.1 Comparison of stability regions ofRK-NHM34(i) to that of classical RK4 
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3 

2 

R K -N H M 34(ii) 

-2 

-2.5 -2 -LS -1 -0.5 0 

Figure 4.2 Comparison of stability regions ofRK-NHM34(ii) to that of classical RK4 

we now prove the convergence of the method RK-NHM34 given as 

(5.1) Yn+l = Yn + /~ (s1 + 5s2 + 4s3), 11 = 1, 2, 3, ... 

where 

(5.2) s1 = f(y11), 

(5.3) ~ = i{Yn + h(-Y)), 

. _ 1 35st 25sz .li) 2sts2 ) 
(5.4) s3-l\_Yn+h(24 + 8 -(4 St+s1. 

For f satisfies Lipschitz condition, then from (5.2), s 1 =fly 11) satisfies 

From (5.3), ~ = f(yn + h -!)satisfies 

(5.6) ~2- s;i = V<Yn + ~)- f(y~ + ¥1 ~ ~~~- Y~ + 1<st- s;~ 
~ ~n- Y~) + %<J(yn)- J(y~)~ ~ 1{1 + hf)~n- Y~ 
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- j ,f~ ~ 15 ~)) . From (5.4), .ry - ; \y, + '\. 24 + 8 - (4) s
1 

+ ~ satisfies 

Thus, 

Now, 

I. _ ~ = r(y h(35st ~ _ _li(~) _ f(y" h(35s~ 25si _ U( 2s;s; )~ 
t'3 SJI 11 + 24 + 8 4 11 + 24 + 8 4 • • ~+~ ~+~ 

+ j 35 ~ 25 • 15 2ss, 2s1si ~ :S - y + h(- (s - s +-(c.. - s,) - - (~ - ) 11 11 24 I I 8 -i. - 4 S + S S + • 
I 2 I Sz 

< + ., h(351. ~ 251. ., 1512sls2 2s si 
- n - y, + 24 t'l - sq + -8 t'2 - s2 - -4 - • 

s1 +~ s1 +s2 

:S L{l + ~~~ L + 2r L + 2i_d2 L2}~,- y~ + 1~1 L{4v,- y,:i + L(l +hi~·, - \',:1} 

= {L(l + 35/z L + 25h L + 25h
2 

L2) + lli(L2 + Lz(! + hL))}I , _ v·l 
24 8 24 4 3 ~\ 11 • , 

= L(l + 35h L + 25h L + 25h
2 

[2 + 15h L + 15h
2 Lz~. , _ y"i 

24 8 24 2 12 'V 11 11 

= L(l + 145h L + 55h L2\l.. _ y"i 
12 24 .I).Yn 11 

(5.8) 1\Jf,- \jf;,l = /~ ~s1 - s;) +~s2 - si) + 4(s3 - s;~ 

:S [~ ~~ - s~ + ~ - sil + '3 -s~ 
$ ~~ ( I{y, - y,~ + 5L(l + hf~, - Y:i + 4L(l + 14l~L + 5~: [2 ~~~ - y~ 

= hL (t + 5(1 + hL) + 4(l + 145hL + 55h
2 L2 )~1 .. _ y~ 

10 3 12 24 ~fYn 111 

= hL (to+ 50hL) + 55h
2
L

2
)1 .. _ y~ 

10 3 6 fYn 111 
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Thus, 

or 

,( 5hL 1lh2 L2l 
where<I>(L,h) = h~1 + - 3- + - 1-2 -)' 

wh1ch implies that \jf satisfies a Lipschitz condition in y, so that the method RK-NHM34 is 
convergent. 

6 NUMERICAL RESULTS 
To conclude our fmdings we present two problems. One is a single equation initial value problem 
and the other is a system consisting of two first order linear equations solved by the method 
d1scussed above. 

Problem I 

y' = -~, 0.1 :5 X :S 1 

Initial Condition: y(0.1) = cos (0.1) 

Exact Solution: y(x) =cos (x) 

Stepsize, h = 0.01 

Problem 2 

Initial Condition: (~~~) = (o~ J 

(
u(O)j ( eo.tr ) 

Exact Solution: v(O)) = O.leo.tr 

Stepsize, h = 0.01 

Table (6.1) corresponds to the solution of problem 1 when solved by classical RK4 and RK-NHM34 
respectively, while Table (6.2) and (6.3) correspond to the solution of problem 2. All the solutions 
are printed out for every 10 steps. 

