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Although fuzzy logic· theory was proposed about three decades ago, it is only until recently that 
fuzzy control technology has been successfully applied to many industrial systems and domestic 
appliances. Much of these developments is mainly due to a better understanding of the concept 
of fuzzy logic, its simplicity of implementation, and its feasibility in hardware development. 
This article intends to provide a simple but clear understanding on the concept of fuzzy logic 
and its application to control systems (therefore not intended for those who have r.:Lready 
understood the basic principles of fuzzy logic control). A simulation example is given on the 
development and operation of a fuzzy logic controller for a multi-variable water bath 
temperature control system. C-pseudocodes are given in the Appendices to clar~fy the water 
bath fuzzy control algorithms. 

1 . Introduction 

In the past few years, the term "fuzzy" has dominated a wide variety of electrical and electronic 
products. From household appliances such as rice cookers, washing machines, video camer.as, 
etc., to industrial systems such as automatic train operation and aircraft landing systems, the 
te~hnology of fuzzy logic has been applied with success. Fuzzy logic technology has 
revolutionised the shape of the development of domestic and industrial products for many years 
to come. One reason for this is due to the creation of the "Institute of Fuzzy Control" in Japan 
where a wide variety of fuzzy logic based products have been successfully developed and 
commercialized. 

What is fuzzy logic? The theory of fuzzy logic is not new and it was first conceived by Zadeh in 
the seminal paper [1] entitled "fuzzy sets" about three decades ago. The term "fuzzy set" was 
introduced to offer a classification for objects encountered in the real physical world which is 
both imprecise and uncertain. The key idea is to develop a framework to deal with such 
imprecision and uncertainty. Instead of using the ordinary concept of set inclusion, Zadeh 
introduced a function that expressed the degree of belonging to a given set as a function taking 
values in the range of 0 to 1. The relevant aspects of fuzzy logic as introduced by Zadeh is 
given in the next section. A more detail explanation can be found in [ 1, 2]. 

*Currently attached to the Dept of Information Science and Intelligent System, Faculty of 
Engineering, University of Tokushima, Tokushima 770, Japan. 
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When fuzzy logic was first conceived, it was expected that most of its applications would be in 
the realm of knowledge-based systems in which the resident information is both imprecise and 
uncertain. Contrary to this expectation, however, most of the successful applications of fuzzy 
logic at this juncture relate to control and systems analysis in which there is imprecision but no 
uncertainty. In the field of control, fuzzy logic technology has been applied with varying 
success to a wide variety of" systems. One notable application is the auotmatic train operation 
(ATO) system in the city of Sendai, Japan since 1987 [3]. The Sendai ATO system's train 
automatic stop control (TASC) subsystem controls the speed of the train in view of safety, 
riding comfort, traceability of target velocity, accuracy of stop gap, running time and energy 
consumption. This A TO system performs as skillfully as human experts do and superior to an 
ordinary proportional-plus-integral-plus-derivative (PID) automatic train operation controller. 

The idea of applying fuzzy logic to control systems was first conceived by Assilian and 
Mamdani [4]. Based on Zadeh's fuzzy set theory and the simple conventional PID controller, 
Assilian and Mamdani developed what is now referred to as the basic fuzzy logic controller, 
which is used to regulate the outputs of a process around a given set-point using a digital 
computer. Due to the limitations of memory space and speed of the sequential Von Neumann 
computers, fuzzy logic controllers were not very popular in the beginning and much of their 
applications centred around slow varying processes. Some of the earlier applications of fuzzy 
logic to process control can be found in [5] and [6]. 

There are a number of advantages of applying fuzzy logic to the control of industrial processes 
over traditional controllers. Perhaps one of the main advantages of applying fuzzy logic control 
is that a controller can be developed along linguistic lines which has close associations with the 
field of artificial intelligence (AI). One of the aims of AI is to replacelhuman beings carrying out 
precise tasks by machines and hence the link between AI and control theory is strong. The 
fuzzy controller consists of a set of linguistic conditional statements (fuzzy associations) or 
rules which define the individual control situations. These linguistic conditional statements or 
control rules can be easily developed from common sense or from engineering judgement of the 
process to be controlled. 

Many industrial processes are difficult to be controlled accurately and it has been claimed that 
fuzzy logic control can deal successfully with such processes which are usually multi-variable 
in nature and have unknown dynamics, nonlinear behaviour, and time-varying parameters. 
Compared to traditional adaptive controllers, fuzzy controllers have a key advantage in that they 
do not require a priori mathematical model of the plant. Compared, to neural network 
controllers, basic fuzzy controllers do not have to be trained before they can be used. Based on 
common sense and engineering judgement of the process, fuzzy logic controllers can be 
developed in minutes. Another clear advantage is that fuzzy logic controllers can now be 
feasibly implemented in digital [7] or analog [8] VLSI circuitry where sampled information can 
be encoded in a parallel-distributed framework. 

