
Jurnal Teknologi, bil. 23, JIHl 1994 hlm. 15 - 26
@Universiti Teknologi Malaysia

ON THE SUITABILITY
OF SEQUENTIAL PROGRAMMING LANGUAGES

BADRI ABU BAKAR
Dept. of Control Engineering

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

Jalan Semarak, 54100 Kuala Lumpur, Malaysia
E-mail: badri@fkeserv.fke.utm.my

Abstract. In designing sequential control systems, the programming language plays
an important role for the &uccess of system implementation. A Programmable Logic
Controller (PLC) is normally equipped with several languages like Relay Ladder Logic,
Statement List and others. Petn nets, Rule-based and State Transition methods are
the language of future PLCs. The paper evaluates the performance of these languages
especially for a system which exhibits a pattsrn in its operation. This is done on a
case study based on a trainset problem with multipl~engine on the same track. It will
demonstrate the strengths and weaknesses of each teclm.i.que and it will serve as a basis
of favouring one or the other for certain applications in a sequential control system.

Through this paper, we can see various techniques on the problem to show that
each technique has its own strengths and weaknesses. In a complex operation with a
pattern, the rul~based technique is the well-suited technique. Similarly, if the system
uses complementaries and needs P-xception handling rul~based is the best technique to
be employed. Unlike Petri nets, State Transition Matrix (STM), ladder logic and others,
the rul~based technique does not relate to dimensionality of the problem and therefore
system growth and modification is easily coped with. The Petri net technique is very
good at parallel subsequences but falls down when much branching and inverse places of
action are needed in the system. STM on the other hand is good at much branching and
&iving system options clearly and unambiguously so long as the matrix is manageable.
The STM technique becomes less helpful when the matrix grows. Although both Petri
nets and STM are easily understood and readily communicable, their solutions are
implementation specific; system changes and annexation would mean r~programming
almost from scratch.

Various functions have certain peculiarities that make them unsuitable to be pro­
grammed in a particular method. Therefore, the choice of a technique suitable for a
particular problem is still the best method of designing sequential control applications.
Failure to program these operations with the most suitable technique will result in
a difficult and awkward solution with the consequent penalty associated with undue
complexity in tefll?-S of error-checking and implementation.

1 INTRODUCTION
In designing sequential control systems, the programming language plays an important role
and it is vital to the success of system implementation. In this respect, a PLC - a controller
for sequential systems - is normally equipped with several languages for specifying and
implementing sequences; the most popular one is the Relay Ladder Logic (RLL) (Bait [2]).

Typeset by A.,MS-'!EX

16 BADRI ABU BAKAR

It is said that RLL is a good technique for short and straightforward sequences, and copes
very poorly for parallel subsequences. The technique tends to lump all the functions into
big and lengthy codes without any proper organizational structure. A technique called
Petri net, on the other hand, is good at parallel subsequences. Since the technique supports
topological and hierarchical structures, the technique is very useful for partitioning control
functions, but the solution is rather clumsy for systems with much branching of states.
Another method called State Transition Matrix (STM) however tends to complement the
Petri net in this situation, but again the matrix grows very quickly with the number of
possible markings in the Petri net (Henry et al [4]). Although both methods are easily
understood and readily communicable in many situations, -their solutions, including ladder
logic, are implementation specific; system changes would mean re-programming almost from
scratch. A method called rule-based technique on the other hand can.easily be modified to
work on a bigger scale and is simple enough to be realized with any high level language on
computers (Badri [1]).

This paper is an attempt to ascertain the above notion especially for a system which
exhibits a pattern in its operation. Here, a comparison is made in order to assess their
performance against a case study based on a trainset problem with multiple-engine on the
same track. This, at once, will demonstrate the strengths and weaknesses of each tecpnique
on this particular example and it will serve as a basis of favouring one or the other for
certain applications in a sequential control system.

