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Abstract. One of the most recent development in the theories of adaptive methods in 
the form of self-tuning algorithms is in the area of self-tuning PID controllers (STPID ). 
These controllers are a class of adaptive controllers but are essentially PID controllers 
with the capabilities of tuning their parameters automatically online. Th this end, 
the theories of these types of controllers are still in the infancy stage. In this paper, 
we provide some interpretations of a STPID through some analytical and simulation 
results, thereby lending way for a better understanding of the algorithms and some 
insight into the usefullness of the algorithm. The interpretations also serve as an aid in 
the selection of the tuning parameters of this algorithm which can be a time consuming 
activity if done dilligently. 

1 INTRODUCTION • 
Although self-tuning controller is more flexible and provide a more sys~ematic way of dealing 
with uncertainties, non-linearities, and time varying plant parameters, its applications in 
the process control industries is still not very encouraging. Self-tuning regulators can be 
viewed as performance oriented in that, the closed loop performance are specified by the 
user and the algorithm sets out to attain this performance eventhough the plant parameters 
or the drifts are unknown. Indeed, this implies that the desired performance of the plant 
can only be achieved given the saturation characteristics of the control actuator and the 
skill of the plant engineers is crucially important. A progressive step is to provide the plant 
engineers or users a greater intuitive understanding of the ultimate closed loop performance 
under self-tuning control. In this light, the theory of self-tuning regulators is moving rapidly 
towards broadening the range of possible control objectives and to interpret them in classical 
control engineering terms which are easier to understand. 

The possibility of implementing simple fixed structure controllers such as PID controllers 
for unknown plant can be appraised so easily that control engineers would at least consider 
using such fixed structure controllers when faced with complex industrial plants before 
resorting to the self-tuning or adaptive controllers. It is, thus, a natural consequence that 
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a combination of a self-tuning and the ever popular PID controller is introduced along the 
lines. 

The mam idea of these types of controllers is to combine the ability of self-tuning which 
can accomodate for changes in the plant parameters online and the simplicity of the PID 
controllers structures. This type of controller is· more popularly known as self-tuning 
PID(STPID) controller, thus, creating a new era in the field of adaptive or self-tuning 
control. 

There are several schemes of STPID controllers proposed in the literature. For example, 
[12] proposed STPID controller based on pole placement design. In this design, a PID 
algorithm is fitted into the control structure which is calculated via pole placement design. 
The method has some restrictions in that the order of the process which can be controlled 
is limited. A modification of the method which allows a more general form of processes 
to be controlled was proposed by [11]. Later, [5] proposed a STPI or STPID controller 
for continuous systems. The PID algorithm is automatically derived from a reasonable 
assumptions about the dynamics of the controlled process and also suitable modeling of the 
non-zero mean disturbances. Other forms of STPID can be found in (1] , [7], [9], (6], (8], 
[13], [10], etc. 

An alternative STPID controller which is of interest in this thesis was introduced. by [2]. 
The algorithm is based on the generalized minimum variance control algorithm ((3] and 
[4]). The structure of the self-tuning control law is oriented to have a PID structure. This 
is done by making reasonable assumptions regarding the user defined polynomial functions 
of the self-tuning control. An integral action which is required to eliminate disturbance 
of step-wise nature and steady-state error is introduced in the algorithm in an alternative 
manner. The controller parameters are obtained using parameter estimation scheme. For 
a PID structure, the controller parameters required is three. This requirement place some 
limitation in the order of the poles of the open loop systems to be controlled but no limitation 
is placed on the order of the zeros. However, it can be argued that, for a higher order system, 
model order reduction technique can be applied. 

In most control system designs, some tuning parameters have to be preselected. In the 
case o.f STPID controller, the tuning parameters are v, Pn(.z- 1 ) and Pd(z- 1). The tuning 
parameters of the STPID controller play an important role in shaping up the closed loop 
response of the system under control as it is related to the controller parameters. For PID 
controllers, the parameters K P• K 1 and K D have to be selected, although they remain 
unchanged unless some changes occur in the plant in which retuning of the parameters is 
required. 

In order to assist in the selection of the tuning parameters for STPID such as v, Pn(z- 1), 

and Pd(z- 1 ), some simulation results are shown in this paper. Some study of the properties 
and the role of the tuning parameters of STPID is made through the simulation examples. 
We also perform some simulation examples using PID controller whose parameters are fixed 
tuned to make some comparisons with the STPID controller. The simulation examples are 
carried out for a total of 300 sampling instants. The least ~tquares estimate is used to 
estimate the parameters and the covariance matrix is initially chosen to be ten multiplies 
by the unit matrix. The forgetting factor .A is chosen to be one. 

