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Abstract 
 

This paper investigates the performance of input shaping techniques for sway control of 

a rotary crane system. Unlike the conventional optimal controllers, input shaping is 

simple to design and cost effective as it does not require feedback sensors. Several input 

shapers were implemented and their performances were compared which are useful 

for future sway control designs. A nonlinear model of the system was derived using the 

Lagrange’s equation. To investigate the performance and robustness of input shaping 

techniques, zero vibration (ZV), zero vibration derivative (ZVD), zero vibration derivative-

derivative (ZVDD) and zero vibration derivative-derivative-derivative (ZVDDD) were 

proposed with a constant cable length. Level of reduction of the payload sway is used 

to assess the control performance of the shapers. Simulation and real time experimental 

results have shown that ZVDDD with a sway reduction of 88% has the highest level of 

sway reduction and highest robustness to modeling errors as compared to other 

shapers.   

 

Keywords: Rotary crane, Lagrange, input shaping, simulation, real time experiment, 

sway control 

 

Abstrak 
 

Kertas ini mengkaji prestasi teknik pembentukan masukan untuk kawalan ayunan sistem 

kren berputar. Tidak seperti pengawal optima yang konvensional, pembentukan 

masukan ringkas untuk di reka bentuk dan efektif dari segi kos dimana ianya tidak 

memerlukan pengesan suap balik (feedback). Beberapa pembentuk masukan 

dilaksanakan dan prestasinya telah dibandingkan, dimana ianya berguna untuk 

mereka bentuk pengawal ayunan pada masa akan datang. Satu model tidak linear 

dari sistem telah diterbitkan menggunakan persamaan Lagrange. Untuk menyiasat 

prestasi dan keteguhan teknik pembentukan masukan, getaran sifar (ZV), terbitan 

getaran sifar (ZVD), terbitan-terbitan getaran sifar (ZVDD) dan terbitan-terbitan-terbitan 

getaran sifar (ZVDDD) telah dikemukakan dengan panjang kabel yang malar. Tahap 

pengurangan ayunan muatan digunakan untuk menilai prestasi kawalan pembentuk 

tersebut. Keputusan dari simulasi dan eksperimen masa nyata telah membuktikan 

bahawa ZVDDD telah menghasilkan pengurangan ayunan tertinggi sebanyak 88% dan 

keteguhan tertinggu berbanding dengan teknik pembentukan masukan lain. 

 

Kata kunci: Kren berputar, Lagrange, membentuk input, simulasi, percubaan, 

bergoyang kawalan 

 

© 2018 Penerbit UTM Press. All rights reserved 
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1.0  INTRODUCTION 
 

Rotary cranes are commonly used tools in 

construction sites, mining industries, shipping industries 

and factories for conveyance, loading and unloading 

different items from one point to another. Due to their 

flexibility and wide operating range, they are also 

employed in hazardous environment. A rotary crane 

consists of a fixed tower, a rotating jib and a movable 

trolley which carries the load using a hoisting cable. 

During an operation, cranes suffer from an undesirable 

deflection and swinging of the payload which affects 

the performance of the system immensely. These 

oscillations could be higher with the presence of 

external forces such as rain and wind. It leads to a 

difficult positioning of the payload, delay in task 

completion and a high maintenance cost [1-5].  

There have been numerous efforts by many 

researchers to minimize these persistent oscillations for 

a reliable and efficient operation of rotary crane 

systems. Varieties of open-loop and closed-loop 

controls ranging from a simple Proportional-Integral-

Derivative (PID) control to intelligence control have 

been presented. In [6], an open-loop control was 

proposed by considering a horizontal boom motion of 

a rotary crane only. Performances of a feed-forward 

input shaping and a low pass filtering (LPF) have been 

investigated in [7]. It was observed that input shaping 

was more robust as compared to LPF for an erroneous 

natural frequency. Singer and Seering [8] were the first 

to propose a practically applicable input shaping 

scheme and since then it has been applied to various 

flexible structures. Using this technique, a zero 

oscillatory response can be achieved. Induced 

vibration of a flexible robot manipulator has been 

reduced using command shaping [9]. The sensitivity of 

zero vibration (ZV), zero vibration derivative (ZVD) and 

zero vibration derivative-derivative (ZVDD) shapers to 

errors of natural frequencies has been analyzed using 

a flexible beam in [3]. Input shaping has also been 

applied to other types of crane systems in [10-14]. 

