
Parallel Programming Of A Reservoir Simulator

ABSTRACT

MARIYAMNI AWANG
Jabatan Kejuruteraan Petroleum,

Universiti Teknologi Malaysia,
Jalan Semarak, 54100,

Kuala Lumpur. ·

This study concerns applying parallel programming tore ervoir simulation using a 32-Mbyte, 12-processor
parallel computer. The effects of number of processes, granularity, load balancing and program tructure
were studied.

The model simulated was a two-dimensionals, two-phase, black oil model with a fully-implicit
formulation. The differenced equations were solved by the Newton-Raphson method and, Gaussian
elimination was used to solve the Jacobian matrix. Matrix generation was parallelized using monitors as
macros to synchronize calculation . The performance of the simulator was measured by the speed up.

The speed ups of the matrix generation time mcreased almost linearly with increasing number of
processes. For all of the models tested, the speed ups ranged from 3.5 to 4.0 for four proces es and 7.0 to 7.9
for eight proce ses.

INTRODUCTION

Complex reservoir models provide a demand for computers having large memory and fast execution, ~uch
as supercomputer . The disadvantage of supercomputers is the cost that ranges in the millions of dollar .
Instead of expensive supercomputers, parallel computers are a cheaper alternative. Although investigations
on reservoir imulation using parallel machines have increased, there are areas of parallel programming
which have not been fully investigated with respect to reservior simulation. In this study, a shared memory
parallel computer wa used to study several factor in the parallel programming of a imulator.

The finite-difference techniques used in reservoir simulation result in many independent calculations,
which are amenable to parallel execution. Using the e techniques, a reservoir is discretized into many grid
block. The discretized equations representing the model yields a matrix, which is refered to as the Jacobian.
The matrix i computed from the fluid properties, rock properties, relative permeabilities and the phy ical
dimension of the model. Fluid propertie and relative permeabilities are function of pressures and
aturations, and the values are obtained by the interpolation of tables of data or table look-up. At a given

time, the pre sure and aturation di tributions of a reservoir are dependent only on the spatial location,
thPrrfnn' tll hle look-up can be concucted i" parallel. Matrix generation has been reported to constitute
substantial part of the computing time[II,SJ_ This work involved the parallelization of the matrix generation
part of a imulator.

The overall execution time of a simulator is ignificantly affected by the matrix solver. Direct linear
nlvt~r , uch a Gaus ian elimination, require large memorie . The computation time increases rapidlly

with increasing ·matrix izel9l Some interative technique , such as the preconditioned conjugate gradient
method, the Gaus -Siedel method and the SOR method, have been modified to be u ed with parallel or
vectorizing machines. Application of these methods have been reported to re ult in considerable reduction
of execution time[~.61. Since considerable literature on matrix solution has been reported in reservoir
imulation and other fields, this work did not aim to develop a parallel matrix solver.

An important factor in parallel programming a imulator is the structure of the program, which
directly affects load balancing and granularity. Load balancing is the term applied to the division of tasks
among the processor . The number of ta ks allocated to each processor is the granularity. The granularity
hould be sufficiently large to offset overhead cost , and load balancing should ensure that no processor is

idle at any time. In this investigation, a process wa created when the parallel program was executed. The

I
o-

• • Injection well

0 Production well

Figure I : Five-spot pattern

process (or master process) then created several lave proce ses. Load balancing and granularity
considerations in multiprocessing are similar to multiprocessor programming. The improvement in
execution rate due to parallel programming is measured by the speed up, which is the ratio of the CPU time
of sequential excution to the CPU time using multiprocessing. Using the same computer as in this
investigation, Barual4l found that unequal load balancing cau ed a reduction in the speed up. However, no
methods were suggested to overcome the problem. Scott et al1121 reported poor speed ups in the matrix
solution execution due to the overheads such as synchronizing the proces es. Similarly, no granularity or
load balancing effects were related to the ynchronizing time. In this study, two different program
structures were applied to matrix generation to tudy the relationships between load balancing, granularity
and synchronization.

The objective of this investigation was to reduce the computation time of a reservoir simulator
through the use of a shared memory parallel computer. Among the factors that were considered are:
(I) The n~mber of processes .
(2) The structure of the program.
(3) Granularity and load balancing.