The main objective of this article is to provide the reader with the understanding on how to 
apply the concept of fuzzy logic to control systems on a microcomputer. An overview of the 
theory of fuzzy sets and fuzzy systems from the viewpoint of mappings between hypercubes is 
first introduced. The concept of the basic fuzzy logic controller is next discussed. The rest of 
this paper deals with the development of a fuzzy logic water bath temperature control system. 
As it is the intention of the author to provide a clear viewpoint to the reader, assuming that the 
reader has no basic knowledge, a rather detail explanation is given on the implementation and 
simulated operation of the fuzzy logic controller for the multi-variable water bath process. For 
clarity, C-codes for the water bath fuzzy associations or rules, the computation of the fuzzy 
membership functions and the fuzzy centroid defuzzification procedures are given in the 
Appendices. 
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2 . A Brief Overview of Fuzzy-Set and Fuzzy-System Theory 

Fuzzy-set theory is an active research area and some of its aspects have been discu sed in the 
following literatures [9-11]. In this section a brief overview of fuzzy-set theory is described 
from the viewpoint of between-cube theory [12]. 

A fuzzy set defines a point in a cube whereas a fuzzy system defines a mapping between these 
cubes. A fuzzy system S maps fuzzy sets to fuzzy sets. Thus a fuzzy system S is a 
transformation from one hypercube l" to another hypercube JP 

(1) 

The n-dimensional unit hypercube I" houses all the fuzzy subsets of the domain space or input 
universe of discourse and F houses all the fuzzy subsets of the range space or output universe 
of discourse. In general a fuzzy system S maps families of fuzzy sets to families of fuzzy sets, 
thus, 

S: !" 1 X . . . X !0 r --7 J P 1 X . . . X JP r (2) 

These fuzzy systems behave as associative memories where they map close inputs to close 
outputs. They are referred to as fuzzy associative memories (FAM). The simplest FAM encodes 
the FAM rule or association (Ai, Bi). which associates the p-dimensional fuzzy set Bi with the 
n-dimensional fuzzy set Ai. These minimal FAMs essentially map one ball in I" to one ball in JP. 

Three common associations in fuzzy set theory [1] are 'complement', 'union', and 
'intersection' of fuzzy sets. The complement of a fuzzy set A is denoted by A' and is defined by 

mA' (x) = 1 - mA(x), xe X (:1) 

where X is the real line Rl or universe of discour e and mA(x) is the membership function of 
the fuzzy set A between 0 and 1. 

The union of two fuzzy sets A and B with respective membership functions mA(x) and ms(x) is 

a fuzzy set C, written as C = AuB, whose membership function is related to those of A and B 
by 

mc(x) = Max[mA(x), ms(x)], xe X (4) 
or in abbreviated form 

(5) 

The intersection of two fuzzy sets A and B with respective membership functions mA(x) and 

ms(x) is a fuzzy set C, written as C = ArJB, whose membership function is related to A and B 
by 

mc(x) = Min[mA(x), ms(x)], xe X (6) 
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or in abbreviated form 

me= rnA 1\ rna (7) 

In simple words, the union of A and B is the smallest fuzzy set containing both A and B, 
whereas the intersection of A and B is the largest fuzzy set which is contained in both A and B. 

In general, a FAM system F: I" -7IP encodes and processes in parallel a FAM bank of m FAM 
rules (AI, B1), ... , (Am, Bm) as shown in Fig. 1. Each input A to the FAM system activates 
each stored FAM rule to different degree. The minimal FAM that stores the ith association or 

rule (Ai, Bi) maps input A to Bi. which is a partially activated version of Bi. The more A 

resembles Ai, the more Bi resembles Bi. The corresponding output fuzzy set B combines these 

partially activated fuzzy sets Bi .. . B~ where it equals a weighted average of the partially 
activated sets: 

m 

B-"" w·B: - £.. 1 1 
i=l (8) 

The term Wi reflects the frequency or strength of the fuzzy association (Ai, Bi). In practice the 
output waveform B can be "defuzzified" to a single numerical value Yi in Y by computing the 
fuzzy centroid of B with respect to the output universe of discour e Y. · 
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Fig. 1: A FAM system architecture. The FAM associations or rules (1 tom) are fired in 
parallel to produce the output fuzzy set B. B is "defuzzified" to a numerical value Yj-

3. The Concept of the Basic Fuzzy Logic Controller 

Fuzzy logic control systems are proposed where they can be developed along linguistic lines 
which has some close associations with the field of artificial intelligence. Based on Zadeh's 
theory of fuzzy sets as discussed the concept of fuzzy logic has been applied successfully to the 
control of industrial processes particularly those which are ill-defined and those capable of 
successful human-operator regulation. 

