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Abstract. In designing sequential control systems, the programming language plays 
an important role for the &uccess of system implementation. A Programmable Logic 
Controller (PLC) is normally equipped with several languages like Relay Ladder Logic, 
Statement List and others. Petn nets, Rule-based and State Transition methods are 
the language of future PLCs. The paper evaluates the performance of these languages 
especially for a system which exhibits a pattsrn in its operation. This is done on a 
case study based on a trainset problem with multipl~engine on the same track. It will 
demonstrate the strengths and weaknesses of each teclm.i.que and it will serve as a basis 
of favouring one or the other for certain applications in a sequential control system. 

Through this paper, we can see various techniques on the problem to show that 
each technique has its own strengths and weaknesses. In a complex operation with a 
pattern, the rul~based technique is the well-suited technique. Similarly, if the system 
uses complementaries and needs P-xception handling rul~based is the best technique to 
be employed. Unlike Petri nets, State Transition Matrix (STM), ladder logic and others, 
the rul~based technique does not relate to dimensionality of the problem and therefore 
system growth and modification is easily coped with. The Petri net technique is very 
good at parallel subsequences but falls down when much branching and inverse places of 
action are needed in the system. STM on the other hand is good at much branching and 
&iving system options clearly and unambiguously so long as the matrix is manageable. 
The STM technique becomes less helpful when the matrix grows. Although both Petri 
nets and STM are easily understood and readily communicable, their solutions are 
implementation specific; system changes and annexation would mean r~programming 
almost from scratch. 

Various functions have certain peculiarities that make them unsuitable to be pro­
grammed in a particular method. Therefore, the choice of a technique suitable for a 
particular problem is still the best method of designing sequential control applications. 
Failure to program these operations with the most suitable technique will result in 
a difficult and awkward solution with the consequent penalty associated with undue 
complexity in tefll?-S of error-checking and implementation. 

1 INTRODUCTION 
In designing sequential control systems, the programming language plays an important role 
and it is vital to the success of system implementation. In this respect, a PLC - a controller 
for sequential systems - is normally equipped with several languages for specifying and 
implementing sequences; the most popular one is the Relay Ladder Logic (RLL) (Bait [2]). 
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It is said that RLL is a good technique for short and straightforward sequences, and copes 
very poorly for parallel subsequences. The technique tends to lump all the functions into 
big and lengthy codes without any proper organizational structure. A technique called 
Petri net, on the other hand, is good at parallel subsequences. Since the technique supports 
topological and hierarchical structures, the technique is very useful for partitioning control 
functions, but the solution is rather clumsy for systems with much branching of states. 
Another method called State Transition Matrix (STM) however tends to complement the 
Petri net in this situation, but again the matrix grows very quickly with the number of 
possible markings in the Petri net (Henry et al [4]). Although both methods are easily 
understood and readily communicable in many situations, -their solutions, including ladder 
logic, are implementation specific; system changes would mean re-programming almost from 
scratch. A method called rule-based technique on the other hand can.easily be modified to 
work on a bigger scale and is simple enough to be realized with any high level language on 
computers (Badri [1]). 

This paper is an attempt to ascertain the above notion especially for a system which 
exhibits a pattern in its operation. Here, a comparison is made in order to assess their 
performance against a case study based on a trainset problem with multiple-engine on the 
same track. This, at once, will demonstrate the strengths and weaknesses of each tecpnique 
on this particular example and it will serve as a basis of favouring one or the other for 
certain applications in a sequential control system. 

2 TWO ENGINE PROBLEM ON THE SAME TRACK 
The running of two engines on the same loop of a track such that one does not run into 
the other is an interesting example (Geur [3]). Tl-u~ ideas used in this example can be 
extrapolated to include three or more engines. Obviously, without any control one engine 
will go faster than the other and there will be a collision. Th overcome this a technique has 
to be dev:ised. The track is split into eight sections electrically isolated from each other but 
still forming a loop. See Figure 1. To detect the passage of an engine over a given point on 
the track, reed switches are planted between the rails and a small magnet fixed under each 
.engine. The switch will close for a moment as the engine passes over and it is recognized 
that there is a need to 'de-bounce' contacts. In this example the track sections are left 
unpowered. A particular track section is powered as needed. 
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Fig. 1 8 track sections with 8 switches 

For the proper running of the two engines, there must be a length of unpowered track 
between each of the engines at least one track section long. At the end of each section an 
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engine will be able to proceed providing the next section is available to be powered i.e. not 
immediately behind the other engine. 

For only one engine on the track, no waiting is ever required. But for the two engine 
problem, it calls for a consideration. When an engine passes over a switch, there will be 
two possibilities : 
i) the next track section is available, the power is switched on to this section and the train 

moves smoothly from one track section to the next. 
ii) the next section is not available, power will not be switched to the next track section. 

The engine will run from the powered track section to the unpowered track section and 
stop. 
This means that there is a need to 'remember' that the engine is waiting for power to 

be put on the next track section i.e. 'remembering' that the engine has passed the detector 
at the end of the previous track section. This calls for an extra state which is switched on 
when the engine goes over a reed switch and reset when power is switched unto the next 
track section. Now, we want to see how all the techniques solve this problem for us. 

