

79:7 (2017) 11–19 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

HIGH CANDIDATES GENERATION: A NEW EFFICIENT

METHOD FOR MINING SHARE-FREQUENT PATTERNS

Chayanan Nawapornanana*, Sarun Intakosuma, Veera Boonjingb

aDepartment of Computer Science, Faculty of Science, King

Mongkut's Institute of Technology Ladkrabang, Bangkok 10520,

Thailand
bInternational College, King Mongkut's Institute of Technology

Ladkrabang, Bangkok 10520, Thailand

Article history

Received

28 December 2016

Received in revised form

15 June 2017

Accepted

5 September 2017

*Corresponding author

56605008@kmitl.ac.th

Graphical abstract

Abstract

The share frequent patterns mining is more practical than the traditional frequent

patternset mining because it can reflect useful knowledge such as total costs and profits of

patterns. Mining share-frequent patterns becomes one of the most important research

issue in the data mining. However, previous algorithms extract a large number of

candidate and spend a lot of time to generate and test a large number of useless

candidate in the mining process. This paper proposes a new efficient method for

discovering share-frequent patterns. The new method reduces a number of candidates by

generating candidates from only high transaction-measure-value patterns. The downward

closure property of transaction-measure-value patterns assures correctness of the

proposed method. Experimental results on dense and sparse datasets show that the

proposed method is very efficient in terms of execution time. Also, it decreases the number

of generated useless candidates in the mining process by at least 70%.

Keywords: Data mining, association rule mining, knowledge discovering, share-frequent

patterns mining, frequent patterns mining, frequent itemsets mining

© 2017 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Frequent patterns mining in a transaction database is

an important task for knowledge discovery and data

mining such as association rules [1], sequential

patterns [3, 4, 21] and classification [14, 19]. Its goal is

to find the complete set of patterns that appear with

their frequencies in the transaction database above

a certain threshold. Numerous methods were

proposed to find frequent patterns such as level-wise

algorithms [2, 6, 7, 20, 22] and pattern-growth

approaches [9, 11, 12, 15]. These methods treated all

patterns in a transaction database as a binary (0/1)

value. That is, only considering the number of

transactions in the database containing desired

patterns. However, there could be a transaction with

many units of an item. Therefore, discovering only

traditional frequent patterns cannot reflect any other

implicit factors, such as total costs and profits [13].

In dealing with this problem, Carter et al. [5]

proposed a new share-frequent pattern mining,

which extension of traditional frequent itemsets

mining with consideration of the purchased

quantities. Several mining methods were proposed

for efficiently discovering share-frequent patterns. The

Zero pruning (ZP) and the Zero subset pruning (ZSP)

proposed by [8, 13] can find all share-frequent

patterns using an exhaustive search method.

However, both algorithms only prune the generated

candidates which have zero local measure value.

Some approaches have been proposed to find

share-frequent itemsets with infrequent subsets but

they cannot extract the complete set of share-

frequent patterns such as SIP [8], CAC [10] and IAB

[13]. After that, the Fast Share Measure (ShFSM)

12 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

method [16] was introduced to solve the weakness of

the existing algorithms by using a level-closure

property. However, the downward-closure property

cannot be kept in this property and the ShFSM still

produces too many candidates in each round.

[17] proposed the Direct Candidates Generation

algorithm (DCG) to reduce the number of

candidates by generating candidates directly

without cutting back and joining steps in each

iteration. The DCG developed to maintain the

property of downward-closure by employing the

transaction measure value of a pattern. The authors

demonstrate that DCG method outperforms the

previous algorithm both on the number of generated

candidates and execution time. However, the DCG

still extracts a huge number of candidates and

consumes a lot of time to generate and test a big

number of unwanted candidates in the mining

process. This is because it treats all k-patterns

(patterns with k items) as candidates for generating

candidates in the later rounds. However, these k-

patterns could be either high transaction-measure-

value patterns or low transaction-measure-value

patterns. According to the downward-closure

property of transaction-measure-value patterns, we

propose to exclude low transaction-measure-value k-

patterns for generating candidates without losing

any share-frequent patternsets.

The organization of this paper is as follows. The next

section gives basic definitions. Proposed solution

section describes details of our approach. An

illustrative example section clarifies the proposed

solution. Experimental results section reports

performance evaluation of the proposed algorithm.