A simple fuzzy logic control system as shown in Fig. 2, originally conceived by Assilian and 
Mamdani [ 4]', consists of a set of linguistic conditional statements or rules (referred to F AM 
rules) which define individual control situations. In many appliCations, it is sufficient to relate 

23 



the error and the change of error in the process to apply the correct amount of change in the 
control input to satisfactorily control the system. In this respect simple linguistic rules can be 
formulated based on observation or a simple study about the process. An example of a linguistic 
natural language rule that an expert might use to describe a control system action is as follows: 

If error is positive large and change in error is negative small, 
then change in the process input is negative large. 

These three variables, error (E), change in error (C), and ch<fnge in control input (U) are 
defined by fixed universes of discourse which defined the range of measurements they can take 
in a particular control system. In some applications [12], another variable such as the past 
control input value may be added as the antecedents in the FAM rule to improve the system 
performance, however, at the expense of added complexity in the development of the fuzzy 
control system. 

Each of the fuzzy variables can be quantized into fuzzy subsets according to the complexity of 
the process. Linguistic terms such as positive large, negative small, zero, etc. in which an 
expert might use to describe the control system actions are used to label these fuzzy subsets 
which in reality represent numerical values. Each of these fuzzy subsets contain elements with 
degrees of membership. A fuzzy membership function assigns a real number generally between 
0 and 1 to every element in its universe of discourse which indicates the degree to which the 
object or data belongs to that fuzzy set 

S 
. + etpomt 

Fuzzy 
Controller Process 

u(nn 

Fig. 2: A block diagram of a basic fuzzy control system 

As an example, a FAM rule k can be abbreviated to a statement of the fo1m: 

IF E is Ek AND Cis Ck, then U is Uk 

These fuzzy subsets Ek, Ck and Uk are defined by a set of ordered pairs as follows: 

Ek = { (e, mek(e))} c E 

ck = { (c, mck(c))} c c 

uk = { (u, muk(u))} c u 

(9) 

(10) 

Output 

where e, c, and u are elements of the discrete universes and mek, mck and muk are the 
corresponding membership values which give the degree to which the element is a member of 
the fuzzy subset. 

Fuzzy membership functions can have different shapes, such as monotonic, triangular, 
trapezoidal, and gaussian, according to the designer's preference or experience. Figure 3 shows 
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four common examples of membership function shapes or splines. Selection of the type of 
membership functions affects the type of reasoning to be performed [13]. In practice trapezoidal 
or triangular shapes are widely used which simplify computation. 

The antecedents of all the FAM rules which describe the process control action are activated in 
parallel (as shown in Fig. 1) where the pulse nature of the inputs picks off single fit values of 
the fuzzy variables. The antecedent fit values can be combined with either minimum or 
maximum depending on whether the antecedent fuzzy sets are combined with the conjunctive 
AND or disjunctive OR. The example as described above, Eq. (9), combined the antecedents 
with the conjunctive AND which activates the consequent fuzzy set Uk to degree wk> therefore 
using Zadeh's fuzzy intersection association of Eq.(7), we have 

(11) 

(a) . Monotonic X (b) . Triangular X 

(c) . Trapezoidal X 

Fig. 3: Four common examples of fuzzy membership function splines 

The output fuzzy set's shape depends on the FAM-rule encoding scheme used. Two types of 
encoding techniques widely used are the correlation-minimum encoding and thecorrelation­
product encoding. With correlation-minimum encoding, the consequent fuzzy set Uk in the 
library of the output fuzzy set values is clipped to degree wk with pointwise minimum with : 

mok(y) = wk A muk(y) (12) 

and with correlation-product encoding, we multiply Uk by wk: 

(13) 

where mok(y) is the degree of membership of the activated output fuzzy set at interval yin the 
output universe of discourse. Figure 4 shows an example of how the output is affected when 
(a) correlation-minimum and (b) correlation-product encoding techniques are used. 

In practice, mok(Y) is not unique, the system then combines all of these functions as their union 
to yield the actual output fuzzy membership function, mo(y), following Zadeh's fuzzy union 
association of Eq. (5) such that: 
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mo(y) = mol(y) v mcn(y) v ...... . v mok(y) (14) 

Note that kin this case is not the number of rules, it i however, the quantization of the output 
fuzzy set into its fuzzy ubsets. 

m(x) m(x) 

0 
Consequent x Output X 

(a). Correlation-Minimum Encoding 

m(x) m(x) 

Consequent x Output X 

(b). Correlation-Product Encoding 

Fig. 4: Example of two PAM-inference procedures showing how the output is affected: 
(a). correlation-minimum and (b). correlation-product encoding 

The defuzzified output, i.e. the change in control output u, equals the fuzzy centroid as follows: 

u ~ f ymo(Y) dy 

J mo(Y) dy 
(15) 

where the limits of the integration correspond to the entire universe of discourse Y. 
Alternatively, in order to reduce computation, Y can be discretized to p values at regular 

interval, l!.y, such that, Y = {y1, Y2· ·····Yp} which gives the discrete fuzzy centroid: 

p 
:L y·mo(Y·) 
·-1 J J 

u = J"-------
p 

.:L mo(Yj) 
j=l (16) 
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Another important aspect of fuzzy logic control sy terns, which cannot be overlooked, is that of 
scale factors selection. Like all controllers, a fuzzy logic conu·oller has a number of parameters· 
which must be chosen by the de igner in prior. In the fuzzy controller, there are three scale 
factors, GE, GC, and GU for the process error (E), change in error (C), and the controller's 
output (U), respectively. For clarity, the block diagram shown of Fig. 2 provides some 
indication on the execution of these scale factors in a fuzzy control system. 

