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Abstract 
 

The share frequent patterns mining is more practical than the traditional frequent 

patternset mining because it can reflect useful knowledge such as total costs and profits of 

patterns. Mining share-frequent patterns becomes one of the most important research 

issue in the data mining. However, previous algorithms extract a large number of 

candidate and spend a lot of time to generate and test a large number of useless 

candidate in the mining process. This paper proposes a new efficient method for 

discovering share-frequent patterns. The new method reduces a number of candidates by 

generating candidates from only high transaction-measure-value patterns. The downward 

closure property of transaction-measure-value patterns assures correctness of the 

proposed method. Experimental results on dense and sparse datasets show that the 

proposed method is very efficient in terms of execution time. Also, it decreases the number 

of generated useless candidates in the mining process by at least 70%. 

 

Keywords: Data mining, association rule mining, knowledge discovering, share-frequent 
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1.0  INTRODUCTION 
 

Frequent patterns mining in a transaction database is 

an important task for knowledge discovery and data 

mining such as association rules [1], sequential 

patterns [3, 4, 21] and classification [14, 19]. Its goal is 

to find the complete set of patterns that appear with 

their frequencies in the transaction database above 

a certain threshold. Numerous methods were 

proposed to find frequent patterns such as level-wise 

algorithms [2, 6, 7, 20, 22] and pattern-growth 

approaches [9, 11, 12, 15]. These methods treated all 

patterns in a transaction database as a binary (0/1) 

value. That is, only considering the number of 

transactions in the database containing desired 

patterns. However, there could be a transaction with 

many units of an item. Therefore, discovering only 

traditional frequent patterns cannot reflect any other 

implicit factors, such as total costs and profits [13]. 

In dealing with this problem, Carter et al. [5] 

proposed a new share-frequent pattern mining, 

which extension of traditional frequent itemsets 

mining with consideration of the purchased 

quantities. Several mining methods were proposed 

for efficiently discovering share-frequent patterns. The 

Zero pruning (ZP) and the Zero subset pruning (ZSP) 

proposed by [8, 13] can find all share-frequent 

patterns using an exhaustive search method. 

However, both algorithms only prune the generated 

candidates which have zero local measure value. 

Some approaches have been proposed to find 

share-frequent itemsets with infrequent subsets but 

they cannot extract the complete set of share-

frequent patterns such as SIP [8], CAC [10] and IAB 

[13]. After that, the Fast Share Measure (ShFSM) 
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method [16] was introduced to solve the weakness of 

the existing algorithms by using a level-closure 

property. However, the downward-closure property 

cannot be kept in this property and the ShFSM still 

produces too many candidates in each round. 

[17] proposed the Direct Candidates Generation 

algorithm (DCG) to reduce the number of 

candidates by generating candidates directly 

without cutting back and joining steps in each 

iteration. The DCG developed to maintain the 

property of downward-closure by employing the 

transaction measure value of a pattern. The authors 

demonstrate that DCG method outperforms the 

previous algorithm both on the number of generated 

candidates and execution time. However, the DCG 

still extracts a huge number of candidates and 

consumes a lot of time to generate and test a big 

number of unwanted candidates in the mining 

process. This is because it treats all k-patterns 

(patterns with k items) as candidates for generating 

candidates in the later rounds. However, these k-

patterns could be either high transaction-measure-

value patterns or low transaction-measure-value 

patterns. According to the downward-closure 

property of transaction-measure-value patterns, we 

propose to exclude low transaction-measure-value k-

patterns for generating candidates without losing 

any share-frequent patternsets. 

The organization of this paper is as follows. The next 

section gives basic definitions. Proposed solution 

section describes details of our approach. An 

illustrative example section clarifies the proposed 

solution. Experimental results section reports 

performance evaluation of the proposed algorithm. 

We finally conclude the paper in conclusion section. 

 

 

2.0  METHODOLOGY 
 

2.1  Basic Definition 

 

Let I = {i1, i2, ... ,in} be a finite set of items. A subset X of 

I is called an itemset or a patternset. Let DB = 

{T1,T2,.,Ti,.,Tn} be a transaction database where Ti is a 

subset of I. Associated with each item in a 

transaction is its quantity sold in the transaction. Table 

1 is an example of transaction database with I = {A, 

B, C, D, E, F, G, H} and DB = {T1,T2, T3,T4, T5,T6, T7,T8}. 

