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Graphical abstract 
 

 
 

Abstract 
 

The bootstrap approach on control limit has provided a solution in solving uncertainty 

estimation problem in control chart performance. However, the limitation of this 

standard chart has shown to be less efficient and invalidation at certain magnitude 

shift, especially the monitored sample data is assumed from skewed family distribution. 

Thus, in this study, a double bootstrap base-model and its control limit is developed in 

order to improve the efficiency and decrease the invalidation chart performance. In 

order to test the performance of proposed model, a simulation study using Average Run 

Length (ARL) and Type II Error rate were implemented. The result has shown that the 

proposed chart is sensitive and effective in detecting the shift process for small and 

medium size of skewed sample data. Also, it has found that the proposed chart shown 

to has better performance on large magnitude shift. The performance of the proposed 

model was investigated further using sukuk volatility data at Bursa Malaysia. The result 

revealed that the double bootstrap control chart is sensitive to small shifts process when 

it can detect changes in the volatility faster. In other words, it is efficient in monitoring 

the shifts process. Thus, the proposed model could help the traders in making a new 

decision, for example, either save/hold for a certain period, sell or buy the sukuk 

certificate.   
 

Keywords: Double bootstrap, estimation, control chart, simulation, sukuk 

 

Abstrak 
  

Pendekatan bootstrap terhadap batas kawalan telah memberikan suatu penyelesaian 

masalah penganggaran ketidakpastian dalam pencapaian carta kawalan. 

Bagaiamanapun, batasan terhadap piawai carta menunjukkan ianya kurang berkesan 

dan ketidaksahihan pada anjakan magnitude tertentu, terutama pemantauan bagi 

sampel data yang diandaikan daripada keluarga taburan kepencongan. Oleh itu, 

dalam kajian ini, satu model berasaskan bootstrap berganda dan batas kawalannya 

dibangunkan bagi meningkatkan kecekapan dan mengurangkan ketidaksahihan 

pencapaian carta. Bagi menguji pencapaian terhadap model cadangan, satu kajian 

simulasi menggunakan Purata Panjang Larian (ARL) dan kadar Ralat Jenis II telah 

dijalankan. Keputusan menunjukkan bahawa model cadangan adalah sensitif dan 
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berkesan dalam mengesan proses anjakan bagi kepencongan sampel data yang 

bersaiz kecil dan sederhana. Juga, didapati bahawa model cadangan menunjukkan 

pencapaian yang lebih baik pada anjakan magnitude besar. Pencapaian model 

cadangan disiasat dengan lanjut menggunakan data kemeruapan sukuk di Bursa 

Malaysia. Keputusan mendedahkan bahawa carta kawalan bootstrap berganda 

adalah sensitive kepada proses anjakan kecil apabila ianya dapat mengesan 

perubahan titik kemeruapan dengan lebih cepat. Dengan kata lain, ianya adalah 

cekap dalam memantau proses anjakan. Dengan itu, model cadangan boleh 

membantu peniaga dalam membuat keputusan baharu, contohnya, sama ada 

menyimpan/memegang untuk tempoh tertentu, menjual atau membeli sijil sukuk. 

 

Kata kunci: Bootstrap berganda, penganggaran, carta kawalan, simulasi, sukuk  

 

© 2017 Penerbit UTM Press. All rights reserved 

  

 
 

1.0  INTRODUCTION 
 

The moving centerline exponentially weighted 

moving average (MCEWMA) control chart was 

introduced by Mastrangelo in 1991 [1]. Since that, it 

has been widely used to monitor autocorrelated 

sample data due to its efficient performance in out-

of-control process [2], [3]. The autocorrelated data 

sometimes collected in individual units or literally 

individual observation and the data could be 

distributed by non-normal such as skewed distribution 

[4]-[6]. According to previous  literatures studies, [3] 

[6], [7], the direct monitoring on skewed distribution 

could increase the type II error rate and eventually 

produce inconsistent estimation of Average Run 

Length (ARL) in either small, medium or large 

magnitude shift of out-of-control process. Despite of 

these problem, some studies have designed a flexible 

chart for monitoring the skewed distribution, for 

example Gamma and Weibull distributions families, 

and multimodal sample data, [4], [7], [8]. Even 

though the flexible chart has given excellent 

performance in detecting the out-of-control process,  

the bootstrap approach could help improving the 

performance in terms of solving the incompatibility of 

approximating a non-normal distribution to Gaussian 

distribution and decrease the uncertainty estimation 

[9]-[11].                

