
Jurnal Teknologi, bil. 24, Disember 1994 hlm. 9 - 21
@Universiti Teknologi Malaysia

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS

S. ARIFFIN
R.H. WESTON
R. HARRISON

Loughborough University of Technology
UNITED KINGDOM

Abstract. Research is described which is leading Lo the specification and development
of a motion simulation and design environment for modular robotic systems which en
ables the implementation of widely applicable software processes for machine control.
Current investigation is focused on defining models of application tasks in modular
robotic systems. This work is based on the Real-time Control System (RCS) reference
architecture proposed by researchers at the National Institute of Standards and Tech
nology (NIST) which was designed to support motion planning and implementation.
However, thiS architecture is modified in such a way that it supports the concept of
multitasking and inter-process communication. The emphasis of work is on the hie
rarchical structuring of solutions, this to enable the design and control of distributed
motion elements. Also discussed in this paper is a strategy for achieving sensor-based
modularization of modular robotic systems in a manner which facilitates fast and effi
cient response to changes in the functional or environmental requirements. The paper
explains how an application software architecture is unified with the open systems de
sign approach known as Universal Machine Control (UMC), which has been devised
and developed at Loughborough University to enable reuse to software and control
system components.

1 INTRODUCTION
Efficient design of manufacturing machine systems is a key requirement for the achievement
of many industrial automation goals, as this leads to a reuuction in the time-to-market
of products which are competitively priced and closely meet customer needs. However,
current approaches to the design of manufacturing machine systems require extensive human
resources in terms of time, cost and expertise, thus preventing the full achievement of
potentia1 automation benefits. One of the key factors lirrriting the use of robotic systems as
integral part of a manufacturing workcell stems from constraints imposed by their control
systems. Indeed many forms of manufacturing machine (including robots) are supplied
with low-capability simple controllers, which is restricted to a position control capability
<:tud simple input/output operations. Their restrictive compuLational arch1tecture does not
allow the implementation of flexible motion control ~trategies nor does it facilitate their
flexible and effective integration into a host environment.

An automated manufacturing faeility typically comprises a number of control computers
separately located within a production facility to monitor sensors and issue appropriate ae
tuator commands t.o associated production equipment. Software is required to control the
machines and coordinate their operation so that production requirements can be satisfied.
Suitable open approaches should be identified which formalise and structure the generation

Typeset by AM·;:.Tp_x

10 S. ARJFFIN, R.H. WESTON & R. HARRISON

of low-level software which realises motion control within manufacturing workcell , t.hereby
enabling the design of higher functionality control systems (in terms of meeting individual
application requirements) or achieving the same functionality levels with less effort and
shorter development times. Invariably contemporary industrial approaches to system speci
fication and construction lead to extensive effort required to produce the necessary real-time
control software. Particular difficulties are experien ed as the control software needs to con
currently control the operation a variety of mechanisms and processes in real-time.

This paper seeks to unify the use of architectural frameworks, which facilitate the struc
tures of machine control task during system specification, with 'open' ystem implemen
tation methods which facilitate system construction. This is to provide the creators of
machine control systems with means of adopting distributed control techniques to realise
solutions which are modular, reusable and extendable. The objective is to create an envi
ronment which enables the efficient implementation and experimental evaluation of various
motion control functions in modular robotic systems. The investigation is focused on the
definition of tasks for modular robotic systems based on the reference architecture proposed
in Albus, McCain & Lumia jl, 2]. From the architectural viewpoint, it can be considered
as being an implementation of version Albus, McCain & Lumia [1], hence it is designed to
support motion planning and implementation in manufacturing processes. The emphasis
here is on providing a functional task framework for motion synchronization in robotic con
trol systems. This paper proposes an applications software architecture for machine control
and its unifaction with the open system design approach r.eferred as Universal Machine
Control (UMC) which was developed by the Modular Systems Research Group (MSG) in
Loughborough University.