 
Table 1 An example transaction database with quantity 

information 

 

TID Transaction 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

{A:1, B:1, C:1, D:1, G:1, H:1} 

{F:4, H:3} 

{B:4, C:3, D:3} 

{C:4, E:1} 

{B:3, D:2} 

{B:3, C:2, D:1} 

{B:3, C:4, D:1, E:2} 

{A:4, F:1, G:1} 

{C:2, E:1} 
 

Definition 1. The measure value of an item ip in 

transaction Tq is the quantity of item ip in Tq denoted 

by, 

( , )p qmv i T    (1) 

The measure value of item C in T1 of Table 1 is 

mv(C,T1) = 1 which is its associated quantity sold. 

Definition 2. The patternset measure value of a 

patternset X in transaction Tq can be defined as 

follows, 



( , ) ( , )

p

p qq

i X

imv X T mv i T   (2) 

The patternset measure value of a patternset {CD} in 

transaction T1 of Table 1 is imv({CD},T1) = mv(C,T1) + 

mv(D,T1) = 1+1 = 2. 

 

Definition 3. The local measure value of a patternset 

X of a database DB is defined as follows, 

 

 

  ( ) ( , )

q X p

p q

T DB i X

lmv X imv i T  (3) 

where DBX is the set of transaction database 

containing patternset X. 

 

The local measure value of a patternset {CD} of 

Table 1 is lmv({CD})= imv({CD},T1)+ 

imv({CD},T3)+imv({CD},T6)+ imv({CD},T7) = 2+6+3+5= 

16. 

 

Definition 4. The total measure value of database is 

the total measure value of all items in all transactions 

of a transaction database DB. It is defined by,  

 

 

  ( ) ( , )

q p q

p q

T DB i T

TMV DB mv i T  (4) 

The total measure value of Table 1 database is 

TMV(DB) = 58.  

 

Definition 5. The share value of a patternset X in a 

database DB is the ratio of the local measure value 

of X to the transaction measure value of DB. That is, 

( )
( )

( )

lmv X
SH X

TMV DB
    (5) 

The share value of a patternset {CD} in Table 1 

database is SH({CD}) = lmv({CD})/TMV(DB) = 16/58 = 

0.27.  

 

Definition 6. Let δ be a minimum share threshold 

where 0 <δ < 1. The minimum local measure value of 

database DB with a threshold δ is defined as follows, 

 min_ ( ( ))lmv ceiling TMV DB  (6) 

 

The minimum local measure value of Table 1 

database with δ = 0.25 is min_lmv = ceiling(0.25 58) 

= 15. 

 

Definition 7. The transaction measure value of 

transaction Tq is defined as follows, 
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( ) ( , )

p q

p qq

i T

tmv T mv i T



    (7) 

From Table 1 database, the transaction measure 

value of T1 is tmv(T1) = 6. 

 

Definition 8. The transaction measure value of a 

patternset X of a database DB is defined as follows, 

 

 ( ) ( )

q X

q

X T DB

tmv X tmv T  (8) 

where DBX is the set of transaction database 

containing patternset X. 

 

The transaction measure value of patternset {F} of 

Table 1 database is tmv({F}) = tmv(T2) + tmv(T8) = 7 + 6 

= 13. 

 

Lemma 1. The transaction measure value of a 

patternset X maintains the property of downward 

closure. 

 

Proof. Let {A} be a share-frequent patternsets 

patternset in DB{A}, where DB{A} is a set of all 

transaction database containing {A}. Let {B} be a 

super pattern of {A}, therefore {B} cannot be present 

in any transaction that {A} is absent. Thus, refer to 

definition 8, the maximum transaction measure value 

of {B} is tmv({A}). Therefore, if tmv({A}) is less than 

min_lmv, {B} cannot be a share-frequent patternsets 

and obviously cannot be a high transaction measure 

value pattern (including {A}). 

By Lemma 1, if a patternset X is not high 

transaction measure value pattern, its supersets are 

not high transaction measure value patterns either. 

From Table 1 database with δ = 0.25, we have 

min_lmv = 15 and tmv({F}) = 13 <min_lmv. Therefore, 

all supersets of {F} are not high transaction measure 

value patterns. 