An oil-gas two-dimensional reservoir model was simulated. A cries of programs written in
FORTRAN were parallelized using the ANL macrosPl. Investigations on the parallelized imulators were
conducted using a shared-memory, 12-processor computer. Speed ups of the parallel programs were
measured for one, four and eight processes. Two structures of parallel program were compared. One
structure used the sequential style that minimized synchronization and maximized granularity. The other
structure used the stepwi e style that results in smaller granularity and more synchronization.

PARALLEL COMPUTERS

Shared memory parallel computers are MIMD (multiple-instruction multiple-data) machines that are
characterized by a common memory area which is accessible to all processors. These machines have been
used for general application and for studies in parallelism. This has resulted in a variety of software support
for these machines, ranging from operating systems to automatic parallel compilers. At the current level of
hardware and software technology, these computers have been able to achieve the speed of
minisupercomputers at less costl2l. Another advantage is that no major restructuring of sequential
programs is necessary since programming is based on shared-memory.

The 32-Mytbe computer used in this study is a small, multiuser machine that is used for parallel
programming studies. Big simulators could not be programmed for the machine. However, it was adequate
for research purposes. This computer does not have vectorizing facilities, and so the reduction in computing
time is due only to the parallel execution of instruction. The computer ia a highly-coupled, shared-memory
multiprocessorllOl. It can be configured with two to 20 microprocessors, four to 128 Mbytes of shared­
memory and one to ten ethernet/mass strorage 1/0 channels. The bipolar bus has a bandwidth of 100
Mbytess to ensure sufficient capacity. The computer allows symmetric multiprocessing, which means all
processors are equal and have the same priority. The performance ranges from 1.5 to 15 MIPS (million
instructions per second).

Another subgroup is the distributed memory parallel processor, such as the hypercube machines.
Typically, each node is a microcomputer connected to the neighbouring nodes communication channels.

2

The main problem with this system is difficulty in programming, since the message-passing operating
•system requires major restructuring of a program.

DESCRIPTION OF A SIMULATOR

The model used was an areal, homogeneous, oil-gas model with a five-spot pattern configuration (shown in
Figure 1). The oil phase, gas phase and rocks were compressible. Capillary and gravitational effects were
not considered, and the injection rate was kept constant. The production rate was kept constant until the
reservoir pressure was too low to maintain the production rate, which was then varied.

The equations for various types of simulators are derived from considerations of material balance, and
are discussed in detail by Aziz and Settari!lll The discretized flow equations that represent the simulator

are:

where I is the oil or gas phase,

i, j is the block index,
vij the block volume,
q1 ij is the source term of the block,
TX 1 is the phase transmissivity in the x direction, and similarly
TY 1 is the 1 phase transmissivity in the y direction.
The definitions for the terms are given in the Nomenclature.

Eqn. 1

Using the Newton-Raphson method, the following equation was solved iteratively to obtain the
unknown pressures and saturations:

Eqn. 2

where J is the jacobian matrix,

n is the time step,
v is the iteration level,
F is the residuals vector,
u is the vector of unknown pressures and saturations.

The algorithm of the solution is as follows:
(1) At time step n, iteration level v, the Jacobian is evaluated.
(2) The pressures and saturations are evaluated using the Gaussian elimination.
(3) All calculations that are dependent on pressures and saturations, such as fluid properties and

transmissivities, are recalculated using the new pressures and saturations.
(4) The material balance, as given by Equation 1 is tested for convergence. For convergence, the

simulation proceeds to the next time step, otherwise the iteration is repeated.

PARALLELIZA TION MECHANISMS

The synchronization mechanisms used in this research were monitors131 written as macros that were
developed at the Argonne National Laboratory. Details of the development of these macros were reported
by Lusk and Overbeekl11 • The ANL macros were written to be used with shared-memory machines which
have their own synchronization primitives .. The macros are processed by the m4 preprocessor, which is a
preprocessor for use with UNIX systems. The basic ANL marcoiii library was formed using machine

3

specific synchronization primitives. Therefore, it is necessary it recode the basic library for different
machines.