2 SOME FEATURES OF STPID ALGORITHM 
The basic principles of the STPID algorithms are derived from the generalized minimum 
variance control. A more detail description of this algorithm can be found in [3], [4] and 
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[14]. 

2.1 The plant model 
A CARMA (controlled auto regressive moving average) model as shown in Fig. 1 is con­
sidered in the derivation of STPID algorithm. The system model can be represented in 
mathematical form as follows: 

(1) 

where y(t) is the measured output, u(t) is the control input, ((t) is an uncorrelated sequence 
of random variables with zero mean and covariance u, k is the time delay, and t is the time 
in sample instant (integer). A(z-1), B(z 1), and C(z- 1) are expressed in terms of the 
backward shift operator z- 1 

A( - 1) 1 1 - 1 + - 2 -t + - n,. z - · r a1 z a2z ... .... an,.Z (2) 

(3) 

C( - 1) 1 + - 1 - 2 + + - n Z = C] Z + c2 z .... .. . Cn c Z c (4) 

It is assumed that the roots of C (z- 1) lie within the unit disc. No assumption is made 
concerning the roots of A(z- 1) and B(z- 1 ) polynomials, i.e the root of A(z- 1 ) may be 
outside the unit disc in which the plant is open loop unstable, or the root of B(z- 1) may 
be outside the unit circle which means that the plant is minimun1 phase. 

scr> 
C(z· 1) ..... .,. -A(z·l) 

u(t) B (z· 1 ) 
\lt + 

y([) + ..... -k ..... ·.r 
z A(z-l) ;) , 

Fig. 1 A representation of a CARMA model with random disturbance 

2.2 Cost criterion 
The cost criterion adopted in this algorithm is of the following form 

(5) 
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where P(z- 1), R(z-1) and Q(z - 1) are user d fined polynomials and w(t) is the set- point. 
P(z- 1 ) is a rational transfer function of the form 

P(z-1) - Pn(z- 1) 
Pd(z- 1) 

(6) 

where Pn (z- 1) and Pd(z- 1) are polynomials with degree n~n and npd, respectively. The cost 
criterion takes into consideration both the regulatory control and also the servo control. In 
addition to that, the controller has a costing on the control input which prevents excessive 
control input being produced in the occurance of some cancellation of zeroes which are 
outside the stability region. 

2.3 Generalized system output 
The approach introduces the pseudo-output ¢(1) d fined by 

if> (t) = P(z- 1)y(t) + Q(z 1)u(t- k)- R(z- 1)w(t- k) (7) 

The system can now be considered as a generalized system output with a fcedforward term, 
a filtering action on the output and the set- point. 

2.4 Identity equations 
To obtain an optimal prediction of the pseud<rOUtput., we need to consider first the identity 
equation of the form: 

(8) 

where 
(9a) 

(9b) 

and 
(9c) 

2.5 Optimal prediction 
Many self-tuning strategies are based on predictive control design and the prediction horizon 
is the time delay k. An optimal prediction of the output at time t -l k can be obtained 
at time t if the input is chosen such thai the disturbances arc neutralized. The optimal 
prediction equation for the pseudo-output is as follows: 

k 
1/>*(t +-) - F(z- 1)YJ(t) + (G(z- 1 ) +- Q(z- 1))u(t)- R(z-1)w(t) (10) 

t 
and 

- k 
1/>(t+k) = ¢(t+k) -1/>*(t+ - ) . t 

=- E(z- 1 )~(t + k) (11) 

where ¢*(t + ~) is the optimum prediction of if>(t + k) based on the measurement up to time 
t, and is the prediction error. Here G(z- 1) = E(z- 1)B(z- 1

). 
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2.6 Control law 
Using the theories of optimal prediction, the control law for generalized minimum variance 
control is 

(12) 

2.7 Estimation equation 
The optimal k step ahead prediction of ¢> 11 (t), i.e the output which is related only to y(t) is 

(13) 

The elements of F(z- 1 ) and G(z- 1 ) can be obtained from recursive least squares estimator. 
The vectors for the parameters and data regression are as follows: 

O{t) = Ifo(t), h(t) , ... , ln1(t), 9o(t), g-1(t), . . . , 9'n9 (t) (14) 

xT(t) = [YJ(t- 1), YJ(t- 2) , . . . , u(t -1), u(t- 2) , ... ] (15) 

where fo, J;. , . .. , go, g1 denote the estimate of the elements of F(z- 1) and G(z- 1), respec­
tively. 