 

Definition 9. A patternset X of a database DB is a high 

transaction measure value patternset with respect to 

a threshold δ, if tmv(X) > min_lmv. 

 

 

2.2  Proposed Solution 

 

In this section, at first, we present an efficient data 

structure called "a PSTable Knowledge" to maintain 

an incremental database. After that, the HCG 

algorithm is presented for mining share-frequent 

patterns from the PSTable Knowledge and it 

generates the candidate patterns from only the high 

transaction measure value patterns. 

 

2.2.1  Maintenance of PSTable Knowledge 

 

The PSTable is a set of patterns with their quantities. It 

is an improved version of a BitTable structure [18] by 

aggregating transactions having similar patterns. The 

maintaining process of the PSTable is described as 

below. 

To maintain PSTable, each transaction from initial 

database or the newly inserted transaction is loaded 

and treated as a patternset. After that, it checks the 

patternset of the transaction whether it appears in 

the PSTable or not. If it does, the quantity of the 

transaction (total count) is summed with the new 

entries to gain new value of total count, and the 

patternset count is incremented by 1. Otherwise, it is 

the new patternset and then it will be inserted into 

the PSTable with the quantity of the transaction and 

set the patternset count to be 1. All the mentioned 

steps are repeated for all of the transaction in initial 

database or the newly inserted transactions. The 

pseudocode of the algorithm is shown in Algorithm 1 

in Figure 1. 

 

 
 

Figure 1 Pseudocode for maintaining PSTable Knowledge 

 

 

Example 1. To illustrate the maintaining process of the 

PSTable, we use a database shown in Table 1 as an 

example. 

The first transaction T1 ={A:1, B:1, C:1, D:1, G:1, H:1} 

is loaded into the algorithm, that is, {A,B,C,D,G,H} is 

treated as a new patternset. Next, the new 

patternset is checked in the PSTable. The new 

patternset is new, it will be added to the PSTable and 

set the total count as the sum of the quantity of 

transaction (=6) and also set the value 1 to the 

patternset count. The algorithm does the same steps 

to T5 and the result is illustrated in Figure 2 (a). After 

that the next transaction T6 = {B:3, C:2, D:1} is read to 

the algorithm, the new patternset of T6 is {B,C,D} and 

it is examined in the PSTable. The new patternset 

exists, the total count is concluded with the new 

entries to gain new value of total count as (10+6 = 

16) and also increases by one to the patternset 

count (1+1 = 2) as shown in Figure 2(b). This process is 

repeated for all transactions and the final PSTable 

Knowledge is presented in Figure 2(c). 
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(a) The result of maintaining algorithm after transaction T1-T5 

is added 

 

 
(b) The result of maintaining algorithm after transaction T6 is 

added 

 

 
(c) The result of the maintaining algorithm 

 

Figure 2 PSTable knowledge extracted from Table 1 

database 

 

 

2.2.2  The HCG Algorithm 

 

In this subsection, we present a new efficient 

algorithm for mining share-frequent patterns from the 

PSTable Knowledge. It generates the minimized 

number of candidate from only high transaction 

measure value patternsets. As mentioned in Lemma 

1, the transaction measure value (tmv) contains the 

downward closure property, therefore, it is used to 

cutting back the useless candidate patternsets in 

each iteration. To determine whether the patternset 

is high or not, the value of tmv is calculated (by 

definition 8) - if the value of tmv of any patternsets is 

larger than or equal to the minimum local measure 

value (min_lmv), it is in the set of high transaction 

measure value. The details of the HCG algorithm are 

described below. 

 

Input: 

1. The PSTable Knowledge 

2. A minimum share threshold   

 

Output: High share-frequent patterns, C 

 

Step 1: Calculates the total measure value of 

database from the PSTable using Eq. (4) denoted by 

TMV. After that, the min_lmv is computed by using Eq. 

(6). 

 

Step 2: Each 1-patternset from the PSTable X is 

loaded into the HCG algorithm and then calculates 

the transaction measure value of X using Eq. (8) 

denoted by tmv(X). 

 

Step 3: Checks whether the value of tmv(X) is larger 

than or equal to the min_lmv. If X satisfies the above 

condition, put X in a set of high transaction measure 

value (abbreviated as Htmv). 