2 PROBLEMS IN AUTOMATED MANUFACTURING
2.1 A Functional Machine Control Architecture
An architectural model of a control system ·hould describe the functional and logical compu
tational interrelations among its essential elements. Functional machine control (including
robot) architectures are often organized within a control hierarchy although each archite -
ture may embrace a variety of different control techniques. Most manufacturing machines on
the markets are still restrictive in term of their functional capabilities and computational
architecture which severely restricts the implementation of efficient and flexible control
strategies, Ouelen et. a!. j3] . The basic operation performed by the elements of a machine
must co-operate in performing a global goal (or high level task) which is defined or input
at a highest hierarchical level. This global task should be uccessively decomposed through
a hierarchy of control levels into simpler lower level commands and actions which are to be
ob yed at subordinated levels. At the lowest hierarchical level, drive signals are provided
for the actuators.

Current generations of machine controller are generally unable to meet the need for fle
xible manufacturing, offering limited scope opportunity for the reuse software, Harrison
jll] and other control system components. There is a need for more efficient engineering
methods which can formally and widely adopted by process designers and the control sys
tem engineers. The widespread acceptance of a problem oriented approach to the design
and implementation of real-time control systems has however been much slower than in
the case of business systems. The industrial application of these has been uncoordinated
and unstandardised, probably largely because of the inherently high levels of heterogeneity
involved.

>y
al
td
:i
le

n-

e
n

of
se
'1-

lS

1e
~d

~d

to
:is
n

ol
1e
in

l-

tg
c-
m
al
ol

e-
•n
tg
s-
;n
,n
:d
;y

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS 11

The development of UMC is aimed at addressing the key implementation problems in
machine control with particular emphasis on associated problems of using the current ge
neration of proprietary control system elements. An overview of the UMC architecture is
illustrated in Figure 1, which defines three hierarchical levels (machine, task and handler).
Figure 2 illustrates the background problems underlying the formation of the UMC software
systems. This illustration is based on a UMC Sunm1ary Document, Universal Machine
Control [4] and a report on Integrated Machine Design and Control, Harrison, Moore &
Weston [5] which outlines aspects of current research plans of the MSG.

·. '11

lnfqrmation of run time module '
Detme high level operation

Ececution of logical operation
Applicatipn t.as1< and uti)ity
synchromzat10n mechamsm
description of task logic
Multiple task hierarcfiy

Command to handlers
Concurrent exe<;ution
Event commands

Suppor~ dat!,l visibility
Devtce tnte{tace
Selection o handlers
and shareable between task

External device communication
and execution of real time t..::...~s:Z:==;i--'--~-.....:...1
activities

Selection of external device
to be control

Fig. 1 UMC overview and reference architecture

Fig. 2 The universal machine control (UMC) environment

12 S. ARIFFIN, R.H . WESTON & R. HARRISON

2.2 Modularization in Robotic Control
In a robotized factory, each machine (including robots) can p rform a subset of task com
monly performed by humans (through use of their inherent motion and ensing-recognition
capability) thereby automating manufacturing processes, such as assembly. On onsidering
the robotized factory, a key issue raised con erns th way in which objects interrelate and
fit with each other in a complex manner (uch as in ass mbly) as this d termines required
motion profiles, such as the path traversed by a robot hand. lnd ed difficulties of determin
ing such profiles has slowed th introduction of robots, Tsukun , Tsukamoto et. al. [6]. A
contributory problem is the current inabili y to integrate s nsory systems in a g neralised
manner. To expand the u efulness of robotization, it is nee sary to pursue sensor-based
modular robotic control systems that link these elements, wh re the sensing function for .
recognizing the environment should b modulariz d. In that way modules which suit indi
vidual tasks can be elected and their u e optimized. A main issue her is the integration
of distributed sensors with motion control yst rns, Patrick, .J. Ei ·ker [7].