The values of error and change in error used by the conu·oller are elements of the corresponding 
universes of discourse which can be represented in time by e(nT) and c(nT) where Tis the 
sampling period and n is the sample number. As these values have to be quantized to the closest 
element of the universe of discourse, they first have to be scaled by multiplying them by a 
suitable value. If the process output and the set-point at the nth sample are x(nT) and S(nT), 
respectively, then e(nT) and c(nT) are obtained from the following equations: 

e(nT) = Q[ { S(nT) - x(nT)} .( -GE)] 

c(nT) = Q[ { x(nT) - x(nT-T)} .( -GC)] 

(17) 

(18) 

Similarly at the output of the fuzzy controller there ult of the fuzzy centroid defuzziflcation 
must be multiplied by a certain value, GU, to calculate the actual change in the process input. 
Thus, if v(nT + T) is the new process input it is given by: 

v(nT+T) = v(nT) + GU.u(nT) (19) 

The selection of these cale factors is akin to the election of the PID controller parameters and 
the user defined polynomials of some adaptive controllers. There have been attempts by some 
researchers proposing systematic approaches on the selection of these scale factors [ 14-16]. 

4. Simulation Example of a Multi-variable Water Bath Process 

In order to show how the concept of fuzzy logic can be applied to the control of processes, a 
simulation example is given in this section on the development and operation of a fuzzy logic 
water bath temperature control system. 

4.1 Development of the Fuzzy Logic Water Bath Control System 

The·water bath is an example of an important component in many industiial chemical process 
control systems and a simple schematic diagram is shown in Fig. 5. It is used to mix liquid 
compounds in the bath and to automatically control the temperature of the mixture at different 
levels as accurately as possible to ensure that the final product is well formed. Solid state relays 
are used to regulate the signals between OV to 5V to the heaters. The temperatures of the 
mixture in the bath are measured using thermocouples in the range of 0°C to l00°C which are 
transformed into corresponding voltage signals in the range of OV to lOV. The sampling time of 
the process is 30 seconds. The process can be modelled in discrete-time as follows: 

where 

A(z-1 }y(k) = B(z-1) u(k-1) +~{k) , k=nT 

A(z-1) =I+AJz-1andAt=[ -0.411 
- 0.103 

B(z-1) = Bo = [ 0.492 
0.041 
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y(k) is the process output, u(k-1) is the control input and F,{k) is the uncorrelated Gaussian 
noise with zero mean and covariance r~. It can be observed that the dynamics of the process is 

coupled in nature. 

ND ..I Sensor I """" 
..... I Computer ...... Mux """ Module 
"' 

,~ 
Heater 1 (-~ 

t) 
Sensor 1 

~ u 0 DIA .... 
9 u Mux ~ "' ·t: 

Heater2 ;;.... 
) Sensor 2 E5 ........... ~ 

Stirrer 

Water bath 

Fig. 5: A schematic diagram of the multivariable waterbath temperature conu·ol system 

In order to develop the fuzzy controller, the input and output variables of the water bath must 
first be specified. The input variables are the performance error, 8, i.e. the error between the 

desired output and the actual plant output, and the rate of change of the performance error 8· 
However, in the experiments, the instantaneous rate of change of error can be approximated as 

the difference between the present error 8k and the previous error 8k-l, such that 

The output or the control fuzzy variable is the voltage signal to the heater, v, where the range of 
the voltage is between OV and 5V as described. 

We quantized the three fuzzy variables into seven fuzzy subsets as shown in Table 1 from 
negative large (LN) to zero (ZE) to positive large (LP). In practice these quantizations can be 
expanded according to the complexity of the control problem. For clarity the FAM-rules i.e. the 
conditional statements which describe the control actions of the process can be specified in 
matrix form as shown in Fig. 6. The antecedents are the conditions of the error and change in 
error in the process (given on the two axes) whereas the consequent is the amount of change in 
the control input to be applied (given in each box in the matrix). Common sense and 
engineering judgement dictate the entries in the water bath F AM bank matrix where a total of 24 
rules are formulated (see Appendix 1). 
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LN Large Negative 

MN Medium Negative 

SN Small Negative 

ZE Zero 

SP Small Positive 

MP Medium Positive 

LP Large Positive 

Table 1: Fuzzy set values for the three fuzzy variables 
of the water bath control system 

Each bank in the matrix constitute one FAM association or rule. Each rule describes how to 

modify the control variable v for observed values of the water bath input fuzzy variables 8 and 

118 . As an example, we.can interpret F AM rule no. 7 in natural language as follows: 

If the error 8 in the water temperature is negative and large, and the rate of change of the 
error .1. 8 is about zero, then the heater v should be on positive and large. 

or it can be expressed symbolically as follows: 

IF 8 = LN AND .1. 8 = ZE , 1HEN v = LP 

or more compactly, the triple: 

(LN, ZE; LP). 