PROGRAM STRUCTURE

The structure and the style of three programs were considered with respect to abstraction, speed of
execution, synchronization and ganularity. The programs were a sequential program and two parallel
programs, that is stepwise and sequential style. The sequential program was used to calculate the speed ups
of the parallel programs.

Sequential program

In sequential programming. cornrnon tasks are written as subroutines and usage of local variables instead
of global variables are emphasized. These two approaches allow abstraction, and changes can be made
easily to any of the subroutines without affecting the whole program. A modular program that is easily
understood and modular subroutines that may be reused are obtained. However, with more abstraction.
the execution of a program becomes slower. In this research, for example, calculation of the oil properties
and gas properties were .written as separate subprograms oil (arg) , gas (arg) . The algorithm of oil (arg) is
given in Figure 2.

Procedure Oil (p. S, Bo. Viso , Rso)
Declarations
/* p. S are input values fro pressure and saturation • /
j • Bo. Viso and Rso are calculated values • j

table-look up(p, S, ind)
/* ind is output of table-look-up• J
Mathematical computations

End (oil)

Figure 2: Algorithm of subprogram oil (arg)

. Each of the four subprograms that calculated the Jacobian matrix coefficients passed in the pressures
and saturations and returned the cofficients. Oil and gas were called in each subprogram. No common
blocks were used to store the calculated variables, hence abstraction was maximized. Figure 3 shows an
example.

The main disadvantage of this approach was that it required the calculation of variables that had
already been calculated in another subroutine. An alternative that saved computation time but reduced
abstraction was to save values that were used frequently in common memory.

Parallel Program: Stepwise style

Procedure matrixA (coefficients A)
Declarations

oil (arg)
gas (arg)
Mathematical computations

End (matrix A)

Figure 3 : AbstractiOn in subprogram matrix A

The structure of the program required the processes to execute groups of instruction concurrently and to
wait until all processes had completed execution before proceeding to the next group of instructions. These
'steps' form a synchronized movement of the processes.

4

This method uses many global variables, communication and synchronization constructs and is
suitable for a shared-memory machine since it requires many global variables and data access. This method
is also suitable for vectorizing machines, since the program can be structured into many loops.

Parallel Program: Sequential sty le

In the sequential programming approach, the processes executed asynchronously from the beginning when
each process picked up a grid block. Each process calculated the grid block properties and the properties of
the four neighbouring grid blocks. Therefore, only the saturations and the pressures of the connecting
neighbouring grids were accessed during execution. The processes were required to synchronize once at the
end of the matrix generation portion to ensure that all coefficients had been generated before proceeding to
the matrix solution, In essence, each process ran its own program until all coefficients were generated.
There was little communication or synchronization , and the granularity was larger than the granularity of
the stepwise method. This method is suitable for message-passing computers which are loosely coupled, and
therefore require more time to synchronize of communicate. Fiqure 4 shows a comparison between the
sequential-style and stepwise-style of programming.

RESULTS AND DISCUSSION

Similar level f difficulty was experienced when programming in parallel and in sequence. The main concerns
during programming were:
(1) ensuring that all processes reached the same synchronizing stage before proceeding to the next stage.
(2) The design of the macros requires that all proce es to be released together. Therefore, if some

processes remained outside the parallel loops, the program hung.
(3) identifying the variables that have to be globally known.

Sequential
Style

Pick a grid block (i , j)
Calculate oil pha e

and gas phase properties
of block (i, j), (i + I, j),
(i-1, j), (i , j + I), (i , j-1)

Calculate
transmi sibilite
and the matrix

coefficients related to
(i , j)

Repeat until all blocks
are calculated

Synchronization
barrier. Processes

wait for other
processes

Stepwise
Style

Pick a grid block (i, j)
Calculate oil phase

and gas phase
properties

of block (i, j), for
all i, j

Synchronization
barrier

Calculate
transmissibilities

for all blocks)
Synchronization

barrier

Calculate coefficients 1
for all blocks

L-----

Synchronization
barrier. Processes

wait for other
processes

Figure 4: Comparison of the sequential style and stepwise style of programming

5

The speed up of the calculations can be estimated theoretically. There are NxNy sets of independent
calculations for a simulator that has NxNy grid blocks. If there are Nprocs processes, there would be Nprocs
computations at a given time. The speed up would be Nprocs, less synchronization and communication
effects.