However, open loop controllers are prone to external 

disturbances [15]. Though, an efficient control can be 

achieved by using open loop control in conjunction 

with feedback control [16]. 

In addition, straight transfer transformation method 

has been implemented for an optimal control of a 

rotary crane in [17]. A partial feedback linearization 

(PFL) and adaptive sliding mode control (SMC) for 

sway suppression of a rotary crane in a situation of 

inaccurate model or poor parameter representation 

has been presented in [18]. Although simple to design 

and implement, PFL is highly affected by a parameter 

variation such as cable length. A robust controller, 

SMC has been applied to other cranes [19, 20]. 

However, SMC has a drawback due to the fact that it 

dissipates a lot of energy which leads to a system burn-

out (chattering) [21].  A three layered neural network 

with a genetic algorithm has been presented in [22], 

for vibration control of rotary crane. Besides, a 

comparison of optimal and intelligent sway control for 

a lab-scale rotary crane has been presented in [23]. A 

combined fuzzy logic and a delayed feedback 

controller for oscillation reduction of a rotary crane 

have been presented in [5]. Various intelligent 

controllers have also been proposed for other types of 

cranes in [24]. Besides, an improved input shaper [25], 

input-shaping with a distributed delay [26], input 

shaping techniques for anti-sway control [27] and a 

command shaping based on system output [13,14] 

have been proposed for crane systems. However, due 

to the highly nonlinear behavior and lack of standard 

linear model of the rotary cranes, most of the existing 

literature on the input shaping and other control 

methods focus on the sway control of gantry crane 

and overhead 3D cranes.  

This paper presents a performance comparison of 

positive input shapers namely ZV, ZVD, ZVDD and zero 

vibration derivative-derivative-derivative (ZVDDD) for 

payload sway control of a rotary crane. The work gives 

an in-depth analysis of the behavior of the rotary 

cranes both using simulations and real-time 

experiment. In addition, the results will be useful as the 

feed-forward controller can be combined with a 

feedback controller for an efficient sway and position 

control. The input shapers were simulated with a 

nonlinear dynamic model of the crane using MATLAB. 

A laboratory tower crane was used experimentally to 

verify the effectiveness of the proposed shapers.  Due 

to its highly nonlinearity and numerous outputs, sway 

of the payload for cart motion along the horizontal jib 

is considered.   

 

 

2.0  METHODOLOGY 
 

The work involves modelling of the rotary crane and 

development of several input shaping control 

techniques.  

 
2.1  Modeling of a Rotary Crane 

 

This section presents the description and 

mathematical modeling of a rotary crane. Figure 1 

shows the laboratory rotary crane model. The 

schematic diagram of the rotary crane is shown in 

Figure 2. The structure consists of the followings: 

1) A base that supports the overall structure. It is 

normally fixed to the ground to prevent unwanted 

vibration. 

2) A tower that supports the jib. It is responsible for 

the rotational motion of the jib. 

3) A jib that is connected to the tower and rotates 

the load horizontally about the fixed tower. 

4) A cart that carries the load and slides along the 

jib. 

Therefore, the rotary crane can operated by 

moving the load from one point to another with the 

added flexibility of rotational motions. Thus, the 

combined motion can place the load at any point 

within the reach of the crane. In order to avoid an 

obstacle, the suspension cable is manipulated using a 
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process called hoisting, to lift or lower the load. For the 

derivation of the nonlinear model of the rotary crane, 

a reference point O is set at the intersection of the 

fixed tower with the horizontal jib as shown in Figures 1 

and 2. A right handed Cartesian coordinate (xyz) is 

centered at the reference point. The jib rotates 

horizontally at an angle 𝛾(𝑡) around z-axis. The cart 

slides along the jib for a distance r(t) measured from 

the reference point to the point of payload 

suspension. During the operation, the oscillation of the 

payload is characterized by two angles, 𝜙 and 𝜃.  The 

angle 𝜙 is the in-phase angle due to the translational 

motion of the cart known as x-angle while 𝜃 is the out-

of-phase angle due to the rotation of the crane. It is 

also known as the y-angle. L is the length of the 

hoisting cable and m is the mass of the load and g is 

the gravitational acceleration. In this study, a metallic 

Inteco tower crane of dimension 1600 mm x 1200 mm, 

L = 0.6 m and m = 800 g is considered. 