Note that it is not necessary to fill up all the FAM banks. In general, some rules can be omitted 
and added according to the complexity of the control problem. 
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E e rror, 

LN MN SN ZE SP MP LP 

1 2 3 4 
LN LP LP LP LP 

5 8 9 10 
MN LP MP MP MP 

6 11 13 14 17 
SN LP MP SP SP SN 

7 12 15 16 18 21 23 
ZE LP MP SP ZE SN MN LN 

19 20 
SP SN SN 

22 
MP MN 

24 
LP LN 

Fig. 6: The FAM bank matrix for the multivariable water bath system. The antecedents are 
the error and change in error and the consequent of each rule is given in the box. 

We chose triangular and trapezoidal membership functions for the fuzzy subsets of the three 
fuzzy variables as shown in Fig. 7. It can be observed that the ZE (zero) fuzzy subset of the 
three fuzzy variables are narrower to permit fine control near the setpoints. For simplicity, we 
may use the same shape for all the membership functions of the fuzzy subsets where they 
correspond to shifted versions of a single fuzzy set ZE. Using heuristic rules, the contiguous 
fuzzy subsets in each library overlapped about 25 per cent. Too much overlap blurs the 
distinction between the fuzzy-set values. Too little overlap tends to resemble bivalent control, 
producing excessive overshoot and undershoot. In reality, the overlap helps smooth the 
transition of the control action during the operation of the controller. 

Correlation-minimum encoding technique is used for the inference procedure of the fuzzy logic 
water bath control system.The discrete fuzzy centroid defuzzification procedure is used to 
defuzzify the fuzzy control outputs into real values. 

4. 2 Fuzzy Controller Implementation 

In this simulation, we wish to control the temperature of the water at two different levels in the 
bath: upper level and lower level. The set-points for the 100-sample duration experiment are 
given as follows: 

Water Bath I..ev~l Sample Numb~r Set-pQints 
Upper level ~n~50 50°C 

50< n ~100 70°C 

Lower level 0~ n ~50 45°C 

50< n ~100 65°C 
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By simple trial and error procedure, we select the scaling parameters for the levels as follows: 

Upper level: GE = 0.14 GC = 0.62 GU = 4.0 

Lower level: GE = 0.12 GC = 0.66 GU = 4.0 

These values can be fined tuned by performing several experiments to obtain the optimum 
performance of the system. 

-3 

-9 -6 -3 0 3 6 9 X 

mu(x) 

1.0 

-3 -2 -1 0 2 3 X 

Fig.7: Membership functions of the three fuzzy variables of the water bath system. It can be 
observed that when the quantized error equals -4.2 on the universe of discourse, it is a 
member of two fuzzy subsets, i.e. MN and SN. 

To descibe in more detail the operation of the fuzzy controller, we observe at what happens 
during the first sampling instant. For brevity only the upper level control is described. The first 
setpoint of the upper level is given at 500C therefqre as the initial temperature of the water in the 
bath is 200C, a large process error is present. The fuzzy controller operates by inferencing the 
quantized values of the process error and change in error to compute the change in the process 
input. The error and change in error are quantized into their corresponding universes of 
discourse by multiplying the pre-selected respective scale factors following Eqns. (17) and 
(18). Thus at the first sampling instant (for simplicity we omit the sampling period, T): 

e(l) = (50-20) x (-0.14) = -4.2 c(l) = (30-0) x (-0.62) = -18.6 
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From Fig. 7 it can be observed that e( 1) is a member of two fuzzy subset-;, i.e. MN and SN and 
their membership values are: 

meMN( -4.2) = 0.4 and mesN< -4.2) = 0.6 

whereas c(l) is clearly a member of the LN fuzzy subset: 

mcLN(-18.6) = 1.0. 

From these inferred values, it is understood that only two rules in the rules database are 
executed: 

Rule 2: (MN, LN; LP) 

Rule 3: (SN, LN; LP) 

The rest of the 22 rules are not executed as one or both of their antecedents has zero 
membership values. Now we look at what happens when the rules are executed; the consequent 
weight LP is thus given· a value which is the intersection or the minimum of the two antecedents 
fuzzy values: 

Rule 2: LP = min (0.4, 1.0) = 0.4 

and for Rule 3, 

Rule 2: LP = min (0.6, 1.0) = 0.6. 