Therefore, a bootstrap procedure is utilized in 

this study in order to improve the efficiency of control 

chart when the information data samples collected  

from individual observation of skewed distribution, is 

obtained. Instead of using the standard procedure 

[10], [11], a new angle of bootstrapping algorithm is 

considered using the modified steps of [12], [13].   

Eventhough the bootstrap approach has 

improved the chart performance, Safiih et al. [14] has 

mentioned that single bootstrap chart shown poor 

monitoring function at greater shift magnitude. Due 

to this slight problem, a double bootstrap method is 

highlighted in this reserach. By taking the advantage 

of double bootstrap; particularly to decrease the 

biasness, shorten the interval length, reduce eror of 

model estimation[14]-[19],this model is also used to 

improve the efficiency of control chart in monitoring 

the greater shift magnitude. 

In this study, a novel hybrid model of double 

bootstrap approach is proposed in order to yield 

more accurate results using moving centerline 

exponential weighted moving average (MCEWMA) 

model. The performance of the proposed model is 

compared with the existing MCEWMA model in terms 

of ARL estimation and type II error rate, using a 

selection of shift magnitud from out-of-control 

process. A Monte Carlo simulation from the Gamma 

distribution is included in this approach by generating 

three examples of individual observation from 

skewed family. 

 

 

2.0  METHODOLOGY 
 

2.1  Control Chart of Individual Observation  

 

In this section, the moving centerline EWMA control 

chart is selected in order to monitor the individual 

observation, (n=1). The moving centerline EWMA has 

been recognized to construct standard exponentially 

weighted moving average control chart by giving 

great performance in detecting small shift in 

individual observation, as described by 

1( ,..., )i mX X X [20]-[22]. Thus, the base mathematical 

model of MCEWMA can be written as follows:  

 

  11 ,i i iW x W     1,...,i m  (1) 

 

where iW  denotes for base model of moving 

centerline EWMA for given sample data of ith, ix  and 

the parameter is denoted as   and (1 ) where it’s 

value 0,1   [23], [24]. As mentioned by Cox, 

Psarakis and Papleonida [25], [26], the parameter 

value was estimated by optimizing the  . Due to the 

limited function of standard chart, where it only well 

functioned for independent and identically 

distributed (iid) sample data, Mastrangelo made an 

adjustment so that the serial correlation or 

autocorrelation data can be monitored without 

constructing any model of autoregressive (p,d) or AR 

(p,d) [1], [27], [28]. The p and d are the parameters 
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of AR model. In fact, iW  is the one-step ahead center 

line of observed data, 1ix  is used to construct a set of 

control limit, while BK used the basic probability of 

the following equation: 

 

1 1i e e i i e eP W L x W L            (2) 

 

where eL and e  denote for sigma value of one-step 

ahead standard error and one-step ahead of 

standard deviation of equation (1) respectively, with 

(1  )100 level of significant. Considered an 

adjustment on equation (2) for construct upper limit 

and lower limit, thus it can be rewrited as following 

equation:       

 

1ix i e eBK W L

   (3) 

 

where e  is consider to be calculated using the 

following equation:    

 

nNncieN
ci Ncie 





    ;,...,1)(,)ˆ(ˆ 2

1

1)(
12

)(  (4) 