We finally conclude the paper in conclusion section.

2.0 METHODOLOGY

2.1 Basic Definition

Let I = {i1, i2, ... ,in} be a finite set of items. A subset X of

I is called an itemset or a patternset. Let DB =

{T1,T2,.,Ti,.,Tn} be a transaction database where Ti is a

subset of I. Associated with each item in a

transaction is its quantity sold in the transaction. Table

1 is an example of transaction database with I = {A,

B, C, D, E, F, G, H} and DB = {T1,T2, T3,T4, T5,T6, T7,T8}.

Table 1 An example transaction database with quantity

information

TID Transaction

T1

T2

T3

T4

T5

T6

T7

T8

T9

{A:1, B:1, C:1, D:1, G:1, H:1}

{F:4, H:3}

{B:4, C:3, D:3}

{C:4, E:1}

{B:3, D:2}

{B:3, C:2, D:1}

{B:3, C:4, D:1, E:2}

{A:4, F:1, G:1}

{C:2, E:1}

Definition 1. The measure value of an item ip in

transaction Tq is the quantity of item ip in Tq denoted

by,

(,)p qmv i T (1)

The measure value of item C in T1 of Table 1 is

mv(C,T1) = 1 which is its associated quantity sold.

Definition 2. The patternset measure value of a

patternset X in transaction Tq can be defined as

follows,



(,) (,)

p

p qq

i X

imv X T mv i T (2)

The patternset measure value of a patternset {CD} in

transaction T1 of Table 1 is imv({CD},T1) = mv(C,T1) +

mv(D,T1) = 1+1 = 2.

Definition 3. The local measure value of a patternset

X of a database DB is defined as follows,

 

  () (,)

q X p

p q

T DB i X

lmv X imv i T (3)

where DBX is the set of transaction database

containing patternset X.

The local measure value of a patternset {CD} of

Table 1 is lmv({CD})= imv({CD},T1)+

imv({CD},T3)+imv({CD},T6)+ imv({CD},T7) = 2+6+3+5=

16.

Definition 4. The total measure value of database is

the total measure value of all items in all transactions

of a transaction database DB. It is defined by,

 

  () (,)

q p q

p q

T DB i T

TMV DB mv i T (4)

The total measure value of Table 1 database is

TMV(DB) = 58.

Definition 5. The share value of a patternset X in a

database DB is the ratio of the local measure value

of X to the transaction measure value of DB. That is,

()
()

()

lmv X
SH X

TMV DB
 (5)

The share value of a patternset {CD} in Table 1

database is SH({CD}) = lmv({CD})/TMV(DB) = 16/58 =

0.27.

Definition 6. Let δ be a minimum share threshold

where 0 <δ < 1. The minimum local measure value of

database DB with a threshold δ is defined as follows,

 min_ (())lmv ceiling TMV DB (6)

The minimum local measure value of Table 1

database with δ = 0.25 is min_lmv = ceiling(0.25 58)

= 15.

Definition 7. The transaction measure value of

transaction Tq is defined as follows,

13 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

() (,)

p q

p qq

i T

tmv T mv i T



  (7)

From Table 1 database, the transaction measure

value of T1 is tmv(T1) = 6.

Definition 8. The transaction measure value of a

patternset X of a database DB is defined as follows,

 

 () ()

q X

q

X T DB

tmv X tmv T (8)

where DBX is the set of transaction database

containing patternset X.

The transaction measure value of patternset {F} of

Table 1 database is tmv({F}) = tmv(T2) + tmv(T8) = 7 + 6

= 13.

Lemma 1. The transaction measure value of a

patternset X maintains the property of downward

closure.

Proof. Let {A} be a share-frequent patternsets

patternset in DB{A}, where DB{A} is a set of all

transaction database containing {A}. Let {B} be a

super pattern of {A}, therefore {B} cannot be present

in any transaction that {A} is absent. Thus, refer to

definition 8, the maximum transaction measure value

of {B} is tmv({A}). Therefore, if tmv({A}) is less than

min_lmv, {B} cannot be a share-frequent patternsets

and obviously cannot be a high transaction measure

value pattern (including {A}).