From the execution of these two rules, it is obvious that the consequent weight LP is activated 
but with two fuzzy values. The actual LP fuzzy value that is stored depends on the arrangement 
of the rules in the rules database. In this particular example as Rule 3 is arranged after Rule 2 
(see Appendix I), therefore the value of LP equaled to 0.6 instead of 0.4 is stored as the 
consequent weight. This arrangement of rules in the database is trivial and does not affect the 
final computed defuzzified output. 

This consequent weight LP is then associated with the output fuzzy set through correlation­
minimum encoding. This procedure is however not straightforward. Using the discrete fuzzy· 
centroid defuzzification algorithm (see Appendix ill), the output universe of discourse is first 

divided into equal interval!ly as discussed in Section 3, i.e., in this case: 

y = { 4.0, 3.75, 3.5, 3.25, ..... , -4.0} where ily = 0.25. 

At each discrete interval along the output universe of discourse, correlation-minimum encoding 
clipped the output fuzzy set to degree 0.6 (LP) with pointwise minimum following Eq. (12). 
Several examples of these values are computed as follows: 
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mo(4.00) =min (0.6, 0 .00) = 0.00 

mo(3.75) = min (0.6. 0 .25) = 0.25 

mo(3.50) = min (0.6, 0.50) = 0.50 

mo(3.25) =min (0.6, 0.75) = 0.60 

mo(3.00) = min (0.6, 1.00) = 0.60 

mo(2.75) =min (0.6, 0.75) = 0.60 

mo(2.50) = min (0.6, 0.50) = 0.50 

In this example, th~ consequent LP is unique. In cases where the consequent weights are not 
unique (as in the 2nd, 3rd, etc. sampling instants - see Table 2), these output<; are combined 
using the fuzzy union a sociation to yield the actual fuzzy membership output at each interval y 
following Eq. (14). 

The defuzzified output for the 1st sampling instant is then computed following Eq. (16): 

U = 4.0 X 0 + 3.75 X 0.25 + 3.5 X 0.5 + .. .... ... _ ...2..2_ = 
0 + 0.25 + 0.5 + .......... - 3.3 

3.0 

Therefore, from Eq.(19) the actual controller output is: 

v(l) = 0 + 3.0x4.0 = 12.0V 

As the maximum signal to the thyristor is 5.0V, this value is clipped to 5.0V maximum. The 
value v is clipped according to the following constraints: 

if v 2! 5.0 then v = 5.0V 

if v ~ 0.0 then v = O.OV 

else v = v(nT) 

The whole process is repeated for the lower level waterbath control and also for the subsequent 
samples. 

Table 2 shows an example of rules and consequent weights which are activated for the upper 
level waterbath control for several sampling instants. It can be observed that the consequent 
weights are activated at different degrees at each sampling instant over the entire experimental 
cycle. For example at the 8th sample, the consequent weight is more of SP and around steady 
state, at the 49th sample, the consequent weight is a strong ZE fuzzy subset. Figure 8 shows 
the performance of the fuzzy controller on the water bath over the entire cycle. 

In many real-time applications this entire FAMhnference procedure is repeated hundred$. 
perhaps thousands, of times per second. This may require fuzzy VLSI or optical processors for 
parallel processing where the fuzzy controller can operate at very fast speed. The application of 
fuzzy control using a microcomputer to a real-time water bath process with comparison to a 
conventional PI controller can be found in [17]. It was observed that the fuzzy logic based 
water bath system performed better than the conventional PI water bath system with respect to 
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set-point changes, load disturbance rejection, changes in deadtime and the dynamics of the. 
process. 

Quantized Consequents 
Scaled 

Quantized change in Rules Defuzzified 
error, e(nT) en·or, c(nT) Executed Activated Output, v(nT) 

1 -4.2 -18.0 2,3 LP=0.6 5.0 

MP=0.35R 

2 -4.074 0.558 12,15,19 SP=0.642 5.0 
SN=O. JR6 

SP=0.567 

8 -2.189 1.006 15,16,19,20 ZE=0.05lJ 5.0 
SN=0.05t! 

SP=0.13lJ 

16 -0.417 0.921 15,16,19,20 ZE=0.604 3.57 
SN=0.307 

SP=O.OOI 
32 -0.003 -0.002 13,14,15,16 Z£=0.999 1.33 

49 0.0 0.0 15,16,19,20 ZE=l.O 1.33 

50 -2.8 -12.4 3 LP=0.933 5.0 

Table 2: Some examples of rules and consequent weights which are activated 
at various sampling instants for the upper level water bath control. 