 

where N refer to sample size with individual 

observation. Based on previous study [12], [14], [29], 

the base-model of (1) is used as the center line in 

constructing the equation (3). This approach has 

proven to be well functioned in detecting the out-of-

range points of serial correlation data of various 

assumption distribution. However, few studies [4], [7], 

[8] have pointed out that the equation (3) might lead 

to poor sensitiveness of detecting magnitude shift 

when dealing with skewed distribution, for example 

Gamma distribution family. Due to this, the control 

chart could eventually increase the average run 

length and also, the chart intend to increase the 

frequency of false detection point of out-of-process 

that will lead to greater type II error [4]-[6]. Motivated 

by this problem, in this research, a hybrid double 

bootstrap approach is proposed using the base-

model of equation (1) and reconstructs the standard 

limit control of equation (3). Thus, the insensitiveness 

of chart monitoring could be decreased and 

eventually improved the efficiency of control chart. 

 

2.2 Double Bootstrap Approach on Base-model of 

Chart 

 

The standard solution to improve the monitoring 

functional of a chart is to reconstruct the control limit 

using any method such as bootstrap [9], [11], [27]. 

However, the reconstruction sometimes doesn’t 

seem to be the best solution to the family of skewed 

data, especially for Gamma distribution. Instead of 

reconstruction the limit, this research used a 

difference procedure where the part of double 

bootstrap is made to the base-model.  

2.3 Replication Size of First and Second Sampling 

Data 

 

According to Efron, Lola and Zainuddin [30], [31], the 

sampling procedure can be obtained by using a 

preferable size of replication, for example 1000 times, 

to obtain shorter interval and smaller standard error. 

However, a limitation size is preferred to precede 

standard iteration of sampling for double bootstrap 

method. As was used by Efron, Martin and Hall [17]-

[19], the replication size considered to be smaller 

than 1000 times, for instance 500. However, despite 

of using a fix size, Akhmad et al. and Aparisi and 

García-Díaz [32], [33] has estimated the replication 

size by finding a converge value from bias estimation 

of bootstrap sampling size. Therefore, in this research, 

the replication size of single and double bootstrap 

follows the study of [34] so that the shorter interval 

and smaller error could be obtained in simulation 

study. Thus, the selected sizes are 1700 and 2200 for 

single and double bootstrap procedure respectively.       

 

2.4  Algorithm of Double Bootstrap Approach  

 

The algorithm for double bootstrapping the moving 

centerline EWMA control chart can be referred to the 

following steps: 

 

Step1: Generate an individual observation of a 

sample set 1, 1,1 1,( ,..., )n i mx x x  randomly from residual 

of Gamma distribution, ~ ( , )ie    with the shape,

0.283  , skewness, 0.049  and=202.02. These 

parameter values are motivated by the study as 

reported by Lola and Zainuddin [31]. 

 

Step 2: Use the sample of step 1 to estimate the base-

model of moving centerline EWMA, iW and the 

parameter, =0.94. The residual base-mode can be 

estimated using the information of ˆ
iW . 

 

Step 3: The estimated residual base-model from step 

2 is considered to be used in single bootstrap 

procedure where the replication size is B=1700. This 

replication would obtain a sequence of single 

bootstrap sample that can be shown in matrix forms 

as following recursion:  

 

*(1) *(1699) *(1700)
1 1 1

*( )

*(1) *(1699) *(1700)
1 1 1

*(1) *(1699) *(1700)

ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ

t
i

m m m

m m m

e e e

e
e e e

e e e

  

 
 
 

  
 
 
 

 

(5) 

where 
*( )ˆ t
ie  refer to sampling the residual base-model 

and (t) refer to sequence of single bootstrap 

sampling, ( ) 1,...,1700t  . The notation of “*” refer to 

single bootstrap method.  
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Step 4: Obtain a sequence of independent data 

from this sampling single bootstrap set by making the 

adjustment calculation from residual base-model 

equation. A matrix form of independent sampling 

data as the following recursion: 

 

*(1) *(1699) *(1700)
1 1 1

*( )

*(1) *(1699) *(1700)
1 1 1

*(1) *(1699) *(1700)

t
i

m m m

m m m

x x x

x
x x x

x x x

  

 
 
 

  
 
 
 

 

(6) 

 

Step 5: Calculate the mean of every row in equation 

(6) so that an independent sample of single 

bootstrap, 
* * *

1( ,..., )ix x x can be obtained. 