 
 

Figure 1 Rotary crane system 

 

 

 

 
 

Figure 2 Schematic diagram of a rotary crane system 

To reduce the complexity of modeling, the following 

assumptions were made. 

1) The length of suspension cable is constant. 

2) The trolley motion and jib rotation are frictionless. 

3)  External disturbance such as wind is neglected. 

 

To derive the dynamic model, Lagrange’s equation is 

utilized. 

,   1,2, ,i

i
i

d L L
Q i n

dt qq

 
      

   

 
(1) 

where 

𝐿 = 𝐾𝐸 − 𝑃𝐸 (2) 

𝐾𝐸 and 𝑃𝐸 are respectively the total potential and 

kinetic energies, n is total number of independent 

generalized coordinate and Qi is non-conservative 

generalized forces. 

The velocity (𝜓) and acceleration (𝛾) of the cart in 

xyz plane are given as  

𝜓 = 𝛾̇   (3) 

To find the position of the payload, P(t) with respect 

to the reference point O, i, j, k unit vectors are 

assigned. Thus, 

𝑃(𝑡) = [𝑟(𝑡) − 𝐿(𝑡)𝑐𝑜𝑠𝜃(𝑡) sin 𝜙(𝑡)]𝑖
+ [𝐿(𝑡)𝑠𝑖𝑛𝜃(𝑡)]𝑗
− [𝐿(𝑡)𝑐𝑜𝑠𝜃(𝑡)𝑐𝑜𝑠𝜙(𝑡)]𝑘 

(4) 

The combined velocity of the payload (𝑃̇(𝑡)) is 

𝑃̇(𝑡) =
𝛿𝑃(𝑡)

𝛿(𝑡)
+ 𝜓(𝑡)𝑃(𝑡) (5) 

The kinetic energy of the load can be obtained as 

𝐾𝐸 =
1

2
𝑚[𝑃̇(𝑡)𝑃̇(𝑡)] (6) 

On the other hand, the potential energy of the load is 

given as 

𝑃𝐸 = −𝑚𝑔𝐿(𝑡)𝑐𝑜𝑠𝜃(𝑡)𝑐𝑜𝑠𝜙(𝑡) (7) 

Solving for Equation (2) and substituting for 𝑞1 = 𝜃 

and 𝑞2 = 𝜙 in Equation (1) gives the nonlinear 

differential equations as 
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𝜃̈(𝑡) − 2𝛾̇(𝑡)𝑐𝑜𝑠𝜙(𝑡)𝑐𝑜𝑠2𝜃(𝑡)𝜙̇(𝑡) +
1

2
𝑠𝑖𝑛2𝜃(𝑡)𝜙̇2(𝑡)

−
1

2
𝛾̇2(𝑡)𝑠𝑖𝑛2𝜃(𝑡)𝑐𝑜𝑠2𝜙(𝑡)

+
𝑔

𝐿
𝑠𝑖𝑛𝜃(𝑡)𝑐𝑜𝑠𝜙(𝑡)

+
2

𝐿
𝑟̇(𝑡)𝛾̇(𝑡)𝑐𝑜𝑠𝜃(𝑡)

− +
1

𝐿
𝑟(𝑡)𝛾̇2(𝑡)𝑠𝑖𝑛𝜃(𝑡)𝑠𝑖𝑛𝜙(𝑡)

+
1

𝐿
𝑟̈(𝑡)𝑠𝑖𝑛𝜃(𝑡)𝑠𝑖𝑛𝜙(𝑡)

+
1

𝐿
𝑟(𝑡)𝛾̈(𝑡)𝑐𝑜𝑠𝜃(𝑡) − 𝛾̈(𝑡)𝑠𝑖𝑛𝜙(𝑡)

= 0 

(8) 

