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This paper will describe an analytical approach to the solutions of queueing models with finites capacity. Th 
methods is chosen because its abilitiy to model exactly complex non-Markovian model which hare correlated, 
non-renewal input process which is nearly impossible to get exact expressions by using classical methods oj 
generatmg functions. We applied this methodology to compute the loss performance a of a queueing J tem 
specifically in the scenario of Asynchronous Transfer Mode ( ATM) networks. 

INTRODUCTION 

In many stochastic models, tractable analytic or numerical result are usually if certain random varihle are 
assumed to have a negative exponential distribution. This accounts for the wide use of the Poission proces 
as an arrival process in the analysis of quenus, the birth-and-death assumptions underlying models, and the 
negative exponential durations applied to service times. The classical memory-less property i the 
underlying source of all simplification that we owe to the negative exponential distribution. 

When assessing the performed of computer and communication system, one often encounters very 
complication input prQcesses. A typical exampie'is an ATM multiplexer, whose input is a superposition of 
packetized voice, data and video sources. The number of cell arrivals in adjacent time intervals can be higly 
correl~ted, which turns the arrival process into complex non-renewal process. Under such situation , the 
only alternative to simulations is replacing the input proce·ss by an analytically tractable model, whic 1 

accurately approximates the input process. 
Neuts [Neuts 1976, Neuts 1979] introduced a versatile Markovian point process, al o called the N­

process [Neuts 1976, Neuts 1979], which is also analytically simple and prossess propertise that make it 
suitable for the approximation of complicated non-renewal processess. Systematic and detail studie on 
matrix-analytic methods and its related references can be found in [Neuts 81]. 

This paper will describe an analytical approach to the solutions of queueing models with finites system 
capacity. The methods is chosen because its ability to model exactly complex non-Markovian model whi h 
have correlated, non-renewal input process which is nearly impossible to get exact by using cia sica! 
methods of generating function [Niu 1992]. Several researchers [Machihara 88a, Zukerman 89, Brochin 
1990, Baiocchi 1991, Baiocchi 1991a, Takagi 1991, Yamada 1991, Yamada 1992] have efTecitively u ed the 
matrix-analytic approach to slove queueing problems. Although, no doubt this matrix manipulations 
require high-performance computer with big memory, there are also several articles published [Yamada 
1994.Niu 1992] on how to compute the matrices more effectively and thus reduces the amount of memory 
and disk space required. However, in this paper we do not have the chance to use the technique of reducing 
the complexity of matrix manipulations because of time constraint and time-consuming programming. 

Section 2 present the matrix algebra notations used in this paper. Section 3 and 4 review the pha e­
type and phase-Markov renewal process distributions. Matrix analytic approach is described in Section 5. 
Section -6 provides a commonly used first-in-first-out queueing discipline as an example with dtfTerent 
arrival assumptions. The numerical results are given in Section 7. Finally, Section 8 present the conclusions. 

NOTATIONS FOR MATRIX ALGEBRA 

Generally, we will avoid declaring dimension of matrices and by adopting the convention. Notably, we 



write Y x Z only if it is defined, that is, the number of columns of Y is equal to the number of rows of Z. 
Likewise, Y + Z is defined only if Y and Z are of the same dimensions. The column or row vector whose 
entry is one is denoted by e, whose dimension will vary in the paper but usually self-evident from the 
context, and hence suppresses thew notation unless specificaly mentioned. Both row and column vectors are 
denoted by italic and bold face lower case letters. The identity matrix of order k is always denoted by Ik, is a 
diagonal matriJ\ all the diagonal entries equal to one. The sysmbol "0" may be a scaler or a matrix 
according to the context. 

PHASE-TYPE (PH) DISTRffiUTIONS 

In this section, we first give a brief introduction to phase (PH) distributions, which have been discussed in 
details by Neuts [Neuts 1981]. (Note: The readers ~re sunggested to refer [Neuts 1981] for further theorems 
and proofs). Let X(t) be a continuous-time Markov process with state space [I, ... , m, m + 1} for which the 
states {1 , .... ,m} are transient and the state {m + 1} is absorbing. The infinitesimal generator of this Markov 
chain is given by 

Q = [~ ~] (I) 

where Te + "Pl = 0, T0 is a non-negative vector, and the matrix Tis nonsingular with Tii < 0, for 1 :::; i ::=; m, 
and Tu ~ 0, for i =!= j. The initial probability vector of X(t) is given by (a:, O:m+t), with a:e + O:m+l = 1. 