 

Step 6: Use the sample of single bootstrap from step 5 

to estimate the base-model of single bootstrap 

moving centerline EWMA, *
iW and it’s residual,

*
ie . 

The estimation is considered the same parameter 

value as used in step 2.  

 

Step 7: Repeat the step 3 until step 5 for double 

bootstrap procedure with the replication size is 

BB=2200. The independent sample of double 

bootstrap can be denoted as
** ** **

1( ,..., )ix x x . 

 

Step 8: Estimate the base-model of double bootstrap 

moving centerline EWMA, **
iW and it’s residual, 

**
ie  

using the sample in step 7. In order to form a control 

chart, use the estimation of **
iW to be the centerline 

and estimate the control limit ( **
1ix

CL ) using the 

following recursion:   

 

** **
1

**ˆ ˆBK 3
i

ix e
W 



   (7a) 

**
1

**ˆCL
i

ix
W



  (7b) 

where L is considered to be **
ˆ3 e  with **

ˆ
e  refers to 

the standard deviation estimation of residual base-

model of 
**ˆ
iW . The estimation can be referred to 

equation (4).  
 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Monte Carlo Simulation Study 

 

The performance of proposed chart is estimated 

using ARL and type II error rate [34]-[36]. In order to 

examine the best performer, the estimation of 

proposed chart are considered to be compare to 

standard chart, standard chart with bootstrapping 

limit, and also single bootstrap chart.  This 

comparison is conducted via Monte Carlo simulation 

study using R language by generating a single 

Gamma family distribution, 

~ ( 0.283, 0.049)ie      and = 202.02 with three 

selected sample size of n = 30, 100, 300 for individual 

observation, n=1 [37] [38]. For the sake of simplicity, 

the sample size were classified to be small (n=30), 

medium (n=100) and large (n=300).The reason of 

selecting the parameters values was elaborated in 

section 2.3. The main purpose of selecting different 

sample size is to study the consistency of chart 

performance in terms of giving precise estimation 

begins from small sample until large sample data 

[12], [13], [39], [40]. The existing standard chart refers 

to moving centerline EWMA with standard 

limit,(W(BK)) and moving centerline EWMA with 

bootstrapping limit (W(BK*)), while for single bootstrap 

chart refers to bootstrap moving centerline EWMA 

with bootstrapping limit (W*). By running the 

algorithms in section 2.3 using R language, thus, the 

final result of control chart performance of ARL 

estimation and type II error rates can be referred to 

Table 1 and Figure 2, respectively. In order to 

complete the dependent sampling of ˆ JJ

nT , the 

replication size for W(BK)  is considered to be 1000 

times while for W(BK*) and W*, it is considered to 

follow the replication size of single bootstrap method, 

JJ= 1700.  

 

3.2 Average Run Length Estimation 

 

A comparison of ARL estimation of selection 

magnitude shift for all sample sizes as shown in Table 

1. Based on Table 1, at n=30, the ARL estimation for 

all charts are found to be consistently decreased as 

small magnitude shift increase from δ=0.5 up to δ=1.0.  

However, at δ=2.0 and δ=3.0, both standard charts 

shows an increasing number of ARL, indicated that, 

both charts are slow detector of shift process. Even 

though the bootstrapping limit control reduced the 

ARL estimation, however, the efficiency of chart still 

unreliable due to the increasing estimation from 

80.129 (δ=2.0) up to 217.052 (δ=3.0). Meanwhile, the 

single bootstrap chart shown positive performance 

where the ARL estimations are found to be smoothly 

decreased as the magnitude shift increase, starting 

from δ=0.5 up to δ=3.0. Instead of having greater 

value, the residual of base-model replication in single 

and double bootstrap procedures eventually reduce 

the standard deviation value, and thus, the ARL 

estimation has found to be smaller compared to 

standard chart with bootstrapping control limit. 