Effects of varying the number of processes and grid blocks

The following discussion covers the results of ten year simulation tests on three sizes of simulators, lOx 10,
20x20 and 25x25 grid blocks. The results between duplicate test varied between five to ten percent. For
most of the cases, the variation was six percent. The speed ups were plotted in Figure 5 showing the effect of
parallelization on coefficient generation time.

From the results, the cases that were executed with four processes did not show a marked difference
when the number of grid blocks increased. The average speed up value was 3.9. When the number of
processes was increased to eight, the average speed up for the I 0 x 10 case was less then the other two cases.
When the number of grid blocks was lOx 10 and the number of processes was four, all four processes would
finish execution more or less at the same time. There would be some time lag between the first process and
the last process because the synchronizing macro[ll sequentially allocates a grid block to each process. Also,
some grid blocks with wells require more computation. When the number of processes was increased to
eight, the last four grid blocks were computed by four processes, and the remaining four processes were
idle. Load imbalance caused a loss in the speed up. Loss owing to synchronization time was minimal
because the shared memory architecture of the computer allowed rapid access and data transfer.

00

0

E \C

!=
01)
c;::

·;;;
"' 8
0 ...
0.. ·.;:;
3 "=t ::;
£
0

E
!=
-;

-- Ideal speed. up ·.;:;
c;::
0 X lO x 10 grid blocks ;::s N
cr' 0 20 x 20 grid blocks 0

Cll · + 25 x 25 grid blo
0:

;:J
"0
0
0
0..

Cll

0 2 4 6 8

Number of Processes

Figure 5: Speed up of matrix generation time

6

...,
u
~ en
~

"[i
P.
2
en
0 ...
u
>. ...
en
;;; -·.-:::

15 x 15 Grid blocks
c
u
;:I
0'
Jl
'-
0
0

·.-:::

"' ~ 0 2 6 8

Number of Processes

Figure 6: Comparison of the time required by the stepwise method and the sequential method.

The single shared variable method that is used in the ANL synchronizing macrof•J caused processes to
try to access one memory address simultaneously and time loss due to memory contention occurred. Due to
the small number of processes that were tested, memory contention was not expected to be a major problem
in this work. The total loss was also significant for a small model such as lOx 10 grid blocks owing to the
short execution time. From the values of speed up, the 20x20 model gave the best performance for two
reasons. The first reason was that each process had an equal number of grids to act on resulting in a
balanced load. This is true for the computer used since it is truly multiprocessing, and all processes have the
same priority to acquire a grid block from the synchronizing macro. The second reason was that the length
of execution time was sufficiently long to make the synchronizing time negligible and memory contention
minimal. On the whole, the speed ups ranged from 3.5 to 4.0 for the four process cases and 7.0 to 7.9 fr-,. the
eight process cases. An almost linear speed up was achieved for matrix generation.

All of the tests were performed with eight processes or less to simulate a one process per processor
condition since the machine used had 12 processors. The program was executed a few times using 11
processes to see if any advantage would be gained by approaching the limit of the machine. For matrix
generation, the calculated speed up values ranged from 9.6 to 10.0. As more processes were synchronized,
serious memory contention was expected. Since the matrix generation results were close to the ideal speed
up of 11 , no serious memory contention was indicated when the granularity was not too small and the
number processes was II or less. In the Baruaf4l study, the fluid property calculations were grouped by
different phases, and a small granularity resulted. A maximum speed up of 10.92 for 14 processes was
observed, compared to I 0 for II processes in this investigation. In this work, a larger granularity was
achieved by grouping the fluid property calculations.

Comparison of Two Programming Style

This part of the study addressed the granularity effect on matrix generation. The results from testing
two structures of parallel programming, the sequential style and the stepwise style, are discussed. The
sequential style of programming u ed less time synchronizing the processes. Therefore, there was less
wkelihood of memory contention since there was relatively less shared memory than the stepwise method.
Nevertheless, the abstraction of commonly u ed subroutines required the evaluation of fluid properties and
some other variables more than once during one iteration.