By Lemma 1, if a patternset X is not high

transaction measure value pattern, its supersets are

not high transaction measure value patterns either.

From Table 1 database with δ = 0.25, we have

min_lmv = 15 and tmv({F}) = 13 <min_lmv. Therefore,

all supersets of {F} are not high transaction measure

value patterns.

Definition 9. A patternset X of a database DB is a high

transaction measure value patternset with respect to

a threshold δ, if tmv(X) > min_lmv.

2.2 Proposed Solution

In this section, at first, we present an efficient data

structure called "a PSTable Knowledge" to maintain

an incremental database. After that, the HCG

algorithm is presented for mining share-frequent

patterns from the PSTable Knowledge and it

generates the candidate patterns from only the high

transaction measure value patterns.

2.2.1 Maintenance of PSTable Knowledge

The PSTable is a set of patterns with their quantities. It

is an improved version of a BitTable structure [18] by

aggregating transactions having similar patterns. The

maintaining process of the PSTable is described as

below.

To maintain PSTable, each transaction from initial

database or the newly inserted transaction is loaded

and treated as a patternset. After that, it checks the

patternset of the transaction whether it appears in

the PSTable or not. If it does, the quantity of the

transaction (total count) is summed with the new

entries to gain new value of total count, and the

patternset count is incremented by 1. Otherwise, it is

the new patternset and then it will be inserted into

the PSTable with the quantity of the transaction and

set the patternset count to be 1. All the mentioned

steps are repeated for all of the transaction in initial

database or the newly inserted transactions. The

pseudocode of the algorithm is shown in Algorithm 1

in Figure 1.

Figure 1 Pseudocode for maintaining PSTable Knowledge

Example 1. To illustrate the maintaining process of the

PSTable, we use a database shown in Table 1 as an

example.

The first transaction T1 ={A:1, B:1, C:1, D:1, G:1, H:1}

is loaded into the algorithm, that is, {A,B,C,D,G,H} is

treated as a new patternset. Next, the new

patternset is checked in the PSTable. The new

patternset is new, it will be added to the PSTable and

set the total count as the sum of the quantity of

transaction (=6) and also set the value 1 to the

patternset count. The algorithm does the same steps

to T5 and the result is illustrated in Figure 2 (a). After

that the next transaction T6 = {B:3, C:2, D:1} is read to

the algorithm, the new patternset of T6 is {B,C,D} and

it is examined in the PSTable. The new patternset

exists, the total count is concluded with the new

entries to gain new value of total count as (10+6 =

16) and also increases by one to the patternset

count (1+1 = 2) as shown in Figure 2(b). This process is

repeated for all transactions and the final PSTable

Knowledge is presented in Figure 2(c).

14 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

(a) The result of maintaining algorithm after transaction T1-T5

is added

(b) The result of maintaining algorithm after transaction T6 is

added

(c) The result of the maintaining algorithm

Figure 2 PSTable knowledge extracted from Table 1

database

2.2.2 The HCG Algorithm

In this subsection, we present a new efficient

algorithm for mining share-frequent patterns from the

PSTable Knowledge. It generates the minimized

number of candidate from only high transaction

measure value patternsets. As mentioned in Lemma

1, the transaction measure value (tmv) contains the

downward closure property, therefore, it is used to

cutting back the useless candidate patternsets in

each iteration. To determine whether the patternset

is high or not, the value of tmv is calculated (by

definition 8) - if the value of tmv of any patternsets is

larger than or equal to the minimum local measure

value (min_lmv), it is in the set of high transaction

measure value. The details of the HCG algorithm are

described below.

Input:

1. The PSTable Knowledge

2. A minimum share threshold 

Output: High share-frequent patterns, C

Step 1: Calculates the total measure value of

database from the PSTable using Eq. (4) denoted by

TMV. After that, the min_lmv is computed by using Eq.

(6).

Step 2: Each 1-patternset from the PSTable X is

loaded into the HCG algorithm and then calculates

the transaction measure value of X using Eq. (8)

denoted by tmv(X).

Step 3: Checks whether the value of tmv(X) is larger

than or equal to the min_lmv. If X satisfies the above

condition, put X in a set of high transaction measure

value (abbreviated as Htmv).