3 LADDER LOGIC IMPLEMENTATION 
For the above trainset operation, the ladder logic solution for one engine problem is as 
shown in Figure 2. Note that the INIT is necessary for the system to start. For ·the two 
engine problem, we need to remember that the engine has passed the detector at the end of 
the previous track section is implemented using an extra rung. This is as depicted in Figure 
3. To power the track section 2, switch A sets state AA; when track section 4 is clear, 
AA powers track section 2 and resets AA. Consequently, it leaves two clear track sections 
between the engines. The complete solution to the two engine problem is given in Figure 
4. Note that, to start with, two pairs of track sections are energized i.e. 1 & 8 and 4 & 5. 

-w: 
1 

A 

• 
• 
:II 

c 

• 
D 

II 

E_j 

• 
F 

7 

0 

• 

Fig. 2 The ladder logic solution of 1-engine problem 
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Fig. 3 Using an extra rung to implement a wait state 

Fig. 4 The ladder logic solution of the 2-engine problem 

Looking at these programs of ladder logic, the solutions are not too difficult. The method 
of realization is rather intuitive, but one can sense a pattern by looking at the solution. We 
would say the ladder logic solution works well for this example and therefore is not ill-suited 
to the problem. 
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4 STATE TRANSITION MATRIX SOLUTION 
The STM solution calls for a new thought on the problem. There are 8 track sections where 
the first engine can be. The second engine cannot be on the same section, nor on the two 
sections immediately in front or behind. That leaves only 3 possible track sections for the 
second engine. However, there is a need to latch reed switches when the engine passes over 
and waits for the next track section to be available. If we do not distinguish between the 
first and the second engines, there will be (8 x 3/2) + 8 = 20 possible states in the matrix. 

A variation to the above solution would be to have only one section between the engines 
which leaves 5 possible track sections for the second engine. This gives rise to (8 x 5/2) + 
8 = 28 possible states in the matrix. The solution is as depicted in Figure 5. On close 
observation, we can detect some form of a pattern in the solution, but it is not clear. 
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Fig. 5 The STM solution for the 2-3 engine problem 

With one clear section between the engines and differentiating between the two engines, 
there will be (8 x 5) + 8 x 2 wait states equals 56 possible states. This result includes all 
the possible combinations of both engines. Therefore, a matrix of 56 by 8 is the complete 
solution to the problem and it is depicted in Figures 6 and 7. Figure 7 shows the wait states 
solution. This matrix shows a pattern more clearly than before. 

Close observation reveals that both solutions show a pattern, but the pattern of the 56 
state version is easier to follow and check as compared. with the 28 state version. Although 
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Fig. 9 The complete petri net solution of the 2-engine problem 

addition or modification, means re-programming. o two similar applications produce alike 
solutions that can be re-usable. 

However, the idea of repeated patterns in all the above solutions, including the STM 
versions, could be programmed on the computer or PLC itself. Once a pattern is created 
and loaded into the computer, it should be possible to g nerate the rest automatically. 
Surely, this way is more reliable than doing it manually. For instance, the Petri net in 
Figure 9 above could be generated automatically from Figure 8 by the computer. 

6 RULE-BASED SOLUTION 
We now examine how the rule-based technique works on this example of two engines on the 
loop track. Generally, in using rule-based technique one has to formulate the rules needed 
in an operation. More frequently than not, these rules come through the deliberations of 
questions and answers as to how the sy tern operates. In this particular example, when the 
engine arrives at the end of any track section, say i, only one question is asked. Can it 
proceed to the next section, i+ 1? The answer to this is that it can only proceed if the track 
in front, i+2, is tmpowered, otherwise the engin has to wait until the track is free. This 
rule is applied for every track section ag&in and again for the system to operate successfully: 

Tllis rule governs any number of track sections used in the system and works for any 
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number of engines on the track. Thus, system expansion has no effect to the implementation 
of this rule and only the-subscripts of the track sections have to be taken care of during 
operation. 

For clarity of presentation, we shall assume: 

(1) (i) a main program to supply the switch number to the interrupt subroutine handling 
the rule 

(2) (ii) infinite track length. The problem of 'wrap-around' will be dealt later. 

On encountering the switch at the end of any track section, the rule is : IF (the track 
section after the next section ahead is not powered) THEN (powe,;i the next section and 
unpower the section behind) ELSE (wait for input switch at the efld of the third section 
ahead). IF (this switch is activated) THEN (power the next section ·and unpower the section 
behind). 

The implementation of the first part of the above rule is straightforward; the second 
part is better coped with by leaving a message, i.e. setting a flag to wait for an event. 
On collecting the message, the control proceeds with powering and unpowering app~opriate 
sections. 

Interrupt subroutine RAILl(N) 
LOGICAL TRACK(M),WAIT(M),ON,OFF 
rem M= number of track sections - infinite 
ON= .TRUE.:OFF= .FALSE. 

IF .NOT.TRACK(N+2) THEN 

ELSE 
END IF 
IF WAIT(N) THEN 

ENDIF:RETI 

TRACK(N+l)=ON: 
TRACK(N-l)=OFF: 
WAIT(N+3)=0N: 

WAIT(N)=O FF: 
TRACK(N-2)=0J:'i: 
TRACK(N-4)=0FF: 

N.B. : Track section ON means it is powered and OFF unpowered. 

However, the above routine is built on the assumption that there are just two engines. 
The routine could be made more general by removing this assumption to give a routine 
which could easily cope with any number of engines. 