As shown in Figure 6, the coefficient generation time for the stepwise method was twice as fast as the
sequential method when applied to an oil and gas reservoir. The sequential style program was expected to

7

require less time by saving the values of the fluid properties and the transmissivities in common blocks that
were local to a process. Even though the local common blocks were hidden from other slave processes, the
master process had access to all of the local common blocks. This characteristic, which is present in UNIX
or UNIX-based operating systems such as MACH, caused interference in the sequential style program.

An unfavourable aspect of the sequential style program which cannot be avoided was that to calculate
the matrix coefficients related to a grid block, it was also necessary to know the properties of its connecting
neighbouring blocks. This means that for each grid block with four neighbours, its values will be calculated
four times. The calculation time of the coefficient part of the program was adequately large so that the
synchronizing time and memory contention effects caused less than 15 percent deviation from the ideal
speed up. The model used in this study was simple. More complex reservoir models are expected to require
a larger coefficient generation time because more fluid phases and dimensions are involved.

The granularity of matrix generation was sufficiently large for synchronization time and memory
contention to be insignificant. This was shown by the speed ups that averaged 90 percent of the ideal speed
ups for four and eight processes.

Overall Sp~ed Up

From the results of the sequential program of a I5 x 15 grid block model, the percentage of the total time
spent on matrix generation was 34.0 and on matrix solution was 60.0. Six percent of the total time was
spent on convergence test and updating common variables. Therefore, the speed up of the overall execution
time was dominated by the matrix solver. In order to benefit fully from parallel programming, a parallel
solver should be used. The minimum execution time, lmtn, for a I5 x I5 model of the simulator used in this
study can be estimated by

0.34 t + 0.06 t + 0.60 t
SPmg SPms

where t is the total execution time,
SPmg is the maximum speed up for matrix generation,
and SPms is the maximum speed up for matrix solution.

Eqn. 3

The maximum possible speed up of matrix generation is ten for II processes as measured in this work.
The maximum possible speed up of matrix solution is 8.25 for 11 processes if the matrix solver used by
Barual41 is us~d. Assuming that the convergence test and updating were c:\rried out sequentially, and
subtituting the pertinent values into Equation 3, the minimum excution time is O.I67 t. The maximum
possible speed up the simulator is 5.99 for II processes or a sixfold increase in the computation rate could
be achieved.

CONCLUSIONS

Matrix generation can be parallelized to give a maximum speed up of ten for II processes. An almost
linear speed up was obtained for different sizes, specifically lOx 10, 20x20 and 25x25 grid blocks. The
highest deviation from the ideal speed up was observed for the I Ox I 0 case. The averaged speed up was 0.90
of the ideal speed up.

The sequential style of programming was slower than the step method due to the recalculation of
variables. This method seemed to be suitable for a message-passinb Jllachinc but not for a tightly coupled
shared-memory machine.

Load imbalance is another factor that can cause considerable slow down in the excution time. Some
optimization of load balancing and granularity should be carried out before a simulation run.

For a 15 x 15 grid block reservoir model, a maximum overall speed up of 5.99 for 11 processes is
possible if the stepwise structure was used for matrix generation and the matrix solution method in
Barual4l's work was used.

ACKNOWLEDGEMENTS

This work was made possible by support from the University Teknologi Malaysia and Stanford University.

NOMENCLATURE

Symbol

A
bt

p
p,
q
qo
qw
s
s1
TXt =)..Ajf:!.x
TYt = M /f:!.Y
t
f:!.t
vb
)..= k krt/J.£1
J.£1
¢

Abbreviations
MIMD
MIPS
SOR
GOR

REFERENCES

cross-sectional area of a block
reciprocal of the formation volume factor of phase I, volume at standard con­
ditions/reservoir volume
absolute permeability
relative permeability of phase 1

pressure
pressure at block i
total flow rate
oil flow rate
water flow rate
saturation
saturation of 1 phase
transmissivity of I phase in the x direction
transmissivity of 1 phase in the y direction
time
time step change
bulk volume
mobility of 1 phase
viscosity of 1 phase
porosity

multiple instruction multiple data
million instructions per second
successive over relaxation
Gas-oil ratio , volume of gas volume of oil

I. E. L. Lusk and R. A. Overbeek, Implementation of Monitors with Macros: A Programming for the HEP and
Other Parallel Processors, Argone National Laboratory, Argonne, IIJinois, 1983.