Lemma 2. Each 1-patternset from the PSTable X is an

infrequent if tmv(X) <min_lmv

Proof. Let X be a high transaction measure value in

the PSTable. According to definition 8, tmv(X) must

be greater than or equal to min_lmv. Therefore, this

opposes to the assumption tmv(X)<min_lmv. Thus, a

patternset X is an infrequent.

In HCG algorithm, we calculate all Htmv in the

PSTable by determining the original transaction

measure value according to Eq. (8) which this value

maintains the property of downward closure.

Step 4: Each 1-patternset in the high transaction

measure value (Htmv) X is read into the HCG

algorithm. Then, the algorithm will show every pattern

from the PSTableX where PSTableX is the set of

patterns containing patternset X. The transaction

measure value of each 1-patternset in PSTableX is

computed.

Step 5: Checks whether the value of tmv of each 1-

patternset in PSTableX is greater than or equal to the

min_lmv. If X satisfies the above condition, put X in a

set of high transaction measure value of X, HtmvX.

Lemma 3. Each 1-patternset from the PSTableX Y is an

infrequent if tmv(Y) <min_lmv

Proof. Let Y be a high transaction measure value in

the PSTableX. According to definition 8, tmv(Y) must

be greater than or equal to min_lmv. Therefore, this

opposes to the assumption of tmv(Y) <min_lmv. Thus,

a patternset Y is an infrequent.

In our algorithm, we calculate all HtmvX in the

PSTableX by performing the original transaction

measure value calculation according to Eq. (8)

which this value maintains the property of downward

closure.

Step 6: Mines all 2-patternset in HtmvX that prefixs with

X and keep them in the C2. After that, removes X

from Htmv and sets k = 3, where k is used for

recording the length of generated candidates in the

mining process.

Step 6-1: The candidate k-patternsets are generated

from Ck-1 and also compute their transaction

measure value (tmv(k-patternsets)) in the PStableX for

15 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

checking against the min_lmv. Checks whether the

value of tmv(k-patternset) is greater than or equal to

the min_lmv. If it satisfies the above condition, stores it

to Ck. Increases k by one and this step is then

repeated until no candidate patternset is generated.

Step 7: Repeats Steps 4 – 6 until the Htmv is empty

and returns the C that stores all high transaction-

measure-value pattern at the end of the HCG

algorithm.

2.3 An Illustrative Example

In this section, we use the Table 1 database to

illustrate the HCG algorithm step by step. Also, it is

assumed that the minimum share threshold is 25% of

total quantity.

Input:

1. The PSTable is shown in Figure 2 (c), which

constructed from the example transaction database

in Table 1.

2. The minimum share threshold () is set as 0.25.

Output: High share-frequent patterns, C

Step 1: The HCG algorithm calculates the initial

variables at first i.e. TMV(=58) and min_lmv (58*0.25),

which is 15, respectively.

Step 2: The 1-patternset X in the PSTable for {A}, {B},

{C}, {D}, {E}, {F}, {G} and {H} are read into the

algorithm and then calculates their transaction

measure value (tmv(X)). Takes 1-patternset {A} as an

example to illustrate the process. The 1-patternset {A}

appears in the PSTable P1 and P7 and then the

transaction measure value of the 1-patternset {A} is

calculated as (6+6 = 12). The other 1-itemsets are

calculated in the same way and the result is shown in

Figure 3.

Figure 3 tmvs of 1-patternsets

Step 3: The tmv values of the 1-patternset are

checked against the min_lmv. In this example, the

four item {B}, {C}, {D} and {E} satisfy the condition and

put them in both the set of high transaction measure

value (Htmv) and C1. Thus, Htmv = {{B}, {C}, {D}, {E}}.

Step 4: Each 1-patternset X in the Htmv is then read

into the algorithm. Takes HtmvB as an example, the

{B} appears in Pattern P1, P3, P5 and P6 in the PSTable

(PStableB). Then, the HCG algorithm computes the

tmv value of all 1-patternset in PStableB as {{B:

6+16+5+10 (=37)}, {C: 6+16+10 (=32)}, {D: 6+16+5+10

(=37)} and {E: 10}}, respectively, is shown in Figure 4

(a).