It is important that multiple machine systems op rat as a distributed system so that
they work co-operatively with each other at part of manufacturing workcells. This can
lead to modular robotic systems in which it is possible to independently control multiple
machines elements in order that it responds efficiently and quickly to changes in the work
environment or requirements. This also means thaL it 1s 1mportant. to establish architectural
model of the software components of modular robotized systems in which control functions
are designed according to aspects of the work nviromnents, which will invetably change over
a period of time. The responsibilities for different aspects of a control ar hitectur can b
divided among di tinct modules. Each module is usually assigned a certain respon ibility for
achieving a particular set of objectives. Moclul s may share objectives (related to objectives
of the system as a whole) and generate objectives for others. Th ·e dependencies can
be n ·ually established through clearly defill<'d eonmmnication pathways between modules.
Th type of omnnmication between modules and the type of responsibilities assigned to
different modul :s will have a significant impact on the way the system will interact with its
environment.

2.3 Real-time Issue
A real-time system is one in which the COITect operation of the ystem depends not only on
the logical results of a computational process, but al o on the time at which thes results are
produced, Booth [8]. If these time-based requirements are not met, system processes will
simply get out of control. ln other words, system components must respond to a given events
within a specified time. A real-time ystem is considered intelligent when, with minimal
external guidance, it can perform complex actions in respons to th n ed environment,
Rodd. Verbruggen, Krijgsman [9]. When considering, for example, the question of direct
control it becomes evident that the speed of response of the controller has to match the real
time requirements of the plant or manufacturing cell. In order to achieve this performance,
it is necessary to understand the nature of the problem, and see how this relates back to the
design of control systems, and indeed, to the environment in which the syste will execute.

One major difficulty in building a real-time system stems from a lack of good techniques
for analyzing schedulability. A system is said to be schedulable if it can meet all dead line
of a task set. Schedulability analysis let a program designer predict wheth r for a given set
of real-time tasks associated timing constraint can meet,lshikawa, llid yuki & Mercer [!OJ.

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS 13

The determination of such factors places a bound on the execution time of each task. To
meet this requirement, the system must avoid priority inversion problems that occur when
a higher priority task must wait while a lower priority task executes.

3 CONCEPT OF MODULAR ROBOTIC SYSTEM
Manufacturing machines normally incorporate of multitasking, high speed manipulation
capability and should demonstrate flexibility and reconfigurability. Typically there may
be a considerable communication problem among local machine control systems. Future
machine control systems must embody adequate real-time machine control and integration
capabilities to deal with the communication problem among machine control devices which
often will be supplied from a variety of sources. Simulation is one of the tools which offers the
possiblity to optimize communication and coordination of tasks. It can play an important
part in the process of designing a hierarchical and heterachical model of a real-time control
systems and conducting experiments with the purpose either to understand the motion
behaviour of machines and their component devices or of evaluating various strategies and
application logic required within a system.

Research into motion simulation and design for modular robotic systems is a real-time
control problem which can lead either to solutions of a centralised or decentralised nature
and comprise a variety of modules. These solutions can also be suitable for application in
flexible manufacturing especially in the development of manufacturing facilities on a small
or medium scale. The adoption of real-time software which is modular in construction can
ensure easy modification, hardware flexibility, high-speed accurate and low cost automa
tion. Thus, research in this arena can seek ways of increasing the overall efficiency and
productivity of automated manufacturing systems.

If both the the mechanical and control system aspects of modular robotic systems can
be specified and constructed easily such system will allow the creation of a new generation
of machine and production systems to be quickly and easily restructured at low automation
cost and to enable agile manufacturing that is oriented toward consumer customization.
It is possible to create an open software development environment conducive to creating
distributed systems with machine-indenpendent programming. A key paradigm of the so
lution will be decomposition into modules, whereby reuse and sharing of goals, commands
and information will be achieved by model driven software modules. At a task level, modu
larization of machir-fe control functions, should allow individual motion control functions to
be arranged optimally, given appropriate application logic and operating conditions. The
characteristics of motion will be defined by the coordination of module functions such as
sensing, actuation and interfacing. At the device level, a working motion environment will
be developed in which machines change their position through an arrangement of multiple
modularized robots servicing other manufacturing equipment and processes.