2. G. Bell, The Future of High Performance Computers in Science and Engineering, Communications of the ACM,
vo1 32, no 9, pp 1091- 1101 , September, 1989.

3. G. R. Andrews and F .B. Schneider, Concepts and NotatiOns lor Concurrent Programming, Computing Surveys,
vol 15, no 1, March 1983.
J. Barua, A study on Newton Related Nonlinear Methods in Well Test Analysis, Production schedule
Optimization and Reservoir Simulation, PhD Thesis, Stanford University, 1989.

5. L E. .KilloUi.h and M.F Wheeler, Parallel Iterative Linear Equation Solvers: An Investigation of Domain
Decomposition algorithms for Reservoir Simulation, SPE 16021, Ninth SPE Simposium on Reservoir
Simulation, San Antonio, Texas, February 1-4, 1987.

6. J.R Walis, J.A. Foster and R.P. Kendall, A New Parallel Iterative Linear Solution Method for Large Scale
Reservoir Simulation, SPE 21209, Eleventh SPE Symposium on Reservoir Simulation, Anaheim, California,
1991.

1. K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers, London, England, 1979.
8. L.C Young, Equation of State Compositional Model, SPE 16023, Ninth SPE Symposium on Reservoir

Simulation, San Antonio, Texas, February 1-4 1987.
9. M. Awang, Application of Parallel Programming to Reservoir Simulation, PhD Thesis, Stanford University, 1991.

9

10. P. Lee, Major Advances in Parallel Processing, Editor C. Jesshope, Technical Press, Brookfield, England, Ch. 16,
pp 204-210, 1989.

1 I. R.P. Kendall, J.S. Nolen and P.L. Stanat, The Impact Of Vector Processors on Petroleum Reservoir Simulation,
Proceedings of the IEEE, vol 72, no 1, pp 85-89, January 1984.

12. S.L. Scott, R.L. Wainwright, R. Raghavan and H. Demuth, Application of Parallel (MIMD) Computers to
Reservoir Simulation, SPE 16020, Ninth SPE Symposium on Reservoir Simulation, San Antonio, Texas,
February 1-4, 1987.

10

APPENDIX

A. I Properties of Oil-Gas Model

The dimensions of the model and flow rates of the wells are:
(1) Reservoir area = 10000 ft x 10000 ft.
(2) Thickness = 100 ft.
(3) For 10 x 10 grid block model:

(a) Grid size, x direction = 2000.00 ft.
(b) Grid size, y direction = 2000.00 ft.

(4) Injection rate = 100 MMSCF/day.
(5) Total production rate = 157330.2 cu.ft day.
(6) Absolute permeability in the x direction= 215 md.
(7) Absolute permeability in the y direction= 215 md.

II

A.2 Oil and gas relative permeabilities

Relative perrneabilities

Oil saturation. Oil phase Gas phase

0 0 1.0

0.001 0 1.0

0.020 0 .997

0.050 0.005 .980

0.12 0.025 .700

0.20 0.075 .35

0.25 0.125 .200

0.3 0.19 .09

0.4 0.41 .021

0.45 0.6 .01

0.5 0.72 .001

0.6 0.87 .0001

0.7 0.94 .000

0.85 0.98 .000

1.0 1.0 .000

12

A.3 Oil properties

Pressure psi a FVF bbl/STB Viscosity cp GORSCF/STB

14.7 1.062 1.04 1.0

264.7 1.15 0.975 90.5

514.7 1.207 0.91 180.0

1014.7 1.295 0.83 371.0

2014.7 1.4350 0.695 636.0

2514.7 1.500 0.641 775.0

3014.7 1.565 0.5940 930.0

4014.7 1.695 0.510 1270.0

9014.7 1.5790 0.70 1270.0

A.4 Gas properties

Pressure psi a FVF bbl/STB Viscosity co

14.7 .166666 0.008

264.7 .012093 0.0096

514.7 .0062274 0.0112

1014.7 .003197 0.014

2014.7 .001614 0.0189

2514.7 .001294 0.0208

3014.7 .001080 0.0228

4014.7 .000811 0.0268

5014.7 .000649 0.0309

9014.7 .000386 0.047

13