2 TWO ENGINE PROBLEM ON THE SAME TRACK
The running of two engines on the same loop of a track such that one does not run into
the other is an interesting example (Geur [3]). Tl-u~ ideas used in this example can be
extrapolated to include three or more engines. Obviously, without any control one engine
will go faster than the other and there will be a collision. Th overcome this a technique has
to be dev:ised. The track is split into eight sections electrically isolated from each other but
still forming a loop. See Figure 1. To detect the passage of an engine over a given point on
the track, reed switches are planted between the rails and a small magnet fixed under each
.engine. The switch will close for a moment as the engine passes over and it is recognized
that there is a need to 'de-bounce' contacts. In this example the track sections are left
unpowered. A particular track section is powered as needed.

F 7 G 8 H

E A

3
D c 8

Fig. 1 8 track sections with 8 switches

For the proper running of the two engines, there must be a length of unpowered track
between each of the engines at least one track section long. At the end of each section an

ON THE SUITABILITY OF SEQUENTIAL PROGRAMMING LANGUAGES 17

engine will be able to proceed providing the next section is available to be powered i.e. not
immediately behind the other engine.

For only one engine on the track, no waiting is ever required. But for the two engine
problem, it calls for a consideration. When an engine passes over a switch, there will be
two possibilities :
i) the next track section is available, the power is switched on to this section and the train

moves smoothly from one track section to the next.
ii) the next section is not available, power will not be switched to the next track section.

The engine will run from the powered track section to the unpowered track section and
stop.
This means that there is a need to 'remember' that the engine is waiting for power to

be put on the next track section i.e. 'remembering' that the engine has passed the detector
at the end of the previous track section. This calls for an extra state which is switched on
when the engine goes over a reed switch and reset when power is switched unto the next
track section. Now, we want to see how all the techniques solve this problem for us.

3 LADDER LOGIC IMPLEMENTATION
For the above trainset operation, the ladder logic solution for one engine problem is as
shown in Figure 2. Note that the INIT is necessary for the system to start. For ·the two
engine problem, we need to remember that the engine has passed the detector at the end of
the previous track section is implemented using an extra rung. This is as depicted in Figure
3. To power the track section 2, switch A sets state AA; when track section 4 is clear,
AA powers track section 2 and resets AA. Consequently, it leaves two clear track sections
between the engines. The complete solution to the two engine problem is given in Figure
4. Note that, to start with, two pairs of track sections are energized i.e. 1 & 8 and 4 & 5.

-w:
1

A

•
•
:II

c

•
D

II

E_j

•
F

7

0

•

Fig. 2 The ladder logic solution of 1-engine problem

18 BADRl ABU BAKAR

Fig. 3 Using an extra rung to implement a wait state

Fig. 4 The ladder logic solution of the 2-engine problem

Looking at these programs of ladder logic, the solutions are not too difficult. The method
of realization is rather intuitive, but one can sense a pattern by looking at the solution. We
would say the ladder logic solution works well for this example and therefore is not ill-suited
to the problem.

ON THE SUITABILITY OF SEQUENTIAL PROGRAMMING LANGUAGES 19

4 STATE TRANSITION MATRIX SOLUTION
The STM solution calls for a new thought on the problem. There are 8 track sections where
the first engine can be. The second engine cannot be on the same section, nor on the two
sections immediately in front or behind. That leaves only 3 possible track sections for the
second engine. However, there is a need to latch reed switches when the engine passes over
and waits for the next track section to be available. If we do not distinguish between the
first and the second engines, there will be (8 x 3/2) + 8 = 20 possible states in the matrix.

A variation to the above solution would be to have only one section between the engines
which leaves 5 possible track sections for the second engine. This gives rise to (8 x 5/2) +
8 = 28 possible states in the matrix. The solution is as depicted in Figure 5. On close
observation, we can detect some form of a pattern in the solution, but it is not clear.

INPUT SWITCf-ES

A 1 a 0 I H I
""""iii .., 1 ..