 

Lemma 2. Each 1-patternset from the PSTable X is an 

infrequent if tmv(X) <min_lmv 

 

Proof. Let X be a high transaction measure value in 

the PSTable. According to definition 8, tmv(X) must 

be greater than or equal to min_lmv. Therefore, this 

opposes to the assumption tmv(X)<min_lmv. Thus, a 

patternset X is an infrequent. 

In HCG algorithm, we calculate all Htmv in the 

PSTable by determining the original transaction 

measure value according to Eq. (8) which this value 

maintains the property of downward closure. 

 

Step 4: Each 1-patternset in the high transaction 

measure value (Htmv) X is read into the HCG 

algorithm. Then, the algorithm will show every pattern 

from the PSTableX where PSTableX is the set of 

patterns containing patternset X. The transaction 

measure value of each 1-patternset in PSTableX is 

computed. 

 

Step 5: Checks whether the value of tmv of each 1-

patternset in PSTableX is greater than or equal to the 

min_lmv. If X satisfies the above condition, put X in a 

set of high transaction measure value of X, HtmvX. 

 

Lemma 3. Each 1-patternset from the PSTableX Y is an 

infrequent if tmv(Y) <min_lmv 

 

Proof. Let Y be a high transaction measure value in 

the PSTableX. According to definition 8, tmv(Y) must 

be greater than or equal to min_lmv. Therefore, this 

opposes to the assumption of tmv(Y) <min_lmv. Thus, 

a patternset Y is an infrequent. 

In our algorithm, we calculate all HtmvX in the 

PSTableX by performing the original transaction 

measure value calculation according to Eq. (8) 

which this value maintains the property of downward 

closure. 

 

Step 6: Mines all 2-patternset in HtmvX that prefixs with 

X and keep them in the C2. After that, removes X 

from Htmv and sets k = 3, where k is used for 

recording the length of generated candidates in the 

mining process. 

 

Step 6-1: The candidate k-patternsets are generated 

from Ck-1 and also compute their transaction 

measure value (tmv(k-patternsets)) in the PStableX for 
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checking against the min_lmv. Checks whether the 

value of tmv(k-patternset) is greater than or equal to 

the min_lmv. If it satisfies the above condition, stores it 

to Ck. Increases k by one and this step is then 

repeated until no candidate patternset is generated. 
 

Step 7: Repeats Steps 4 – 6 until the Htmv is empty 

and returns the C that stores all high transaction-

measure-value pattern at the end of the HCG 

algorithm. 

 

2.3  An Illustrative Example 
 

In this section, we use the Table 1 database to 

illustrate the HCG algorithm step by step. Also, it is  

assumed that the minimum share threshold is 25% of 

total quantity. 

 

Input: 

1. The PSTable is shown in Figure 2 (c), which 

constructed from the example transaction database 

in Table 1. 

2. The minimum share threshold ( ) is set as 0.25. 
 

Output: High share-frequent patterns, C 

 

Step 1: The HCG algorithm calculates the initial 

variables at first i.e. TMV(=58) and min_lmv (58*0.25), 

which is 15, respectively. 

 

Step 2: The 1-patternset X in the PSTable for {A}, {B}, 

{C}, {D}, {E}, {F}, {G} and {H} are read into the 

algorithm and then calculates their transaction 

measure value (tmv(X)). Takes 1-patternset {A} as an 

example to illustrate the process. The 1-patternset {A} 

appears in the PSTable P1 and P7 and then the 

transaction measure value of the 1-patternset {A} is 

calculated as (6+6 = 12). The other 1-itemsets are 

calculated in the same way and the result is shown in 

Figure 3. 

 

 
 

Figure 3 tmvs of 1-patternsets 

 
 

Step 3: The tmv values of the 1-patternset are 

checked against the min_lmv. In this example, the 

four item {B}, {C}, {D} and {E} satisfy the condition and 

put them in both the set of high transaction measure 

value (Htmv) and C1. Thus, Htmv = {{B}, {C}, {D}, {E}}.  

Step 4: Each 1-patternset X in the Htmv is then read 

into the algorithm. Takes HtmvB as an example, the 

{B} appears in Pattern P1, P3, P5 and P6 in the PSTable 

(PStableB). Then, the HCG algorithm computes the 

tmv value of all 1-patternset in PStableB as {{B: 

6+16+5+10 (=37)}, {C: 6+16+10 (=32)}, {D: 6+16+5+10 

(=37)} and {E: 10}}, respectively, is shown in Figure 4 

(a). 