𝑐𝑜𝑠𝜃(𝑡)(𝑡)𝜙̈(𝑡) + 2𝛾̇(𝑡)𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙(𝑡)𝜃̇(𝑡)

− 2𝑠𝑖𝑛𝜃(𝑡)𝜃̇(𝑡)𝜙̇(𝑡) +
𝑔

𝐿
𝑠𝑖𝑛𝜙(𝑡)

+ 𝑐𝑜𝑠𝜙(𝑡)𝛾̇2(𝑡) {
1

𝐿
𝑟(𝑡)

− 𝑠𝑖𝑛𝜙(𝑡)𝑐𝑜𝑠𝜃(𝑡)}

+ 𝛾̈(𝑡)𝑠𝑖𝑛𝜃(𝑡)𝑐𝑜𝑠𝜙(𝑡)

−
1

𝐿
𝑟̈(𝑡)𝑐𝑜𝑠𝜙(𝑡) = 0 

(9) 

 
2.2  Control Design 

 

This section describes the development of the input 

shapers for the payload sway. The shapers are ZV, 

ZVD, ZVDD and ZVDDD. In addition, a logarithmic 

decrement approach for the estimation of the natural 

frequency and damping ratio of the system is also 

presented. 

 

2.2.1  Input Shaping Technique 

 

As discussed earlier, a shaped input is obtained by 

convolving the reference input with a sequence of 

impulses. The impulse amplitudes and their respective 

time instants constitute the shaper’s parameter [28]. 

Natural frequency and damping ratio are used to 

determine those parameters. The objective is to 

determine the appropriate parameters which will 

drive the system with zero oscillatory response. Figure 

3 shows the simplest input shaping process containing 

two impulses (ZV). The response of a rotary crane can 

be considered as a second order underdamped 

system of the form 

 

𝐺(𝑠) =
𝜔2

𝑠2 + 2𝜔𝜁 + 𝜔2 (10) 

where 𝜔 is the natural frequency and 𝜁 is the damping 

ratio of the system in time domain. The response of the 

system can be expressed as 

 

𝑦(𝑡) =
𝐴𝜔

√(1 − 𝜁2)
𝑒−𝜁𝜔(𝑡−𝑡0)𝑠𝑖𝑛 (𝜔(𝑡

− 𝑡0)√(1 − 𝜁2)) 
(11) 

 

Figure 3 Input shaping process 

 

 

where 𝐴 and 𝑡0 are the amplitude and time instant of 

the impulse, respectively. By superposition, the 

response to an impulses sequence after the last 

impulse can be obtained as  

𝑦(𝑡) = ∑ [
𝐴𝜔

√(1 − 𝜁2)
𝑒−𝜁𝜔(𝑡−𝑡0)]

𝑛

𝑖=0

𝑠𝑖𝑛 (𝜔(𝑡

− 𝑡0)√(1 − 𝜁2)) 
(12) 

The amplitude of the residual vibration can be 

determined by using the trigonometric function. 

∑ 𝐵𝑖

𝑛

𝑖=0

𝑠𝑖𝑛(𝜔𝑡 + 𝛽𝑖) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜑) (13) 

where 

𝐴 = √(∑ 𝐵𝑖

𝑛

𝑖=0

𝑐𝑜𝑠(𝛽𝑖))

2

+ (∑ 𝐵𝑖

𝑛

𝑖=0

𝑐𝑜𝑠(𝛽𝑖))

2

 (14) 

By comparing Equations (12) and (13) yields  

𝐵𝑖 =
𝐴𝑖𝜔𝑛

√(1 − 𝜁2)
𝑒−𝜁𝜔(𝑡−𝑡𝑖) (15) 

To calculate the residual oscillation amplitude, 

Equation (15) is evaluated at the last impulse, 𝑡 = 𝑡𝑛. 