1M 2 .. 1.,,..... ,., 1a,....- za Ul1

1., z• WI

2M ""' z• ,., ;ae 2.
2M - z•
z• 3lfT ~-
2a - ...
;ae 'IIQ -- ... 3lfT

~ ,.., ----- ... 3&1

--- .. ----- 5111 ...
--- - 'f&1 ,.,.. ... -

.. 5&1 11&1

--;;- 2 ..

""' -'IIQ 5111 ... -... 7&1
r-;;- -f-;e lCI

Fig. 5 The STM solution for the 2-3 engine problem

With one clear section between the engines and differentiating between the two engines,
there will be (8 x 5) + 8 x 2 wait states equals 56 possible states. This result includes all
the possible combinations of both engines. Therefore, a matrix of 56 by 8 is the complete
solution to the problem and it is depicted in Figures 6 and 7. Figure 7 shows the wait states
solution. This matrix shows a pattern more clearly than before.

Close observation reveals that both solutions show a pattern, but the pattern of the 56
state version is easier to follow and check as compared. with the 28 state version. Although

22 BADRI ABU BAKAR

H

Fig. 9 The complete petri net solution of the 2-engine problem

addition or modification, means re-programming. o two similar applications produce alike
solutions that can be re-usable.

However, the idea of repeated patterns in all the above solutions, including the STM
versions, could be programmed on the computer or PLC itself. Once a pattern is created
and loaded into the computer, it should be possible to g nerate the rest automatically.
Surely, this way is more reliable than doing it manually. For instance, the Petri net in
Figure 9 above could be generated automatically from Figure 8 by the computer.

6 RULE-BASED SOLUTION
We now examine how the rule-based technique works on this example of two engines on the
loop track. Generally, in using rule-based technique one has to formulate the rules needed
in an operation. More frequently than not, these rules come through the deliberations of
questions and answers as to how the sy tern operates. In this particular example, when the
engine arrives at the end of any track section, say i, only one question is asked. Can it
proceed to the next section, i+ 1? The answer to this is that it can only proceed if the track
in front, i+2, is tmpowered, otherwise the engin has to wait until the track is free. This
rule is applied for every track section ag&in and again for the system to operate successfully:

Tllis rule governs any number of track sections used in the system and works for any

ON THE SUITABILITY OF SEQUENTIAL PROGR,AMMING LANGUAGES 23

number of engines on the track. Thus, system expansion has no effect to the implementation
of this rule and only the-subscripts of the track sections have to be taken care of during
operation.

For clarity of presentation, we shall assume:

(1) (i) a main program to supply the switch number to the interrupt subroutine handling
the rule

(2) (ii) infinite track length. The problem of 'wrap-around' will be dealt later.

On encountering the switch at the end of any track section, the rule is : IF (the track
section after the next section ahead is not powered) THEN (powe,;i the next section and
unpower the section behind) ELSE (wait for input switch at the efld of the third section
ahead). IF (this switch is activated) THEN (power the next section ·and unpower the section
behind).

The implementation of the first part of the above rule is straightforward; the second
part is better coped with by leaving a message, i.e. setting a flag to wait for an event.
On collecting the message, the control proceeds with powering and unpowering app~opriate
sections.

Interrupt subroutine RAILl(N)
LOGICAL TRACK(M),WAIT(M),ON,OFF
rem M= number of track sections - infinite
ON= .TRUE.:OFF= .FALSE.

IF .NOT.TRACK(N+2) THEN

ELSE
END IF
IF WAIT(N) THEN

ENDIF:RETI

TRACK(N+l)=ON:
TRACK(N-l)=OFF:
WAIT(N+3)=0N:

WAIT(N)=O FF:
TRACK(N-2)=0J:'i:
TRACK(N-4)=0FF:

N.B. : Track section ON means it is powered and OFF unpowered.

However, the above routine is built on the assumption that there are just two engines.
The routine could be made more general by removing this assumption to give a routine
which could easily cope with any number of engines.