 

Step 5: Checks whether the tmv value of the 1-

patternset in the PStableX is larger than or equal to 

the min_lmv. Then, put them in the set of high 

transaction measure value of X, HtmvX. In this 

example, the 1-patternsets in the PStableB satisfy the 

condition which are as follows {B}, {C} and {D}. Thus, 

HtmvB = {B,C,D}. The other HtmvX are then processed 

in the same way. The results are shown in Figure 4 (b)-

(d) respectively. 

 

 
(a) The process of {B} in Htmv 

 

 
(b) The process of {C} in Htmv 

 

 
(c) The process of {D} in Htmv 

 

 
(d) The process of {E} in Htmv 

 

Figure 4 The process of 1-patterns in Htmv 

 

 

Step 6: Mines all 2-patternset in HtmvX that prefix with 

X and then removes X from Htmv. Takes HtmvB as an 

example to illustrate the process. The HCG generates 

candidate 2-patternset of the HtmvB as {B,C} and 
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{B,D} respectively, which is shown in Figure 5, and also 

keeps them in C2. Then, k is set to 3. 

 

Step 6-1: The candidate k-patternset are 

generated from Ck-1 and also compute their 

transaction measure value for checking against the 

min_lmv. From the result of candidate 2-patternset of 

the HtmvB, the HCG generates the candidate k-

patternset which is {B,C,D} as shown in Figure 6 and it 

satisfies the condition, saves it to Ck. This sub step of 

pattern "B" can be terminated in the third round 

because no candidate patternset is generated. 

 

 
Figure 5 tmvs of 2-patternsets with prefix "B" 

 

 
Figure 6 tmvs of 3-patternsets with prefix "B" 

 

 

Step 7: Steps 4 – 6 are then repeated until no 

member of Htmv. After the algorithm works 

complete, we get C = {{B}, {C}, {D}, {E}, {B,C}, {B,D}, 

{B,C,D}, {C,D}, {C,E}}. The share-frequent patterns 

mined from C are {C}, {B,C}, {B,D}, {C,D} and {B,C,D} 

respectively. All generated candidate are shown in 

Figure 7. 

 

 
 

Figure 7 The generated candidates by the HCG 

algorithm 

 

 

Observation 1. The DCG algorithm adopts the level-

wise candidate generation-and-test methodology. 

Firstly, it reads all 1-patternset from a transaction 

database and treats them as 1-candidate for 

generating all the candidate for length 2, that is, all 

1-candidate contain high tmv value and low tmv 

value. For example, if the number of atomic patterns 

is 500 and they are treated as 1-candidate and then 

the algorithm tests for (500
2

) 2-patternset candidate 

patterns. For 2-patternset, a patternset will be 

considered for selection as a candidate by the 

definition 8. Therefore, a large number of candidates 

are generated. 

Lemma 4. If M1 is the number of generated 

candidates by HCG algorithm and M2 is the number 

of generated candidates by DCG algorithm, then 

M1<M2. 

 

Proof. Let Z{z1,z2, ... ,zn} be a candidate patternset if 

all of its subset of length n-1 are candidate patternset 

(high transaction measure value) in the DCG 

algorithm. So, Z could have low tmv value to 

become a candidate of length 1. In HCG algorithm, 

if Z is a low tmv then it cannot appear as a 

candidate. In addition, HCG prunes Z immediately 

after determining it is low tmv value. In conclusion, 

the generated candidate patternsets of HCG stores 

only the high transaction measure value, therefore, 

M1 is less than or equals to M2. 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Experimental Environment and Datasets 

 

In this section, the experimental evaluation of the 

compared algorithms: the HCG solution and the 

DCG method [17] are conducted. All algorithms 

were implemented in Microsoft C# 2012 and running 

on a 2.60 GHz Intel(R) Core i7-4720HQ with 12 GB 

main memory on the Windows 8.1 operating system. 