5 . Concluding Remarks 

Fuzzy logic controllers offer a key advantage over many traditional controllers. They can be 
developed along linguistic lines where human intelligence and common sense engineering 
judgement can play an important role. Similar to human operators, fuzzy logic controllers do 
not need precise prior information for implementation as much as that desired of algebraic 
controllers. Many complex industrial processes are ill-defined and difficult to be modeled 
accurately. Fuzzy logic controllers do not need mathematical models of plants in order to be 
implemented where such information is a prior necessity for many traditional adaptive 
controllers (see [18]). 

Compared to neural network controllers, basic fuzzy logic controllers do not need to be trained 
in prior. We have also compared a neural network controller to that of a basic fuzzy logic 
controller with application to a real-time water bath temperature control system [19]. It was 
found that the fuzzy controller performed just as w~ll and furthermore it offers the advantage of 
simpler implementation. In addition the fuzzy controller is computationally lighter than neural 
network and many traditional adaptive controllers. Most computational operations only involved 
comparing and adding two real numbers. 

This paper has been written with the intention of providing detail explanation on the 
development and application of basic fuzzy logic control. Some basic concepts of fuzzy sets and 
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systems theory have also been discussed. The state of the art research in fuzzy logic control is 
the development of adaptive fuzzy control systems which can compose and decompose the rules 
automatically. Some examples of these adaptive fuzzy control systems can be found in [ 12, 13, 
15 and 20]. 

Is the technology of fuz~y logic more of just a fad which will soon disappear? The answer is no 
and Japan has made sure of that. Today, perhaps unconciously (concious enough to the 
intellectuals but maybe unconcious to the laymen) we are already making use of equipments and 
domestic products that use the technology of fuzzy logic. 
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Appendix I 

/*Fuzzy Associations or Rules*/ 
void cont_rule( erTor,change_enor ,consq) 
tloat error,change_error; 
RULE *consq; 

/*Rule#1 */ 

/*Rule#2*/ 

/*Rule#3*/ 

/*Rule#4*/ 

/*Rule#5*/ 

/*Rule#6*/ 

/*Rule#?*/ 

/*Rule#8*/ 

/*Rule#9*/ 

/*Rule#lO*/ 

/*Rule#ll */ 

/*Rule#l2*/ 

/*Rule#l3*/ 

/*Rule#l4*/ 

/*Rule#15*/ 

/*Rule#l6*/ 

/*Rule#l7*/ 

if(rule1(en·or,1,LN1)!=0.0 && rule2(change_erTor, 1 ,LN2)!=0.0) 
consq->LP=min(rule1 (error, 1 ,LN l),rule2(change_erTor, 1 ,LN2)); 

if(rulel(error,2,MN1)!=0.0 && rule2(change_error,l,LN2)!=0.0) 
consq->LP=min(rulel(etTor,2,MNl),rule2(change_enor,l,LN2)); 

if(rulel(error,2,SN1)!=0.0 && rule2(change_error,l ,LN2) !=0.0) 
consq->LP=min(rule 1 (error,2,SN1 ),rule2(change_error, 1 ,LN2)); 

if(rulel(error,3,ZE1) !=0.0 && rule2(change_error,l ,LN2)!=<U>) 
consq->LP=min(rulel(error,3,ZE1),rule2(change_error,1,LN2)); 

if(rulel(error,1,LN1)!=0.0 && rule2(change_error,2,MN2)!=0.0) 
consq->LP=min(rulel (enor,l ,LN l),rule2(change_error ,2,MN2)); 

if(rulel(error,l,LNl) !=0.0 && rule2(change_error,2,SN2) !=0.0) 
consq->LP=min(rulel(error,l,LN1),rule2(change_error,2,SN2)); 

if(rulel(error,l,LNl)!=O.O && rule2(change_error,3,ZE2)!=0.0) 
consq->LP=min(rulel(error,l,LNl),rule2(change_erTor,3,ZE2)); 

if(rulel ( error,2,MN1) !=0.0 && rule2( change_error,2,MN2) !=0.0) 
consq->MP=min(rulel(error,2,MN1),rule2(change_error,2,MN2)); 

if(rulel (error,2,SN1) !=0.0 && rule2(change_error,2,MN2) !=0.0) 
consq->MP=min(rulel(error,2,SNl),rule2(change_error,2,MN2)); 

if(rulel(error,3,ZE1)!=0.0 && rule2(change_error,2,MN2)!=0.0) 
consq->MP=min(rulel(error,3,ZE1),rule2(chang~_error,2,MN2)); 

if(rulel(error,2,MN1) !=0.0 && rule2(change_error,2,SN2)!=0.0) 
consq->MP=min(rulel(error,2,MNl),rule2(change_enor,2,SN2)); 

if(rulel(error,2,MN1)!=0.0 && rule2(change_erTor,3,ZE2) !=0.0) 
consq->MP=min(rulel(error,2,MN1),rule2(change_error,3,ZE2)); 

if(rulel(error,2,SN1)!=0.0 && rule2(change_error,2,SN2)!=0.0) 
consq->SP=min(rulel(error,2,SNl),rule2(change_error,2,SN2)); 