By substituting Equation (15) into Equation (14) and 

taking the constant part of the coefficients out of the 

square roots gives 

𝐴 =
𝜔

√(1 − 𝜁2)
𝑒−𝜁𝜔𝑡𝑛√𝑅1

2 + 𝑅2
2 (16) 

where 

𝑅1 = ∑ 𝐴𝑖𝑒𝜁𝜔𝑡𝑖𝑠𝑖𝑛 (𝜔𝑡𝑖√(1 − 𝜁2))

𝑛

𝑖=0

 

 

𝑅2 = ∑ 𝐴𝑖𝑒𝜁𝜔𝑡𝑖𝑐𝑜𝑠 (𝜔𝑡𝑖√(1 − 𝜁2))

𝑛

𝑖=0

 

(17) 

 

The expression for the non-dimensional function of 

the vibration amplitude can be obtained by dividing 

  

* 
0 Δ 

ZV 

Shaper 
H 

Time 

Shaped 

Command 

0 Δ 

H 

Time 

Original 

Command 

0  
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Equation (16) by the residual vibration of the single 

impulse of unity magnitude. The residual oscillation 

amplitude from a unity magnitude at 𝑡 = 0 can be 

obtained as 

𝐴↑ =
𝜔

√(1 − 𝜁2)
 (18) 

Hence, by dividing Equation (16) and Equation (18) 

gives the percentage residual vibration as 

𝑅 =
𝐴

𝐴↑
= 𝑒−𝜁𝜔𝑡𝑛√𝑅1

2 + 𝑅2
2 (19) 

To obtain zero vibration after the last impulse, both 

𝑅1 and 𝑅2 of Equation (19) should set to zero 

independently. This is called zero vibration (ZV) 

constraint. To obtain a similar rigid body motion of 

unshaped command, the sum of the shaper’s 

amplitudes of the impulse should be unity. This gives 

the summation constraints as  

∑ 𝐴𝑖

𝑛

𝑖=1

= 1 (20) 

In addition, to avoid unnecessary response delay, 

the time instants of the first impulse is set at 𝑡1 = 0.  

Therefore, to design a ZV shaper, two impulse 

sequences are considered. Thus, solving for Equations 

(19) and (20) using the ZV constraints yields the ZV 

parameters as 

(
𝐴𝑖

𝑡𝑖

) = (

1

1 + 𝑘

𝑘

1 + 𝑘
𝑜 𝜏𝑑

) (21) 

where 

𝜏𝑑 =
𝜋

𝜔√(1 − 𝜁2)
  ;   𝑘 = 𝑒

−𝜍𝜋

√(1−𝜁2)  (22) 

However, the ZV shaper does not account for 

robustness to frequency errors. This robustness can be 

increased by setting the derivatives of both 𝑅1 and 𝑅2 

to zero which will produce small changes in vibration 

in proportion to the frequency errors. In general, the 

derivative of the residual vibration can take the form 

of 

𝛿𝑖𝑅1

𝛿𝜔𝑖
= 0  ;    

𝛿𝑖𝑅2

𝛿𝜔𝑖
= 0 (23) 

The shapers can also take the form of ZV(D)i, with 

𝑖 ≥ 0 as the derivate order. To design ZVD, first 

derivative of 𝑅1 and 𝑅2 is considered i.e 𝑖 = 1. Thus, 

solving the constraints equations of Equation (19), (20) 

and (23) gives the three impulse ZVD shaper’s 

parameters as 

(
𝐴𝑖

𝑡𝑖

) = (

1

(1 + 𝑘)2

2𝑘

(1 + 𝑘)2

𝑘2

(1 + 𝑘)2

𝑜 𝜏𝑑 2𝜏𝑑

) (24) 

In addition, to design ZVDD, second derivative is 

considered i.e  𝑖 = 2. Thus, solving the constraints in 

Equations (19), (20) and (23) gives the four impulse 

ZVDD shaper’s parameters as 

(
𝐴𝑖

𝑡𝑖

)

= (

1

(1 + 𝑘)3

3𝑘

(1 + 𝑘)3

3𝑘2

(1 + 𝑘)3

𝑘3

(1 + 𝑘)3

𝑜 𝜏𝑑 2𝜏𝑑 3𝜏𝑑

) 
(25) 

 

Using the similar approach, for  𝑖 = 3, the five 

impulse ZVDDD shaper’s parameters can be obtained 

as  

(
𝐴𝑖

𝑡𝑖

) = (

1

(𝑚)4

4𝑘

(𝑚)4

6𝑘2

(𝑚)4

4𝑘3

(𝑚)4

𝑘4

(𝑚)4

𝑜 𝜏𝑑 2𝜏𝑑 3𝜏𝑑 4𝜏𝑑

) (26) 

where 𝑚 = 1 + 𝑘. 