The Markov process with the infinitesimal generator generation Q• = T + "PlA0 with Ao = 
dig(a:t , .. , a:m) is now of considerable importance. We any always assume Q* is irreducible, if necessary 
after deletion of superluous states from the chain Q. The matrix Q* discribes the Markov chain 
instantaneously using the same initial probabilities, whenever an absorption into the state {m + 1} occurs. 

The stationary probility vector 1r of Q* is obtained by solving the equations nQ* = 0, ne = 1. The 
times of absorption (and resetting) are readily seen to form a renewal process with the underlying 
probability distribution F(•). A renewal process in which the inter-renewal times have a PH-distribution is 
called a PH-renewal process (PH-RP). The pair (a:,T) is called a representation of F(•). 

We may assume without loss of generality that O:m+l = 0, so that F(•) does not have a jump at 0. If we 
model the arrival process as PH-renewal process (also can be modeled as departure process of phase-types), 
the interarrival time probability distribution function is of the form 

F(x) = I - a:exp(Tx)e for x ~ 0, (2) 

with Laplace Stieltjes transform (LST) 

P(s) = a:(sl- T) - 1"Pl (3) 

The PH-distribution are considered versatile probability distribution, which a number of well-known 
probability distributions can be included as special cases such as: ->. >. 
(i) For the exponential distribution with parameter a:, the infinitesimal generation is given by ( 

0 0
] 

and O:t = 1, 0:2 = 0 so that F(•) then has the simple representation (1,->.). 
(ii) The generalized Erlang distribution obtained by the convolution of k exponential distributions with 

parameters >.t , ... , >.k has as one of its representations the pair (a:,T) given by 

[

->.1 

a ~ [I 0 ... OJ , T ~ :: with· "Pl = (0, ... , 0, >.S 
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(iii) The hyper-exponential distribution 
i=l 

F(x) = L o:;(1 - e- >.,x), x ~ 0 
k 

may be represented by 

0 

PHASE-MARKOV RENEWAL PROCESS (PH-MRP) DISTRIBUTIONS 

The phase Markov renewal process (PH-MRP) is a direct extension Machihara 1988b, Niu 1992] of the 
phase type renewal process introduced by neuts [Neuts 1979] that is also similar to general Markov arrival 
process (also known as MAP). In conjuction with the results reported in [Lucantomi 1990, Lucant<>mi 
1991], Lucantoni suggested a notation better suited for general treatment than that used (Neuts 1979). 
However, the notations used in this paper to analyze the PH-MRP (instead of referring it as MAP) isba ed 

on [Niu 1992]. 
Since plural absorbing states are assumed in the PH-MRP, it can represent non-renewal process such 

as the MMPP, whereas the PH-RP can only represented renewal process due to the assumption of only one 
absorbing state. Consider a continuous Markov process with state space {l, .. ,m, m + l, .. ,m + n} for which 
the state {l, .. ,m} are transient and the states {m + l , .. ,m +n} are absorbing. We assume that starting at any 
transient state, absorption into a state in [m + 1, .. ,m + n] is almost certain. Then the infinitesimal generation 

of such a Markov process has the form [ ~ ~] , where T is an m x x matrix with Tij < 0 and T;j ? 0 for 

i =f j, such that T- 1 exists. T> is a nonnegative m x m matrix and satisfies Te + T>eo = 0, where e (or eo) is 
an mx (or n x 1) column vector with all elements equal to l. 

We will consider the Markov renewal process, which is obtained by instantaneously restarting the 
Markov process after each absorption. The state transition probability matrix between an epoch visiting the 
absorbing state and the epoch instantaneously restarted after this epoch is defined as o: . (See Figure I). 

From this definition, it shows that o: is an n x m rectangular matrix. 

Absorbing 
states 

Transient 
states 

/
:Markov 

renewal 

The state transition probability matrix between a visiting states and instantaneously restarted after the 

epoch. 

Figure 1: Markov renewal process [Y AMA 91] 
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MATRIX ANALYTIC APPROACH 

A quasi-birth-and-death (QBD) process is a Markov process on the state space n = {(ij): i ~ 0, 
I $ j $ m}, with infinitesimal generator Q, given by a tridiagonal matrix, in which all the blocks may also 
be in matrix form, i.e. 