Step 5: Checks whether the tmv value of the 1-

patternset in the PStableX is larger than or equal to

the min_lmv. Then, put them in the set of high

transaction measure value of X, HtmvX. In this

example, the 1-patternsets in the PStableB satisfy the

condition which are as follows {B}, {C} and {D}. Thus,

HtmvB = {B,C,D}. The other HtmvX are then processed

in the same way. The results are shown in Figure 4 (b)-

(d) respectively.

(a) The process of {B} in Htmv

(b) The process of {C} in Htmv

(c) The process of {D} in Htmv

(d) The process of {E} in Htmv

Figure 4 The process of 1-patterns in Htmv

Step 6: Mines all 2-patternset in HtmvX that prefix with

X and then removes X from Htmv. Takes HtmvB as an

example to illustrate the process. The HCG generates

candidate 2-patternset of the HtmvB as {B,C} and

16 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

{B,D} respectively, which is shown in Figure 5, and also

keeps them in C2. Then, k is set to 3.

Step 6-1: The candidate k-patternset are

generated from Ck-1 and also compute their

transaction measure value for checking against the

min_lmv. From the result of candidate 2-patternset of

the HtmvB, the HCG generates the candidate k-

patternset which is {B,C,D} as shown in Figure 6 and it

satisfies the condition, saves it to Ck. This sub step of

pattern "B" can be terminated in the third round

because no candidate patternset is generated.

Figure 5 tmvs of 2-patternsets with prefix "B"

Figure 6 tmvs of 3-patternsets with prefix "B"

Step 7: Steps 4 – 6 are then repeated until no

member of Htmv. After the algorithm works

complete, we get C = {{B}, {C}, {D}, {E}, {B,C}, {B,D},

{B,C,D}, {C,D}, {C,E}}. The share-frequent patterns

mined from C are {C}, {B,C}, {B,D}, {C,D} and {B,C,D}

respectively. All generated candidate are shown in

Figure 7.

Figure 7 The generated candidates by the HCG

algorithm

Observation 1. The DCG algorithm adopts the level-

wise candidate generation-and-test methodology.

Firstly, it reads all 1-patternset from a transaction

database and treats them as 1-candidate for

generating all the candidate for length 2, that is, all

1-candidate contain high tmv value and low tmv

value. For example, if the number of atomic patterns

is 500 and they are treated as 1-candidate and then

the algorithm tests for (500
2

) 2-patternset candidate

patterns. For 2-patternset, a patternset will be

considered for selection as a candidate by the

definition 8. Therefore, a large number of candidates

are generated.

Lemma 4. If M1 is the number of generated

candidates by HCG algorithm and M2 is the number

of generated candidates by DCG algorithm, then

M1<M2.

Proof. Let Z{z1,z2, ... ,zn} be a candidate patternset if

all of its subset of length n-1 are candidate patternset

(high transaction measure value) in the DCG

algorithm. So, Z could have low tmv value to

become a candidate of length 1. In HCG algorithm,

if Z is a low tmv then it cannot appear as a

candidate. In addition, HCG prunes Z immediately

after determining it is low tmv value. In conclusion,

the generated candidate patternsets of HCG stores

only the high transaction measure value, therefore,

M1 is less than or equals to M2.

3.0 RESULTS AND DISCUSSION

3.1 Experimental Environment and Datasets

In this section, the experimental evaluation of the

compared algorithms: the HCG solution and the

DCG method [17] are conducted. All algorithms

were implemented in Microsoft C# 2012 and running

on a 2.60 GHz Intel(R) Core i7-4720HQ with 12 GB

main memory on the Windows 8.1 operating system.

Similar to the performance evaluation of the previous

share-frequent patterns mining algorithm [17], the

count information was assigned to each item in each

transaction, ranging from 1 to 10. Four datasets are

used in the experiments and they are acquired from

FIMI Repository Page [23-26]. The characteristics of

the datasets are shown in Table 2, |D| is the total

number of transaction in a dataset, |I| is the number

of distinct pattern in the dataset and Tavg is the

average size of transaction. The dataset is dense

since the number of atomic pattern is small and

each transaction has a lot of distinct pattern. By

considering the mushroom dataset in Table 2, its

atomic pattern is 119 and its transaction size is 23.

Therefore, the ratio of its distinct pattern presented in

every transaction is 20% ((23/119)*100).