 

2.2.2  Finding Natural Frequency and Damping Ratio 

 
The most important parameters for the design of any 

input shaper are the natural frequency and damping 

ratio of the system. In this study, a logarithmic 

decrement approach is employed as described in [3, 

29]. Consider the response of an underdamped 

system as in Figure 4. For a decaying free damped 

system, a logarithmic decrement approach is the 

effective and simplest technique to determine the 

natural frequency and damping ratio directly from the 

time response curve. To estimate the damping ratio of 

this system, any two successive peaks can be selected 

given as 

𝜁 =
ln (

𝑦1
𝑦2

)

√4𝜋2 + (ln (
𝑦1

𝑦2
))

2
  ;  𝜔 =

ln (
𝑦1
𝑦2

)

𝜁(𝑡2 − 𝑡1)
   (27) 

 

 
 

Figure 4 Logarithmic decrement approach  

 

 

2.2.3  Mean-Absolute-Error (MAE) 

 

In this paper, the mean absolute error (MAE) is used for 

the performance assessment. The MAE is the most 

natural measure of average error for performance 
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analysis of sway reduction. The mathematical 

expression is given as  

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 (28) 

where n is the number of plot points, 𝑥𝑖 and 𝑦𝑖 are the 

ith point coordinates respectively. 

 

2.3  Input Shaping for the Rotary Crane 

 

In order to study the dynamics of the system, a pulse 

input torque as shown in Figure 5 is applied to the 

nonlinear model of Equations (8) and (9). This input is 

sufficient to cause the system to move and then stop, 

resulting to an oscillatory response of the load.  

 

  
 

Figure 5 Pulse input signal 

 

 

Using the logarithmic decrement approach of 

Figure 4, the natural frequency and damping ratio of 

the system were respectively calculated as 3.8080 

rad/s and 0.0012. By using the estimated natural 

frequency and damping ratio, and solving Equations 

(21), (24), (25) and (26), the parameters of ZV, ZVD, 

ZVDD and ZVDDD can be calculated. Table 1 shows 

the designed shapers parameters from the system 

response. The designed shapers were applied to the 

rotary crane as a feedforward controllers as shown in 

Figure 6. A payload sway response is monitored and 

analyzed in time domain. 

 
Table 1 Input shaping control parameters 

 

Shaper ZV ZVD ZVDD ZVDDD 

A1 0.5010 0.2510 0.1257 0.0630 

A2 0.4990 0.5000 0.3757 0.2510 

A3 - 0.2490 0.3743 0.3750 

A4 - - 0.1243 0.2490 

A5 - - - 0.0620 

t1 (s) 0 0 0 0 

t2 (s) 0.8250 0.8250 0.8250 0.8250 

t3 (s) - 1.6500 1.6500 1.6500 

t4 (s) - - 2.4750 2.4750 

t5 (s) - - - 3.3000 

 

 

 
 

Figure 6 Input shaping block diagram for the rotary crane 

 

 

3.0  RESULTS AND DISCUSSION 
 

In this section, simulation and experimental results of 

the designed input shapers is presented and 

discussed. To investigate the performance of the 

designed shapers, level of sway reduction has been 

used. This is achieved by comparing the MAE of the 

unshaped and shaped responses. 

 

3.1  Simulation Results 

 

Simulation results of the response of the rotary crane 

subjected to an unshaped and shaped input 

command is shown in Figure 7. The MAE values of the 

unshaped, ZV, ZVD, ZVDD and ZVDDD are 0.0563 rad, 

0.0105 rad, 0.0082 rad, 0.0072 rad and 0.0063 rad 

respectively. These represent 81.35%, 85.44%, 87.21% 

and 88.81% of sway reduction by the respective 

shapers as compared to the unshaped input.  