2.8 Velocity form PID controller 
A discrete time velocity form PID controller can be written as follows: 

.6.u(t) = K1w(t)- [Kp + K1 + KD] y(t) -l [Kp + 2KD] y(t -1)- KD y(t -2) (16) 

K1 KcTs 1 · whereKp = Kc-
2

, KJ = --, and.6. = 1- z-. Now, Kc, Ti andT8 arethegam,reset 
Ti 

time, and sampling time, respectively. Here, } p, l<J , and KD denote the proportional 
gain, ~he integral gain, and the derivative gain, respectively. 

2.9 Formation of a PID structure 
The idea is to orientate the control law of to the structure of PID controller in. Thus-, 
F(z- 1 ) must be specified to be a second order polynomial. Now the order of F(z - 1) is 
given by 

nf = na + npd- 1 (17) 

assuming that n 4 + npd - 1 > npn + nc. 
Now since Q(z- 1) can be chosen by the user, mtegral action can be introduced by letting 

{18) 

The steady- state error can be eliminated by letting 

(19) 
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Using (18) and (19), (12) can be written as 

which is the control law for a self-tw1ing controller with a PID structure. 
the corresponding PID controller parameters are as follows: 

3 CLOSED LOOP SYSTEM 

K _ -v [fo 1- h l h] 
1

- Pd(l) 

K _ -v[h I 2/2] 
P - Pd(1) 

-vh 
Kv = Pd(1) 

The closed loop expression for the STPID controller is as follows: 

(20) 

Expressions for 

(21) 

(22) 

(23) 

(24) 

where {(t) is the disturbance acting on the process. It is obvious that the choice of the 
prefilter polynomials Pn(z- 1) and Pd(z- 1 ) will have some effect on the closed loop system. 
It can also be seen that perfect asymptotic tracking is achieved for constant reference signal 
if 

F(1) 
Ho =- Pd(l) (25) 

which conforms with (19). Also, note that at steady-state, the disturbance term equals 
zero, implying that the closed loop system is able to regulate the effect of load disturbance 
to zero. 

It is interesting to note that from the corresponding PID controller expressions, (21), 
(22), and (23), v is expected to give the same effect to the STPID controller as K c does 
to the PID controller. A small value of v would result in a more oscillatory control. A 
reasonable choice for the the filter P(z- 1 ) is a lead network. This implies that the closed 
loop is a low pass filter. The choice of v, Pn(z- 1 ) and Pd(z-1) is more on a trial and error 
basis, but a reasonable approach in selecting these parameters is to select a suitable value of 
v so that the closed loop response is stable and not too oscillatory and then varies the values 
of Pn(z-1) and Pd(z -:- 1 ) to obtain a reasonable performance suited for the application. 

4 SOME SIMULATION EXAMPLES 

4.1 Simulation example 1 
A second order continuous time system with time delay is considered in this example. The 
system has a transfer function given as follows: 

1 
Y(s) = (s + 0.1)(s + 1.0) e-s U(s) 
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A discrete time form of the transfer fundion can be obtained by means of Z -transform 
and zero order hold with a sampling time of 0.5s. The discrete time transfer function is 
given by 

G ( ) 
z- 3 (0.105 -t 0.087z- 1) 

H z - --~~~~~~~~ 
1- 1.55z- 1+ 0.576z-2 

In time domain, the discrete time transfer function can be written as follows: 

y(t) = 1.557y(t- 1)- 0.576y(t- 2) + 0.105u(t- 3) + 0.087u(t- 4) 

For this system, a STPID controller is realizable only if Pd(z- 1 ) is chosen as a first order 
polynomial. No restriction on the order of P11(z- 1 ) is required and we choose P11 (z - 1) to 
be a second order polynomial. Therefore, 

and 
Pn(z - l) = 1 + PnlZ- 1 + Pn2Z- 2 

The notion of v, the controller gain for STPID.having the same function as the controller 
gain kc of the PID controller, prompts us into selecting this value first to obtain a somewhat 
stable, although oscillatory response. The values of Pal, Pnl. Pn2 are then selected to shape 
up the response. The behaviour of the closed loop response of the system is shown in Figure 
2a. It can be seen that the initial transient of the response is rather large. This is because 
of the initial values of the estimated parameters which are much different from the true 
values. The response improves considerably in the second transient and even more in the 
third transient. Looking at the convergence of the estimated parameters in Figure 2b, we 
can see clearly that during the first transient, the estin1atcd parameters assume rather large 
values and then converge steadily after a few sampling instants. 