Similar to the performance evaluation of the previous 

share-frequent patterns mining algorithm [17], the 

count information was assigned to each item in each 

transaction, ranging from 1 to 10. Four datasets are 

used in the experiments and they are acquired from 

FIMI Repository Page [23-26]. The characteristics of 

the datasets are shown in Table 2, |D| is the total 

number of transaction in a dataset, |I| is the number 

of distinct pattern in the dataset and Tavg is the 

average size of transaction. The dataset is dense 

since the number of atomic pattern is small and 

each transaction has a lot of distinct pattern. By 

considering the mushroom dataset in Table 2, its 

atomic pattern is 119 and its transaction size is 23. 

Therefore, the ratio of its distinct pattern presented in 

every transaction is 20% ((23/119)*100). 

 
Table 2 Characteristics of the experiment datasets 

 

Dataset |D| |I| Tavg Type 

Mushroom 8,124 119 23 Dense 

Chess 3,196 75 37 Dense 

T10I4D100K 100,000 870 10.1 Sparse 

T40I10D100K 100,000 942 40.5 Sparse 

 

 

3.2  Experimental Results for Dense Datasets 

 

In the first experiment, we compare the running time 

of the HCG algorithm over the DCG method using 

the Mushroom and Chess datasets. As there is no 

share-frequent patternset, two ranges of minShare 

are chosen. For Mushroom dataset, the minimum 

share threshold is set from 0.6 to 0.2, while for Chess 
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dataset, it is set from 0.9 to 0.7. The results are shown 

in Figure 8 (a) and (b). It is obvious to see that two 

algorithms require more runtime when the minimum 

share threshold decreases. This is reasonable 

because when the threshold value became smaller, 

more candidates in the mining process are 

generated.  

Moreover, the HCG algorithm performs better than 

the existing DCG algorithm with respect to all of the 

minimum share thresholds. The reason is that DCG 

requires more execution time to generate and test a 

huge number of useless candidates in the mining 

process since it treated all 1-patterns as candidates 

for generating candidates in the later rounds. That is, 

1-patterns contain both high tmv patterns and low 

tmv patterns. For the HCG algorithm, it generates the 

candidate from only high transaction measure value 

atomic patterns in the second round. For the third 

round onwards, it created candidates from the 

combination of only the patterns which have their 

transaction measure value beyond a certain 

threshold. The number of candidate in the mining 

process and the number of generated candidate of 

both methods are shown in Table 3 and 4 

respectively. 

 

 
(a) Total running time on Chess 

 

 
(b) Total running time on Mushroom 

 
Figure 8 Running times of DCG and HCG with different 

thresholds on dense datasets 

 

 

 

 

 

 

Table 3 The number of generated candidates of DCG and 

HCG on the chess dataset 

 

Minimum 

Share 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

0.6 8,623 179 162 51 

0.5 12,003 331 259 153 

0.4 25,296 967 663 565 

0.3 90,924 3,744 2,826 2,735 

0.2 950,253 58,760 53,697 53,621 

 

Table 4 The number of generated candidates of DCG and 

HCG on the mushroom dataset 

 

 

 

Table 5 compares the number of candidates in 

the mining process and the number of generated 

candidates of two algorithms in each round. A 

Mushroom dataset was employed and the minimum 

share threshold was set at 0.3%. In addition, we 

further found that, in every round of mining process, 

the HCG method produces a smaller number of 

candidates than that of the DCG one. The reason to 

this situation is the same as the content mentioned 

earlier. The HCG and the DCG methods terminate in 

the ninth round and tenth round respectively. 

 
Table 5 The number of candidates in the mining process 

and the number of generated candidates on Mushroom 

dataset 

 

k-patternset 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

k=1 119 119 119 28 

k=2 7,021 378 163 163 

k=3 7,164 660 455 455 

k=4 15,836 956 725 725 

k=5 22,179 856 712 712 

k=6 20,482 525 441 441 

k=7 12,315 203 169 169 

k=8 4,653 43 38 38 

k=9 1,044 4 4 4 

k=10 111 - 0 - 

Total 90,924 3,744 2,826 2,735 

 

 

3.3  Experimental Results for Sparse Datasets  

 

In this experiment, we present the comparison of 

HCG and DCG algorithms on sparse datasets, 

Minimum 

Share 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

0.90 12,542 955 691 629 

0.85 41,797 3,487 2,733 2,674 

0.80 116,920 10,256 8,304 8,248 

0.75 282,912 25,958 21,018 20,966 

0.70 629,379 60,377 48,972 48,921 
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T10I4D100K and T40I10D100K, the results in terms of 

consumed run time are shown in Figure 9 (a) and (b).  
Two ranges of min_share are chosen. For T10I4D100K 

dataset, the minimum share threshold was set from 

0.09 to 0.005. While for T40I4D100K dataset, it was set 

from 0.3 to 0.05, as there is no share-frequent 

patternset.  