To investigate the robustness of the proposed 

shapers to modeling error, the natural frequency of 

the system was increased and decreased by 25% of 

the actual value. Figures 8 and 9 show the response 

with an erroneous natural frequency. The MAE values 

for response for the exact, increased and decreased 

natural frequency is shown in Figure 10. Investigation 

of the time response characteristics in terms of rise 

time and settling time show that ZVDDD is much slower 

than ZV shaper. This is due to the number of additional 

delays. In such case, ZVDDD has the slowest response 

time whereas ZV has the fastest response. Thus, the 

higher the derivatives order of the residual vibration, 

the slower the response of the system. 

 

 
Figure 7 Unshaped and shaped responses for exact 

frequency 
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Figure 8 Shaped responses for 25% increase of frequency  

 

 

 
 

Figure 9 Shaped responses for 25% decrease of frequency 

 

 

The summary of the corresponding MAE values are 

tabulated in terms of percentages of the sway 

reduction as shown in Table 2.  

 

 
Figure 10 MAE values for the exact and erroneous frequency 

 

 
 

 

 

Table 2 Level of sway reduction (simulation) 

 

Shaper 
Percentage of sway reduction  

-25% 𝝎 Exact 𝝎 +25% 𝝎 

ZV 57.20% 81.35% 58.08% 

ZVD 76.02% 85.44% 78.33% 

ZVDD 83.48% 87.21% 84.90% 

ZVDDD 87.57% 88.81% 86.68% 

 

 

3.2  Experimental Results 

 

Experimental results of using the input shapers are 

presented in this section for validation of the simulated 

results. A laboratory rotary crane setup as shown in 

Figure 11 is utilized for the validation. The hardware 

and its supporting components were controlled from 

MATLAB environment using installed rotary crane 

graphical user interface (GUI) via RT-DAC/PCI-D I/O 

board. The motors allowed the motion of the trolley 

along the jib as well as the rotation of the tower. The 

encoders sense the position of the trolley and the 

corresponding sway of the payload. 

The setup was energized with the same pulse input 

signal of Figure 5. This causes the cart to move and 

then stop resulting to the suspended payload to 

oscillate. The same input shaper parameters of Table 

1 were used in this experiment. Figure 12 shows the 

results obtained from the open loop test compared 

with the proposed shapers. Similarly, to investigate the 

robustness modeling errors of the implemented 

shapers, the natural frequency of the system was 

deliberately increased by 25% of the actual value as 

shown in Figure 13. The MAE values of each shaper are 

compared in Figure 14. The comparison for 

percentage of sway reduction by the designed 

shapers based on MAE of the responses is shown in 

Table 3. This confirmed that ZVDD and ZVDD are not 

significantly affected by errors in modeling frequency. 

Interestingly, the simulation and experimental results 

approximately gave similar results for all the shapers as 

shown in Figure 15. 

 

 
 

Figure 11 A laboratory rotary crane 
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Figure 12 Unshaped and shaped responses for exact natural 

frequency 

 

 
 

Figure 13 Shaped responses for 25% increase of frequency 

 

Table 3 Level of sway reduction (experiment) 
 

Shaper 
Percentage of sway reduction  

-25% 𝝎 Exact 𝝎 +25% 𝝎 

ZV 57.20% 81.35% 58.08% 

ZVD 76.02% 85.44% 78.33% 

ZVDD 83.48% 87.21% 84.90% 

ZVDDD 87.57% 88.81% 86.68% 

 

 

 
Figure 14 MAE value for exact and erroneous frequency 

  

 
 

Figure 15 MAE value for shaped and unshaped results for 

simulation and experiment 

 

 

4.0  CONCLUSION 
 

Investigations into sway control schemes for a rotary 

crane system using four positive input shapers namely, 

ZV, ZVD, ZVDD and ZVDDD have been presented. 

Simulations using a nonlinear model and experiments 

on a laboratory tower crane have been performed to 

study the effectiveness of the controllers. The 

performances of the designed shapers were assessed 

in terms of level of sway reduction and robustness to 

modeling errors. MATLAB simulation and experimental 

results of the proposed shapers showed a significant 

sway reduction of the payload was achieved using all 

the shapers. The performances of the shapers 

demonstrated that ZVDDD provides higher sway 

reduction and robustness compared to ZVDD, ZVD 

and ZV. Conversely, ZVDDD has the slowest response 

due to the additional number of delays. It was noted 

that ZV has the fastest response as compared to the 

other shapers. 
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