At sample size of n=100, both standard charts 

given a smooth decreasing ARL estimation starting 

from the magnitude shift of δ=0.5 until δ=2.0. 

However, both charts are unreliable in detecting the 

shift process at large magnitude of δ=3.0. For 

standard chart, it need an average of 74 points to 

detect the out-of-control process, while the standard 

chart with bootstrapping limit need an average of 51 

point to state the shift occurs. However, the double 

bootstrap need an average of 5 points to detect the 
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shift process compare to the single bootstrap (8 

points) and both standard charts. Means that, 

double bootstrap chart is statistically proven to be 

more reliable and efficient in monitoring the out-of-

control process of individual observation. The 

efficiency of double bootstrap chart is indicated by 

its consistency in decreasing ARL estimation from the 

smallest until large magnitude shift. The decreasing 

results also illustrated graphically that can be refer to 

Figure 1.  

 
Table 1 Comparison of ARL estimation using selection 

magnitude shift for n=30, 100, 300 sample size 

 

a,bRefer to respective estimation of standard and single bootstrap control limit  
b,cRefer to respective single bootstrap and double bootstrap of control chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Comparison of average run length estimation for 

five selection magnitude; first point is δ=0.5, second point is 

δ=1.0, third point is δ=1.5, fourth point is δ=2.0, fifth point is 

δ=3.0 

 

 

Interestingly, at n=300 in Figure 1, both standard 

charts shown its consistency of decreasing the ARL 

estimation only at small magnitude shift of δ=0.5 and 

of δ=1.0. At the magnitude shift of δ=1.5, both charts 

detected greater point to state the out-of-control 

process. However, the standard chart shown 

decreasing result starting from δ=2.0 until δ=3.0. 

Instead of producing the same result with standard 

chart, the bootstrapping limit chart continues to 

produce inconsistent ARL estimation starting from of 

δ=1.5 up to δ=3.0.  

Moreover, unexpected result shown by single 

bootstrap chart that detected at magnitude shift of 

δ=3.0. The ARL estimation inconspicuously increases 

from 12 points to 17 points of detecting the out-of-

control process. Based on this scenario, it means that 

single bootstrap not well perform at large magnitude 

shift of large sample size. However, the proposed 

chart, on the other hand, is still reliable to continue 

decreasing ARL estimation smoothly starting from 

magnitude shift of δ=0.5 up to δ=3.0. At large 

magnitude, for example δ=3.0, the double bootstrap 

chart only need 3 points to declare the out-of-control 

process, means that the chart is fast detector of shift 

occurrence. For further observation of chart 

performance, type II-error estimation has calculated 

to find the probability of false detection of in-control 

points using all charts.  

 

3.3  Type II Error Rate Estimation 

 