Table 2 Characteristics of the experiment datasets

Dataset |D| |I| Tavg Type

Mushroom 8,124 119 23 Dense

Chess 3,196 75 37 Dense

T10I4D100K 100,000 870 10.1 Sparse

T40I10D100K 100,000 942 40.5 Sparse

3.2 Experimental Results for Dense Datasets

In the first experiment, we compare the running time

of the HCG algorithm over the DCG method using

the Mushroom and Chess datasets. As there is no

share-frequent patternset, two ranges of minShare

are chosen. For Mushroom dataset, the minimum

share threshold is set from 0.6 to 0.2, while for Chess

17 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

dataset, it is set from 0.9 to 0.7. The results are shown

in Figure 8 (a) and (b). It is obvious to see that two

algorithms require more runtime when the minimum

share threshold decreases. This is reasonable

because when the threshold value became smaller,

more candidates in the mining process are

generated.

Moreover, the HCG algorithm performs better than

the existing DCG algorithm with respect to all of the

minimum share thresholds. The reason is that DCG

requires more execution time to generate and test a

huge number of useless candidates in the mining

process since it treated all 1-patterns as candidates

for generating candidates in the later rounds. That is,

1-patterns contain both high tmv patterns and low

tmv patterns. For the HCG algorithm, it generates the

candidate from only high transaction measure value

atomic patterns in the second round. For the third

round onwards, it created candidates from the

combination of only the patterns which have their

transaction measure value beyond a certain

threshold. The number of candidate in the mining

process and the number of generated candidate of

both methods are shown in Table 3 and 4

respectively.

(a) Total running time on Chess

(b) Total running time on Mushroom

Figure 8 Running times of DCG and HCG with different

thresholds on dense datasets

Table 3 The number of generated candidates of DCG and

HCG on the chess dataset

Minimum

Share

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

0.6 8,623 179 162 51

0.5 12,003 331 259 153

0.4 25,296 967 663 565

0.3 90,924 3,744 2,826 2,735

0.2 950,253 58,760 53,697 53,621

Table 4 The number of generated candidates of DCG and

HCG on the mushroom dataset

Table 5 compares the number of candidates in

the mining process and the number of generated

candidates of two algorithms in each round. A

Mushroom dataset was employed and the minimum

share threshold was set at 0.3%. In addition, we

further found that, in every round of mining process,

the HCG method produces a smaller number of

candidates than that of the DCG one. The reason to

this situation is the same as the content mentioned

earlier. The HCG and the DCG methods terminate in

the ninth round and tenth round respectively.

Table 5 The number of candidates in the mining process

and the number of generated candidates on Mushroom

dataset

k-patternset

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

k=1 119 119 119 28

k=2 7,021 378 163 163

k=3 7,164 660 455 455

k=4 15,836 956 725 725

k=5 22,179 856 712 712

k=6 20,482 525 441 441

k=7 12,315 203 169 169

k=8 4,653 43 38 38

k=9 1,044 4 4 4

k=10 111 - 0 -

Total 90,924 3,744 2,826 2,735

3.3 Experimental Results for Sparse Datasets

In this experiment, we present the comparison of

HCG and DCG algorithms on sparse datasets,

Minimum

Share

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

0.90 12,542 955 691 629

0.85 41,797 3,487 2,733 2,674

0.80 116,920 10,256 8,304 8,248

0.75 282,912 25,958 21,018 20,966

0.70 629,379 60,377 48,972 48,921

18 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

T10I4D100K and T40I10D100K, the results in terms of

consumed run time are shown in Figure 9 (a) and (b).
Two ranges of min_share are chosen. For T10I4D100K

dataset, the minimum share threshold was set from

0.09 to 0.005. While for T40I4D100K dataset, it was set

from 0.3 to 0.05, as there is no share-frequent

patternset.

It shows that our proposed HCG runs faster than

the DCG one since the new proposed HCG can

reduce the large number of unpromising candidates

in the mining process because the HCG generated

the candidate patterns from only the patterns with

transaction measure value above a certain

threshold.

(a) Total running time on T10I10D100K

(b) Total running time on T40I4D100K

Figure 9 Running times of DCG and HCG with different

thresholds on sparse datasets

Table 6 and 7 compares the number of candidates

in the mining process and the number of generated

candidates of two algorithms. Obviously, from Table

6, the minimum share is set to 0.09, it could be seen

that no candidate is larger than a certain threshold.