if(rulel(enor,3,ZE1)!=0.0 && rule2(change_error,2,SN2)!=0.0) 
consq->SP=min(rulel(error,3,ZE1),rule2(change_error,2,SN2)); 

if(rulel (error,2,SN1) !=0.0 && rule2(change_error,3,ZE2) !=0.0) 
consq->SP=min(rulel(errot,2,SN1),rule2(change_error,3,ZE2)); 

if(rulel(error,3,ZE1)!=0.0 && rule2(change_erTor,3,ZE2)!=<Hl) 
consq->ZE=min(rulel(error,3,ZE1),rule2(change_enor,3_,ZE2)); 

if(rulel (error,2,SP1) !=0.0 && rule2(ch~nge_error,2,SN2) !=0.0) 
consq->SN=min(rule 1 ( error,2,SP1 ),rule2( change_error ,2,SN2)); 
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/*Rule#18*/ 

/*Rule#19*/ 

/*Rule#20*/ 

/*Rule#21 */ 

/*Rule#22*/ 

/*Rule#23*/ 

/*Rule#24*/ 

if(rule1 (eiTOr,2,SP 1) !=0.0 && rule2(change_eiTorJ,ZE2) !=0.0) 
consq->SN=min(rule 1 (etTor ,2,SP 1 ),rule2( change_eiTOr,3,ZE2) ); 

if(rulel (error,2,SN1) !=0.0 && rule2(change_error,2,SP2) !=0.0) 
consq->SN=min(rule 1 (error,2,SN 1 ),rule2( change_error,2,SP2) ); 

if(rulel (error,3,ZE1) !=0.0 && rule2(change_error,2,SP2) !=0.0) 
consq->SN=min(rulel (error,3,ZEI),rule2(change_error,2,SP2)); 

if(rulel(error,2,MP1) !=0.0 && rule2(change_error,3,ZE2) !=<l.O) 
consq->MN=min(rule l (error,2,MP l),rule2(change_error,3,ZE2)); 

if(rulel (error,3,ZE 1) !=0.0 && rule2(change_error,2,MP2) !=0.<>) 
consq->MN=min(rulel ( error,3,ZE 1 ),rule2( change_error,2,M P2)); 

if(rulel(error,4,LP 1)!=0.0 && rule2(change_error,3,ZE2) !=0.0) 
consq->LN=min(rulel(error,4,LPl),rule2(change_eiTOr,3,ZE2)); 

if(rule1 (error,3,ZE1) !=0.0 && rule2(change_error, 1 ,LP2) !=0.<>) 
consq->LN=min(rulel (error,3,ZEl),rule2(change_eiTOr, l ,LP2)); 
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Appendix II 

/*Membership Function of Error Fuzzy Vaiiable*/ 
tloat rule 1 (error ,flag,cen tre) 
t1oat error ,centre; 
int flag; 

tloat 
switch(flag) 
{ 
/*For LNl */ 

wgt; 

case 1: if(error<=LNl)wgt =1.0; 
else wgt=max((2.0/6.0)*(-fabs(error-centre)+6.0/2.0),0); 
retum(wgt); 

/*For MNl,SNl,SPl,MPl */ 

/*ZEl */ 

/*For LPl */ 

case 2: wgt=max((2.0/6.0)*( -fabs(error-centre)+6.0/2.0),0); 
return(wgt); 

case 3: 

case 4: 

wgt=max( (2.0/4.5)*(-fabs(error-centre )+4.5/2. 0) ,0); 
return(wgt); 

if(error>=LPl)wgt =1.0; 
else wgt=max((2.0/6.0)*(-fabs(error-centre)+6.0/2.0),0); 
return(wgt); 
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Apendix Ill 

/*Fuzzy Centroid Defuzzification*/ 
float centroid(consq) 
RULE *consq; 

tloat w,x,mo_t,mo_b, rule3(); 
mo_t = mo_b = 0.0; 

for(x=4.0;x<=-4;x+=0.25) 

if(consq->LP!=O.O) 
if( consq->MP!=O.O) 
if(consq->SP!=O.O) 
if(consq->ZE!=O.O) 
if(consq->SN!=O.O) 
if(consq->MN!=O.O) 
if(consq->LN!=O.O) 

mo_b+= w; 
mo_t += w * x; 

return(mo_t/mo_b); 

w=min(consq->LP,rule3(x,2,LP3)); 
w=max(w,min(consq->MP,rule3(x,2,MP3)); 
w=max(w,min(consq->SP,rule3(x,2,SP3)); 
w=max(w,min(consq->ZE,rule3(x,3,ZE3)); 
w=max(w,min(consq->SN,rule3(x,2,SN3)); 
w=max(w,min(consq->MN,rule3(x,2,MN3)); 
w=max(w,min(consq->LN,rule3(x,2,LN3)); 
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