The estimation for type II error using standard chart, 

standart chart with bootstrapping limit,  single 

bootstrap chart and double bootstrap chart are 

shown graphically on Figure 2. Based on the figure, at 

n=30, the rate of type II error of all charts are above 

0.8 for all magnitude shifts. At smallest sample size, 

the double bootstrap chart has shown smallest rate 

than other charts. Even though, the single bootstrap 

chart found to produce lower rate, but the 

estimation of magnitude shift of δ=0.5 until δ=1.5, are 

close to the rate of standard bootstrapping limit 

chart. At δ=2.0 and δ=3.0, the rate become stable at 

above 0.97 compare to standard charts that have 

greater rate of type II-error. Meanwhile, for the 

standard charts, the rates are found to be above 

0.98 means that the false detection of in-control 

points is greater compare to single and double 

bootstrap chart. Even though the bootstrapping limit 

chart can improve the performance of standard 

chart, the chart shown inconspicuous differ 

estimation of standard chart at large magnitude 

shifts of δ=3.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

n   
ARL  

W(BK)a W(BK*)b W*c W**d 

30 

0.5 486.113 317.426 192.910 61.948 

1.0 462.212 86.948 67.931 43.173 

1.5 83.355 55.607 47.868 28.497 

2.0 274.389 80.129 25.574 17.285 

3.0 399.250 217.052 20.420 7.362 

100 

0.5 432.529 147.668 54.472 45.929 

1.0 187.710 69.734 52.191 41.421 

1.5 165.641 66.554 46.042 26.186 

2.0 49.480 22.644 18.864 16.141 

3.0 73.968 50.951 8.033 5.455 

300 

0.5 125.205 105.466 41.192 25.637 

1.0 116.136 36.385 18.507 13.133 

1.5 165.574 44.346 12.987 10.352 

2.0 88.399 26.630 12.047 10.110 

3.0 74.615 45.346 17.869 2.888 
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Figure 2 Type II error rate for selection magnitudes;  

(a) magnitude shift = 0.5,  

(b) magnitude shift =1.0, (c) magnitude shift =1.5,  

(d) magnitude shift =2.0, (e) magnitude shift =3.0 

 

 

At n=100, the rate of double bootstrap chart is shown 

to be closer to single bootstrap chart at magnitude 

shift of δ=1.0. This might due to the greater difference 

of ARL estimation between the both charts. Also, the 

rate estimated by the chart turned out to has 

inconspicuous decreasing value at δ=0.5 to δ=1.5 

with the rate of 0.9782 to 0.9759, due to the same 

range value of ARL estimation. Based on Table 1, the 

estimation values are 45.929 and 41.421 for δ=0.5 and 

δ=1.5 respectively. Moreover, at this sample size, 

bootstrapping limit chart shown greater rate at all 

magnitude shifts.  

Furthermore, at n=300, the rate of double 

bootstrap chart shown to be consistently decrease as 

the magnitude shift increase. A small number of 

estimation decrease from magnitude shift of δ=1.5 to 

δ=2.0 with the rate from 0.9034 to 0.9011, due to the 

small difference of points in out-of-control process 

detected by double bootstrap chart. Meanwhile, 

rather than having consistently decreasing rate, 

single bootstrap chart shown a slight increasing rate 

from magnitude shift of δ=2.0 to δ=3.0 with the value 

from 0.9170 to 0.9440. Means that, the single 

bootstrap has poor sensitivity in detecting the out-of-

control point at large magnitude shifts of large 

sample of individual observation. In terms of 

producing consistency estimation at all magnitude 

shifts, double bootstrap chart produce a consistent 

decreasing rate as sample size increase. For single 

bootstrap chart, it is clear that the chart has produce 

decreasing value at small magnitude shift and δ=2.0. 

However, at δ=3.0, the chart shown its weakness 

where a dramatic change of rate is detected from 

the increase sample size of n=100 to n=300. On the 

other hand, bootstrap limit chart is consistently, 

decreased of estimation only for magnitude shift of 

δ=0.5 up to δ=1.5, and starts to show its inconsistency 

at large magnitude. Meanwhile, as expected, the 

standard chart only showed the decreasing rate at 

small magnitude shifts.  

 

3.4 The Application to Volatility of Sukuk Investment 

at Bursa Malaysia 

 

The Islamic certificate, known as sukuk, has become 

alternative investment in Bursa Malaysia trading 

market. In order to apply the double bootstrap 

control chart using real situation sample data, thus, a 

time series sukuk data under Islamic Medium-Term 

Notes program is considered in this research. 

Motivated by the study of [31], this research has 

considered monitoring the volatility points of sukuk 

under stock code of VN100268. The size of selected 

sample is 348 with the trading price information 

starting from 30 August 2010 until 28 October 2015. All 

the information used for this research can be search 

on the web of http://www.bursamalaysia.com. 

Instead of directly applied the sample price data, a 

specified calculation needed to be converted from 

the trading price into a set of sukuk sample return [41] 

[42]. In order to find an approximation of the 

distribution, the sukuk return has to be considered to 
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undergo a fit distribution test using Kolmogorov-

Smirnov and Anderson-Darling methods. Thus, the 

result can be referred in Table 2. The results shown 

that sukuk return can be approximated to few 

skewed family distribution for example, Gamma, 

Generalized Gamma and Weibull. According to the 

small estimation of Kolmogorov-Smirnov and 

Anderson-Darling, the preferred distribution 

assumption for sukuk return is Gamma.   