The process of HCG starts to read all 1-patterns,

which is 870 items and then checks whether their

values is high and no pattern is above a certain

threshold (high), therefore the HCG terminates in the

first round. For DCG algorithm, it reads all 1-patterns

and treats them as 1-candidates (870 items) for

generating-and-testing 2-patterns in second round.

Then, no pattern for 2-patterns is above a certain

threshold, so the DCG terminates in the second

round.

Table 6 The number of generated candidates of DCG and

HCG on the T10I4D100K dataset

Table 7 The number of generated candidates of DCG and

HCG on the T40I10D100K dataset

Similar to Table 5, Table 8 compares the difference

of the candidate numbers in the mining process and

the generated candidate numbers between both

algorithms in each pass. The T10I4D100K dataset was

used and min_share was set to 0.009. We can

observe that the HCG generates lower numbers

candidate than that of the DCG method. In addition,

the overall performance of HCG is better because it

produces the candidate from only high the

transaction measure value patterns. Through all of

the experimental results, we can observe that the

new proposed effectively much better than the

existing DCG algorithm in terms of the total running

time and the number of generated candidates on

both dense and sparse datasets.

Table 8 The number of candidates in the mining process

and the number of generated candidates on T40I10D100K

dataset

k-patternset

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

k=1 870 870 870 445

k=2 378,015 98,790 50 50

k=3 14,916 33 9 9

k=4 3,808 1 0 0

Total 397,609 99,694 929 504

Minimum

Share

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

0.30 444,153 942 942 0

0.20 444,153 957 942 6

0.10 444,153 5,037 942 91

0.09 444,153 7,845 942 118

0.07 444,760 20,249 944 199

0.05 452,284 50,491 966 339

0.03 574,350 128,842 1,369 926

Minimum

Share

The number of

candidates in the

mining process

The number of

generated

candidates

DCG HCG DCG HCG

0.090 378,885 870 870 0

0.070 378,885 876 870 4

0.050 378,885 1,023 870 18

0.030 378,885 5,241 870 94

0.010 384,432 85,545 889 431

0.009 397,609 99,694 929 504

0.007 435,750 131,367 1,105 746

0.005 605,839 185,077 1,797 1,532

19 Chayanan, Sarun & Veera / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 11–19

4.0 CONCLUSION

This paper presented a new efficient method for

mining share-frequent patterns, named HCG, aimed

to develop for decreasing the number of

unpromising candidate patterns. The HCG

generated the candidate pattern from only the

patterns which have their transaction measure value

beyond a certain threshold in a level-wise way.

Moreover, we also presented a new data structure

that captures all atomic patterns with their count

information, named PSTable, which is constructed

once by a single scan database. When new

transactions come in, they can suddenly add to the

existing database without reconstructing. Extensive

performance analysis shows that our approach

outperforms the existing DCG algorithm in terms of

the total running time and the number of generated

candidates on both dense and sparse datasets.

References

[1] Agarwal, R., Imielinski, T. and Swami, A. 1993. Mining

Association Rules between Sets of Items in Large

Database. Proceedings of the ACM SIGMOD on

Management of Data. 207-216.

[2] Agarwal, R. and Srikant, R. 1994. Fast Algorithms for Mining

Association Rules in Large Databases. Proceedings of 20th

International Conference on Very Large Data Bases. 487-

499.

[3] Agarwal, R. and Srikant, R. 1995. Mining Sequential

Patterns. Proceedings of 11th International Conference on

Data Engineering. 3-14.

[4] Agarwal, R. and Srikant, R. 1996. Mining Sequential

Patterns: Generalizations and Performance Improvements.

Proceedings of 5th International Conference on Extending

Database Technology. 3-17.

[5] Carter, C. L., Hamilton, H. J. and Cercone, N. 1997. Share

Based Measures for Itemsets. Lecture Notes in Computer

Science. 1263: 14-24.

[6] Park, J. S., Chen, M. S. and Yu, P. S. 1997. Using a Hash-

Based Method with Transaction Trimming for Mining

Association Rules. IEEE Transactions on Knowledge and

Data Engineering. 9: 813-825.