It shows that our proposed HCG runs faster than 

the DCG one since the new proposed HCG can 

reduce the large number of unpromising candidates 

in the mining process because the HCG generated 

the candidate patterns from only the patterns with 

transaction measure value above a certain 

threshold. 

 

 
(a) Total running time on T10I10D100K 

 

 
(b) Total running time on T40I4D100K 

 
Figure 9 Running times of DCG and HCG with different 

thresholds on sparse datasets 

 

 

Table 6 and 7 compares the number of candidates 

in the mining process and the number of generated 

candidates of two algorithms. Obviously, from Table 

6, the minimum share is set to 0.09, it could be seen 

that no candidate is larger than a certain threshold. 

The process of HCG starts to read all 1-patterns, 

which is 870 items and then checks whether their 

values is high and no pattern is above a certain 

threshold (high), therefore the HCG terminates in the 

first round. For DCG algorithm, it reads all 1-patterns 

and treats them as 1-candidates (870 items) for 

generating-and-testing 2-patterns in second round. 

Then, no pattern for 2-patterns is above a certain 

threshold, so the DCG terminates in the second 

round. 

 

Table 6 The number of generated candidates of DCG and 

HCG on the T10I4D100K dataset 

 

 
Table 7 The number of generated candidates of DCG and 

HCG on the T40I10D100K dataset 

 

 

 

Similar to Table 5, Table 8 compares the difference 

of the candidate numbers in the mining process and 

the generated candidate numbers between both 

algorithms in each pass. The T10I4D100K dataset was 

used and min_share was set to 0.009. We can 

observe that the HCG generates lower numbers 

candidate than that of the DCG method. In addition, 

the overall performance of HCG is better because it 

produces the candidate from only high the 

transaction measure value patterns. Through all of 

the experimental results, we can observe that the 

new proposed effectively much better than the 

existing DCG algorithm in terms of the total running 

time and the number of generated candidates on 

both dense and sparse datasets. 

 
Table 8 The number of candidates in the mining process 

and the number of generated candidates on T40I10D100K 

dataset 

 

k-patternset 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

k=1 870 870 870 445 

k=2 378,015 98,790 50 50 

k=3 14,916 33 9 9 

k=4 3,808 1 0 0 

Total 397,609 99,694 929 504 

 

 

 

Minimum 

Share 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

0.30 444,153 942 942 0 

0.20 444,153 957 942 6 

0.10 444,153 5,037 942 91 

0.09 444,153 7,845 942 118 

0.07 444,760 20,249 944 199 

0.05 452,284 50,491 966 339 

0.03 574,350 128,842 1,369 926 

Minimum 

Share 

The number of 

candidates in the 

mining process 

The number of 

generated 

candidates 

DCG HCG DCG HCG 

0.090 378,885 870 870 0 

0.070 378,885 876 870 4 

0.050 378,885 1,023 870 18 

0.030 378,885 5,241 870 94 

0.010 384,432 85,545 889 431 

0.009 397,609 99,694 929 504 

0.007 435,750 131,367 1,105 746 

0.005 605,839 185,077 1,797 1,532 
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4.0  CONCLUSION 
 

This paper presented a new efficient method for 

mining share-frequent patterns, named HCG, aimed 

to develop for decreasing the number of 

unpromising candidate patterns. The HCG 

generated the candidate pattern from only the 

patterns which have their transaction measure value 

beyond a certain threshold in a level-wise way. 

Moreover, we also presented a new data structure 

that captures all atomic patterns with their count 

information, named PSTable, which is constructed 

once by a single scan database. When new 

transactions come in, they can suddenly add to the 

existing database without reconstructing. Extensive 

performance analysis shows that our approach 

outperforms the existing DCG algorithm in terms of 

the total running time and the number of generated 

candidates on both dense and sparse datasets. 
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