 
Table 2 Goodness of fit summary for sukuk returns 

 

Distribution Approximation K-Sa A-Db 

Dagum 0.3189 134.38 

Gamma  0.2126 71.161 

Generalized Gamma 0.2911 111.79 

Inverse Gaussian 0.3215 114.84 

Pearson VI 0.3259 117.92 

Pearson V 0.3243 118.85 

Weibull 0.2851 110.16 
a,bRefer to respective estimation of Kolmogorov-Smirnov and Anderson-Darling. 

 

 

Next, the volatility points of sukuk are estimated 

using the base-model (1) and proceeded to apply 

the proposed algorithm of double bootstrap control 

chart in section 2.4. Thus, the complete chart can be 

graphically referred to Figure 3. Based on the figure, 

VN100268 sukuk has shown high volatile at its 

beginning and ending of trading. Means that, sukuk 

has experienced dramatic change of its trading 

price and has gained high profit in that period. 

Moreover, at the trading activity of 81th point until 

130th point and 188th point until 283th point, the 

sukuk has low volatility, meaning that, the sukuk price 

was relatively stable. The upper and lower limit of 

double bootstrap chart represents the maximum and 

minimum volatility points of sukuk respectively over 

the time. Based on the figure, there is no evidence of 

shifting process occur even though the drastic 

fluctuation recorded at the end of trading period. 

However, in order to observe the performance of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Volatility points of sukuk sample starting from 30 

August 2010 until 28 October 2015 
 

 

double bootstrap chart, this research considered to 

estimate the ARL and type II error rate for small 

magnitude shift.  

Recall from the simulation study, where most of 

the charts shows a great performance at small 

magnitude shift of δ=0.5 up to δ=1.5, of large 

generated sample size, n=300. By taking this 

advantage, the volatility points of sukuk also 

considered to be monitored using the proposed 

design chart. Since the main purpose of using double 

bootstrap method is to reduce the residual in base-

model (1) so that the efficiency of control limit will be 

increased. In order to show how well the double 

bootstrap base-model could perform, standard error 

of its control limit has estimated. For comparison, the 

estimation standard error of all tested charts in 

simulation study also considered and the result can 

be referred to Table 3. From this table, having 

standard base-model in chart could lead to less 

accuracy statistical estimation due to its greater 

standard error in all magnitude shifts.  

 
Table 3 Standard error of tested control limit charts for small 

magnitude shift using m=348 sample size of sukuk 
 

  W(BK)a W(BK*)b W*c W**d 

0.5 2.55E-06 1.47E-06 1.45E-06 1.03E-06 

1.0 2.62E-06 1.45E-06 1.37E-06 9.60E-07 

1.5 2.59E-06 1.72E-06 1.25E-06 9.02E-07 
The abbreviation of a,b,c,d can be referred to Table 1. W**=double bootstrap 

chart, BK-U=upper control limit and BK-L=lower control limit. 

 

 

Meanwhile, by using bootstrapping control limit, 

the chart could be well performed starting from 

magnitude shift of δ=0.5 to δ=1.0, however, as due to 

the greater standard error at magnitude shift of 

δ=1.5, the bootstrapping limit chart might be less 

effective in detecting the shift process. In the other 

hand, bootstrapping the base-model could provide 

better performance due to the small standard error 

resulted from both single and double bootstrap 

control limit. The consistent decreasing in estimation 

and smallest standard error given by double 

bootstrap indicated that the residual of base-model 

(1) has been reduced and by using this efficient limit, 

the chart will be more sensitive to detect the shifting 

process.  