Q= ~ 

where the matrices Mi, Ai and Bi denote the transition rates from level ito level i-1, i and i +I respectively. 
The performance measure of a queueing model can be obtained by solving the system of equations pQ = 0 
and the normalizing condition pe = I, where the vector p denotes the stationary probabilites of the 
underlying system. Therefore, as in the above case, Aoe + Boe = M 1e +Ate+ B1e = (M2 + A2 + B2)e = 0. 

This paper evaluates the performance of a statistical multiplexer in fast packet networks in A TM 
networks. Since the cell is length of every kind of cell fixed in an A TM network system, the service time of a 
statistical multiplexer is a unit distribution. In all our analytical model throughout the whole paper, it is 
necessary that the service time distribution has the phase-type structure. We approximate the unit 
distribution by the Erlang distribution ({J, S, S0), defined by 

1

- 1-£ 

fl = [I 0 ... OJ , S = : :I 
-~-£ 

with S0 = (0, ... , 0, !-£)1 
(5) 

If the Erlang distribution has an appropriate number of phases, k, the Erlang distribution is a good 
approximation to a unit distribution. 

More recently, modeling of packetized voice and data traffic has required consideration of more 
complicated arrival processes than the Poisson process. It is now well known [Heffes 1986, Sriram 1986] 
that the interarrival times in the packet streams are strongly correlated. The MMPP was used in [Heffes 
1986] to approximate the superposition ofpacketized voice processes. The MMPP was chosen because it is 
a tractable and non-renewal stream that could match certain statistical of the original traffic. 

For instance, the representation for a 2-MMPP is in the following form: 

a= [ ~ ~] = h (unit matrix of order 2). 

1'= [~' ~,] (6) 

The superposition of several PH-MRPs constructs a new PH-MRP. For example, if we consider superposed 
voice (denoted by (av, Tv, -re)) and data (denoted by (ad, Td, ~)) ad two 2-phase MMPPs whose 
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representations are given as above, contructs a new PH-MRP with the representation given by 

(7) 

FOFO EXAMPLES 

Queueing models with infine buffer using matrix-approach have been investigated widely by [Ramaswami 
1980, Nui 1990, Nui 1991 b]. The model where the queue has only finite number of waiting places available, 
seems realistic, especially in systen where buffering memory is limited and where loss probability is an 
important performance measure of the system. Esaki, [Esaki 1992] has made a study and shown that the cell 
loss rate is the dominant parameter compared to average queueing delay. This assumption have also been in 
investigated in several paper, such a [Blondia 1989, Blondia 1991]. 

To make comparisons between different models, it is necessary to model an uncontrolled queueing 
system such as with no-priority control by which all classe of traffic are treated equally. Such uncontrolled 
system is known as a queue model with first-out (FIFO) discipline. These models are frequently analyzed by 
many researchers and can be found in many textbooks such as [Kleinrock 1975, Allen 1990]. 

However, the analysis that will be shown below differs from the others because we used matrix­
analytic methods to evaluate its performance. Denote by i the number of customers (both Class-1 and 
Class-2) in the queueing system. The state-transition diagram of its birth-and-death (BD) process is shown 
m Ftgure 2. 

Ao Al A2 AK-1 AK 

Figure 2: State Transition Diagram for Non-Priority (EIFO) Queueing Discipline 

Then, the infinitesimal generator matrix is given below, 

Ao Bo 
M1 a, B1 

M2 A2 B2 

Q= 00 

The generator Q can be interpreted as fallows: matrix B1 denote the arrival rate matrix of the 
superposed cells (Class-! and Class-2 cells). The superposed cell arrival increase one level (i --+ i + I). On 
the other hand, the matrix Mi denotes the departure rate of the cell in service at the level i, i.e., the 
transition matrix from level i to (i- 1). 
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In order for the process to have no transition from level i, neither cell arrival from Class-1 and Class-2 
cells nor departure from the queue is allowed. In other words, the only possible transitions are the changes 
of the phases during the level i. This can be represented by the matrix Ai which satisfies 

Aoe+ Boe = 0 
Mie + Aie + Bie = 0, 
MKe+AKe=O 

(1::; i::; K-1) 

Queueing Model-l: M1 + M2/PH/l/K (FIFO) 

(9) 

Define i as the number of cells (both-! and Class-2) in.the queueing system and h the phase of PH service 
time at an arbitrary time. Then, (i,h) constructs a continuous-time Markov chain (CTMC) on the state 
space 

n = {(0) u (i,h): I::; if K, I::; h::; k} (10) 

Then by partitioning the state space into following set of levels: 

level 0 = { (0) }, 

Level i = { (i,l} ... , (i,k) }, (1 ::; i ::; K) ( 11) 

we can characterize the underlying queueing models as a modified QBD process whose infintesimal 
generator is given above. 