[7] Brin, S., Motwani, R., Ullman, J. D. and Tsur, S. 1997.

Dynamic Itemset Counting and Implication Rules for

Market Basket Data. Proceedings of the ACM SIGMOD on

Management of Data. 255-264.

[8] Barber, B. and Hamilton, H. J. 2000. Algorithms for Mining

Share Frequent Itemsets Containing Infrequent Subsets.

Lecture Notes in Computer Science. 1910: 316-324.

[9] Han, J., Pei, J. and Yin, Y. 2000. Mining Frequent Patterns

without Candidate Generation. Proceedings of the ACM

SIGMOD on Management of Data. 1-12.

[10] Barber, B. and Hamilton, H. J. 2001. Parametric Algorithm

for Mining Share Frequent Itemsets. Journal of Intelligent

Information Systems. 16: 277-293.

[11] Pei, J., Han, J. and Lu, H. 2001. Hmine: Hyper-structure

Mining of Frequent Patterns in Large Database.

Proceedings of International Conference on Data Mining.

441-448.

[12] Agarwal, R., Aggarwal, C. and Prasad, V. V. V. 2001. A

Tree Projection Algorithm for Generation of Frequent

Itemsets. Journal of Parallel and Distributed. 61: 350-371.

[13] Barber, B. and Hamilton, H. J. 2003. Extracting Share

Frequent Itemsets with Infrequent Subsets. Data

Mining and Knowledge Discovery. 7: 153-185.

[14] Han, J., Pei, J., Yin, Y. and Shi, C. 2004. Integrating

Classification and Association Rule Mining: A Concept

Lattice Framework. Lecture Notes in Computer Science.

1711: 443-447.

[15] El-Hajj, M. and Zaiane, O. R. 2004. COFI Approach for

Mining Frequent Itemsets Revisited. Proceeding of the

ACM SIGMOD on Data Mining and Knowledge Discovery.

70-75.

[16] Li, Y. C., Yeh, J. S. and Chang, C. C. 2005. A Fast Algorithm

for Mining Share-frequent Itemsets. Lecture Notes in

Computer Science. 3399: 417-428.

[17] Li, Y. C., Yeh, J. S. and Chang, C. C. 2005. Direct

Candidates Generation: A Novel Algorithm for

Discovering Complete Share-frequent Itemsets. Lecture

Notes in Computer Science. 3614: 551-560.

[18] Nawapornanan, C and Boonjing, V. 2011. A New Share

Frequent Itemsets Mining Using Incremental Bittable

Knowledge. Proceedings of 5th International Conference

on Computer Sciences and Convergence Information

Technology. 358-362.

[19] Mohammad, N. Q., Hassan, F. H. A., Yahya, K. T. 2015. An

Improved Documents Classification Technique Using

Association Rules Mining. Proceedings of IEEE International

Conference on Research in Computational Intelligence

and Communication Networks. 460-465.

[20] Houda, E., Mohamed, E. F. and Mohammed, E. M. 2016. A

Novel Approach for Mining Frequent Itemsets: AprioriMin.

Proceedings of 4th IEEE International Colloquium on

Information Science and Technology. 286-289.

[21] Peng, H. 2016. Improved Algorithm Based on Sequential

Pattern Mining of Big Data Set. Proceedings of 7th IEEE

International Conference on Software Engineering and

Service Science. 115-118.

[22] Shubhangi, D. P., Ratnadeep, R. D. and D., K. K. 2016.

Adaptive Apriori Algorithm for Frequent Itemset Mining.

Proceedings of International Conference System Modeling

& Advancement in Research Trends. 7-13.

[23] Frequent Itemset Mining Dataset Repository, “Chess”,

http://fimi.ua.ac.be/data/, 1987 (Accessed: June 9, 2017).

[24] Frequent Itemset Mining Dataset Repository, “Mushroom”,

http://fimi.ua.ac.be/data/, 1989 (Accessed: June 9, 2017

[25] Frequent Itemset Mining Dataset Repository, “T10I4D100K”,

http://fimi.ua.ac.be/data/, 2003 ((Accessed: June 9,

2017).

[26] Frequent Itemset Mining Dataset Repository,
“T40I10D100K”, http://fimi.ua.ac.be/data/, 2003

(Accessed: June 9, 2017).

http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/