 
Table 4 ARL estimations charts for small magnitude shift 

using m=348 sample size of sukuk 
 

  W(BK)c W(BK*)d W*e W**f 

(a) ARL    

0.5 131.804 62.723 10.051 5.054 

1.0 135.851 64.899 9.029 2.147 

1.5 69.193 64.512 5.455 1.559 

(b)Rate of errora    

0.5 0.992413 0.984057 0.900505 0.802131 

1.0 0.992639 0.984591 0.889243 0.534316 



156                          Muhamad Safiih et al. / Jurnal Teknologi (Sciences & Engineering) 79:6 (2017) 149–157 

 

 

  W(BK)c W(BK*)d W*e W**f 

(a) ARL    

0.5 131.804 62.723 10.051 5.054 

1.5 0.985548 0.984499 0.816676 0.358608 

(c) False Alarm b    

 0.002300 0.002299 0.002050 0.002030 

a,bRefer to the respective type II error and Type I Error estimation rate for all 

charts using the tested magnitude shift. c,d,e,fRefer to the abbreviation in Table 1.  

 

 

From Table 4, as expected, standard chart shown 

an increasing ARL estimation and type II error rate at 

magnitude shift at δ=1.0 and decreasing at δ=1.5. 

However, even though the bootstrap procedure has 

helped to decrease the residual of base-model of 

bootstrapping limit chart until magnitude shift of 

δ=1.0, a greater ARL and type II error rate are found 

at this magnitude. In the other hand, the single and 

double bootstrap chart are found to have a 

smoothly decreasing ARL and type II error rate 

consistently from δ=0.5 until δ=1.5. In terms of 

application, the double bootstrap chart has 

detected 2 volatility points of fluctuation occur over 

the length period. The fast detection could lead to 

positive returns information for traders.  

Additionally, a Type I Error or false alarm 

estimation also considered in this part of application 

study. The purposed is to examine how reliable the 

tested charts when the process is not shifted. Using 

nominal ARL0=500, and the in-control mean, 0 0.0 

and standard deviation, 0 1.0  , the result for the 

false alarm rate can be referred to Table 4. Based on 

the result, it shown that standard chart has the 

highest rate than bootstrapping chart. Suppose that, 

the estimate rate should be approaching the 

nominal rate of 0.002 (1/ARL0) so that the chart could 

be proven statistically efficient due to its sensitivity of 

detecting the false out-of-control points. In that case, 

the double bootstrap chart has shown a closest 

value to the nominal rate compare to single 

bootstrap chart. This indicates that, double bootstrap 

chart has shown an efficient chart in giving the less 

detection for false points.  

 

 

4.0  CONCLUSION 
 

The aim of this research is to reduce the residual of 

base-model control chart in order to increase the 

chart efficiency, so that, the chart could be well 

applied to skewed distribution family, for example 

Gamma. Using a residual bootstrap procedure onto 

base-model of moving centerline exponentially 

weighted moving average chart, a double bootstrap 

chart has designed in this research and its 

performance tested by estimating the ARL, type II 

error rate in simulation study and, also type I error rate 

considered in application study of sukuk investment 

sample data. In both studies, the sample of individual 

observation assumed to follow Gamma distribution 

and for performance comparison, standard and 

other bootstrapping chart also considered. Based on 

simulation result, the double bootstrap chart has 

found to improve the bootstrapping limit chart and 

standard chart at large magnitude shift of δ=2.0 and 

δ=3.0 in both small and medium sample size of 

individual observation. At large sample size, double 

bootstrap has helped to improve the efficiency of 

standard chart and bootstrapping limit chart at 

magnitude shift of δ=1.5 and δ=3.0 respectively. 

Moreover, the proposed chart found to well perform 

at large magnitude shift and improved the single 

bootstrap chart due to its insensitiveness of detecting 

the shift process. In case of type II error rate, double 

bootstrap has showed to be a reliable chart due to 

its high sensitivity in detecting the false out-of-control 

points at all magnitude shift compared to other 

tested charts. Meanwhile, in application study, the 

double bootstrap has shown to be the best detector 

of shifts process due to its smallest estimation of ARL, 

type II error rate, and type I error rate. Even though 

the objective of this research seems to be fulfilled, 

however, the biasness of double bootstrap control 

chart remains questionable and it will be tested in 

future. 
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