For the case of Model-l, we could define the matrices Mi, ai and Bias follows. A(l), A(2
) and As are the 

Poisson rates of Class- I, Class-2 and the superposition of Class-! and Class-2 cells respectively. 

Ao =-As 

Ai = -As lk + S 

AK =S 

Bo = Asf3 

Bi = Asls 
A~')= A(llf3 

Af'l = A(l)h 

A~2) = A (2) (3 

Af2l = A(2)h 

M 1 =S0 

MiS0(3 

,(1 ::;i::;K-1) 

,(1::; i::; K) 

,(1 ::; i ::; K) 

,(1::; i::; K) 

,(1::; i::; K) 

We could then partition the stationary probability vector p according to the levels into 

P = (po, P1, .. , PK-1, PK) 

P) is a scalar but Pi is a vector given by 

, (1 ::; i ::; K) 

(12) 

(13) 

(14) 

where Pi(h) denotes the stationary probability that there are i cells in the system and in service phase hat an 
arbitrary time 
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QUeueing Mode/-11: PH- MRP1 + M2/PH/l/K (FIFO) 

In the case of Model-11, we denote i as the number of cells (both Class-1 and Class-2) in the queueing 
system, j l the phase of PH-MRPl represented by (a1, T 1, 'rl) and by h the phase of PH service time at an 
arbitrary time. The state space of this CTMC can be defme as 

We could then partition the state space into the following levels: 

level 0 = { (0,1), .. , (0, rt) }. 

level i = { (i,1,1), .. ,(i,1,k), .. ,(i, rt, 1), ... ,(i, r,, k} 

Ao = Tt - >Plir, 

Ai = (Tt- A(2llr1 ) ® h + 1r1 ® S, 

Ak = (T1 +Tl) ®lk +lr1 ®S 

(1 SiS K) 

,(I SiSK-1) 

Bo = (Tlat + A(2llr1 ® f3 

Bi = (Tlat + A(2llr1 ) ® h ,(1SiSK) 

~I) = Tlat ® f3 
(1) ....0 A0 = •!at ® Ik , (1 SiS K) 

A~2) = A(2lir1 ® {3 

A(2) - '(2)1 .o. I 
0 - -"1 rt 'CI k , (1 SiS K) 

M1 =l11 ®S0 

M1 = lr1 ® S0{3 ,(1 SiS K) 

(15) 

(16) 

(17) 

Again we could partition the stationary probability vector of this model into the appropriate levels 

P = (po, Pt. ... , PK-1, Pi<.) 

Po= (po(1), ... ,po(rl)), 
Pi= (Pi(1, l), ... ,Pj(l,k), ... ,pi(rl,k)), ,(1 SiS K) (lS) 

Queueing Model-III PH-MRP1 +PH- MRP2/PHjljK (FIFO) 

Denote by i the number of customers (both Class-1 and Class-2) in the queueing system, by jn the phase of 
PH-MRPn (n = 1,2) represented by (a

0
, Tn, ~)and by h the phase of PH service time at an arbitrary time. 

Then we could construct the CTMC of Model-III with the state space 

(19) 

Partition the state space into the following set of levels: 

level {) = { (0, 1,1 ), ... ,(0, 1 ,r2), ... ,(O,r1, 1 ), ... , (0, r1, r2)) } 
level i = { (i,l,l,l), ... , (i,1,1,k), ... , (i,l,r2,l), ... ,(i,l,r2,k), ... , (i,r1,l,l), ... , (i,r1,1,k), ... , (i,rt. r2,l), ... , 

(i,r1, r2,k) } (I S i S K) (20) 
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Figure 4: A comparison of cell loss ratio with different models 
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Figure 5: Comparison of cell loss rates for Class-2 with same traffic characteristics but different queueing models 

CONCLUSIONS 

We have proposed a method of evaluating loss perfon:nance in an ATM networks with mixed traffic inputs. 
The numerical examples in this paper shows that the correlated effects of the traffic had a signjficant effect 
on its performance. A system which handles which handles bursty input traffic had higher actual loss rates 
compared to a simple Poisson arrival model. This method had been successfully applied to priority control 
in an ATM networks to·handle multiple classes [Abbas 1992a, Abbas 1992b). 
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