We can eliminate the large initial transient by using a conventional PID control in the 
initial phase of the simulation, in this case the first 20 sampling instants. Figure 3 shows 
a much reduced initial transient. To make some comparisons of the r~ults, we then use a 
Pill controller to control the system in this example. Figure 4 shows the behaviour of the 
closed loop response of the system when PID controller whose para111eters are fixed tuned 
is used. Although the initial transient of the response is not so large, the response does not 
improve in the second nor the third transients. 

To make some study on the role of the t.uning parameters, we first increase the value of 
Pn2 to -0.99 and we obtain a more oscillatory response as shown in Figure 5a. decreasing 
the value of Pnl has a similar effect as illustrated in Figure 5b. As expected, decreasing the 
value of Pnl or Pn2 results in an underdamped response as shown in Figure 5c. The role of 
Pd(z- 1 ) is also studied by first decreasing Pdl· It can be :;een from Figure 5d that the rate 
of change of the response is slow. 

The role of Pdl> p111 and Pn2 can be explained in terms of its relation to K p and K I. 
and K D of the conventional PID controller. From the the identity equation (8), we can see 
that for the system in this example, the value of pdl is directly related to h which in turn 
is directly related to I<D as in (21}. The effect of KD m a conventional PID controller is 
to provide some anticipitation of where the process b heading. It is obvious that the effect 
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Fig. 2(a) A simulation result of STPID 
controller for a second vrder system 

of Pdl is similar to I< D from the above simulation results. The tuning parameters Pnl and 
Pn2 have some influences on the corresponding I<p and K1 referring to (8), (21), and (22). 

4.2 Simulation example 2 
In the second simulation example, we consider a third order continuous time system given 
by the following transfer function 

_ 0.00267 U(s) 
Y(s)- (s + 0.1)(s + 0.13)(s ~ 0.2) 

The equivalent discrete time system for a sampling interval of 4s is given as follows: 

(z) = z- 1(0.0186 + 0.0486z-1 + 0.0078z- 2 

GH 1- 1.7063z-l 1- 0.958z-2 - 0.1767z-3 

The above transfer function can also be written in linear difference equation as follows: 

y(t)- 1. 7063y(t- 1}- 0.958y(t- 2) + 0.1767y(t- 3) 

1- 0.0186u(t- 1) + 0.0486u(t- 2) + 0.0078u(t- 3) 

A third order system presents an interesting example in the application of STPID control 
algorithm, not so much on the graphical but on the analytical aspects. As have been 

me12tioned previously, the order of the controller parameters F(z- 1 ) is restricted to be a 
maximum of two for a PID structure. For this example, since the system is a third order 
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Fig. 5{d) A simulation result of STPID controller 
with an increase in Pd1 

system, the controller parameters is of order two if we select Pd(z - 1 ) to be unity. This 
implies that the number of parameters to be preselected is redu ed and the system open 
loop poles have more influence on the controller parameters. llowev r, this situation is not 
entirely desirable because, we do need some kind of tuning knobs to shape up the close loop 
response to satisfy a specific requirement in certain applications. These tuning knobs are 
provided by th P11 (z- 1 ) polynomials. According to (8), the order of Pl(z- 1) cannot be 
more than two for this type of system. Sow can choose P11 (z- 1 ) to be either a first order 
or second order polynomial. Let's consider P11 (z- 1) to be a first order polynomial, then the 
identity equation (8) can be expanded as follows: 

Clearly, we can see that Pnl is only related to fo and consequently has some effect on 
the corresponding K I· We can have more flexibility in shaping up the close loop response 
if we let P11 (z- 1) be a second order polynomial. In this case, Pn2 has some influence on the 
controller parameter fl, and in turn on the corresponding]( p and K 1 . 

The behaviours of the closed loop response for the third order system are illustrated in 
the Figures 6 - 8. In Figure 6, we let P11 (z- 1 ) be unity and vary the controller gain v to 
get an acceptable response. The response is however rather oscillatory. We can reduce the 
oscillation by including the term pnl-in Pn(z- 1 ) as illustrated in Figure 7. In Figure 8, it 
is shown that a further reduction in the oscillation and a faster response can be obtained if 
we include the term Pn2 in Pn(z- 1). 
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5 CONCLUSIONS 
An extensive investigations on the properties of STPID controller has been carried out in 
this paper through some analytical and simulation examples. The simulation examples 
provide some insight into the roles of the tuning parameters and their relatives effects on 
the closed loop response of the system under control. The interpretations of the tuning 
parameters in terms of the classical PID controller parameters, Kp, K1, and KD have 
also b~n discussed both analytically and graphically. This in tum makes it easier for the 
users to relate the effect of the tuning parameters of STPID with that of the PID controller 
parameters in terms of control system actions. The simulation examples also prove that 
STPID controller is able to give good responses to the simulated systems. 
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