PEHPUS~A~ SULTANAH ZANARIAH 
Um\·ersiti Teknologi Malavsia 
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Table (6.1) 

X Exact RK-AM4 RK-NHM34 ABSERROR ABSERRO 
Solution RK4 RK-NHM34 

- - - - -
0.1 0.9950+00 0.9950+00 0.995D+OO O.OOOD+OO O.OOOD+OO 
0.2 0.980D+OO 0.980D+OO 0.9800+00 0.1390-07 0.474D 08 
0.3 0.9550+00 0.955D+OO 0.9550+00 0.227D-07 0.7760 08 
0.4 0.921D+OO 0.921D+OO 0.921D+OO 0.0300-07 0.104D 07 
0.5 0.8780+00 0.8780+00 0.8780+00 0.3800-07 0.1290 07 
0.6 0.8250+00 0.825D+OO 0.8250+00 0.4490-07 0.1530 07 
0.7 0.7650+00 0.7650+00 0.765D+OO 0.5130-07 0.1750 07 
0.8 0.6970+00 0.6970+00 0.6970+00 0.571D-07 0.1950 07 
0.9 0.6220+00 0.6220+00 0.6220+00 0.6240-07 0.2130 07 
1.0 0.5400+00 0.5400+00 0.540D+OO 0.671D-07 0.1290 07 

METHOD: R.K4 CLASSIC 

Table (6.2) 

X Exact! = u(x) ERRI Exact2 = v(x) ERR2 ERR 

0.0 0.1000+01 O.OOOD+OO 0.1000+00 0.0000+00 0.0000+00 
0.1 0.101D+01 0.2150-11 0.101D+OO 0.2640-10 0.2640 10 
0.2 0.102D+01 0.6950-11 0.102D+OO 0.531D-10 0.5360 10 
0.3 0.1030+01 0.1450-10 0.1030+00 0.8030-10 0.8160 10 
0.4 0.1040+01 0.2470-10 0.1040+00 0.108D-09 0.1110 09 
0.5 0.105D+Ol 0.3780- 10 0.105D+OO 0.1360 09 0. 41D 09 
0.6 0.1060+01 0.5360-10 0.1060+00 0.1640-09 0.1730 09 
0.7 0.1070+01 0.7240- 10 0.1070+00 0.1930-09 0.2060 09 
0.8 0.1080+01 0.940D-10 0.108D+OO 0.2220-09 0.2410 09 
0.9 0.1090+01 0.1190--09 0.109D+OO 0.2520-09 0.2790-09 
1.0 0.111D+01 0.1460-09 0.1110+00 0.2820-09 0.3180 09 

METHOD: RK-NHM34 

Table (6.3) 

X Exact! = u(x) ERRl Exact2 = v(x) ERR2 ERR 
1- - --

0.0 0.1000+01 O.OOOD+OO 0.100D+OO O.OOOD+OO O.OOOD+OO 
0.1 0.101D+01 0.747D- 12 0.101D+OO 0.2620- 10 0.262D 10 
0.2 0.1020+01 0.4130-11 0.1020+00 0.5280-10 0.5300-10 
0.3 0.1030+01 0.102D-10 0.1030+00 0.798D- 10 0 8050 10 
0.4 0.1040+01 0.190D-10 0.1040+00 0.107D-09 0.1090-09 
0.5 0.1050+01 0.305D-10 0.105D+OO 0.135D-09 0.1390-09 
0.6 0.1060+01 0.4480-10 0.106D+OO 0.163D-09 0.1690 09 
0.7 0.107D+Ol 0.620D-10 0.1070+00 0.1920-09 0.2020- 09 
0.8 0.1080+01 0.821D-10 0.1080+00 0.221D-09 0.236D-09 
0.9 0.1090+01 0.105D-09 0.1090+00 0.250D-09 0.2720- 09 
1.0 0.111D+01 0.131D-09 O.lllD+OO 0.281D-09 0.3 100- 09 
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ote: For both Tables (6.2 )and (6.3) we defme the errors as 

ERR!= ABS(u(x + nh)- u11), 

ERR2 = ABS(v(x + nh) - V11), 

ERR = ~(ERR 1)2 + (ERR2)2 

wheren=O, 1,2, ... , 10. 

7 CONCLUSION 
In th1s paper we · have established a new three-stage fourth order Runge-Kutta formula based on 
Anthrnetic and Harmonic means. By including the Harmonic mean in S3, we are able to reduce the 
number of stages and at the same time we have increased the order of fonnula. Judging from the 
results as shown in Table 5.1 - 5.3, we could say that this new method is comparable to the classical 
RK4. The smaller stability region as shown in Fig. 4.1 indicate that this method requires a 'smaller' 
step size compared to that of classical RK4. 

To summanze our discussion, we present two tables, Table (7.1) and (7.2). Table (7.1) shows 
the two formulas used, and Table (7 .2) shows the amount of computational work involved per step 
f01 each method. From Table (7.2) it is clear that the RK-NHM34 is more favourable since it 
rLqu1rc fewer functiOn evaluatiOns wh1le the arithmetiC operat10 is similar with the classical RK4 
method. 

Table 7.1 The two formulas used in the numerical examples. 

Method Formulayn + 1 = 

RK-AM4 Yn +% (k1 + 2(~ + k3) + k4) 

RK- HM34 h 
Yn + 6 (sl + ~ + 4s3) 

Table 7.2 Companson of the amount of computational work in each step. 

Method +I- x/7 FCN 

Classical RK4 4 3 4 

RK-NHM34 3 4 3 
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