A schematic diagram of a modular robotic system is illustrated in Figure 3. The concept
of robotic modularization need to be closely tied to the notion of a virtual manufacturing
machine systems. A virtual machine systems is one in which an actual (physical) machine
systems is precisely modelled using computers. Motion simulation and design should be
manipulated in this model, allowing appropriate periods for system re-design, commissioning
and changeovers to be shortened at low cost. Through modularization and openness of
software it will become possible for the activity for various actual manufacturing processes
to be reproduced as an executables model of interactions between computer controlled
motions modules. The manufacturing conditions and flow of information in actual machine

14 S. ARIFFIN , R.H . WESTON & R. HARRISO

·y terns will always be reflected in the virtual machine system . In other word, in a modular
robotic system the existence of a virtual machine y tern that accurately represents the r al
machine systems will be important. In the event of any dift rences arising between a virtual
machine systems and actual machin systems, this will need to b resolved.

DESIGN STAGE

Functional
software
architecture

A " 'Ooen' Machine K ! I) Co'ntrol Systems

'----------' Miijio'n S~on an=la,-T't'::u~es""'tgn=-----'

r Ylltllal Machine S~l!:.lll$....:::._ ..-·--- , ..•.• ..- -<"'
,.---·-., k Robot2 '~ 1',/Machinel-...,J (Macruou \
' R-L-1 ['•,, ' .
'•,""""" .•' -· ··.. ~ ,..,..·· \.. __ .. ---oL--- ·- _ ,__,.- -- ~

hine2

_,)
._--~..~

MANUFAcruiUNG STAGE

Fig. 3 Modelling s t nt~ture for modular robotic- control

4 ARCHITECTURE DESIGN AND MODULARITY
This re.search 1s focused on the ta.->k level of the l l MC' archit,ectmc, and seeks an appro
priate application task architecture a~ illnstrat,ed in Fignre 4. The research investigate ·
motion coordination and modification of a hierarchical and distributed control approach
for manufacturing cells, based on a unification of the 'ASREM , Albus, McCain, Lumia,
Jnnberts, Hui-Ming Huang, Quint,ero. Zeigler jl, 2. 12,];~ , 14 , 16] and UMC, Universal
i\lachine Control, Harrison, Moore, Weston [t!, 5. 11] r C r .nc arehiteetur -. The UMC ref
<·rence ardtitecture is defined within thr c hierarchical l .v ls (machine level, task lev 1 and
hand! r level), Duel n ct. al, Universal Machine C:ont,rol [:~ , 4]. The current. UMC run-time
architect,ure is illustrated in F ignre 5. A lJMC machine consists of a number of concurrently
executing processes together with mechanism - for comnnmication and synchronization of
the proce 'Se5. Applicaliou tasks in t,he task level of t,he architecture are application depen
dent and u::.er defined. The application tasks can have a heterarchkal relationship although
fllltctionall:v one task can be a master t,ask, Szabo. Scott ct al [15]. The implementation of
{1 MC' uses the Microware OS-9 operating sy ·tem a:. a platform. The OS-9 Events are nserl
to synchronize the tasks. control t,he use of shared resource.:; and for passing data between
t,he tasks. Handlers provid a standardized interface between task~ and the ext,ernal devic·es
which they controL The advantages of using handlers ar . that they support, devic:e data
\'isibility, provide a virtual device interface and are :::.hareable between tasks. This opens up
structured de.sign and model driven approaches to distributed real-time control and maps
it onto a :et of proprietary (and modular) control syst<>m el ments. The nnification of the
. ASREM and tJMC reference architeetnre as illustrated in Pigure 4 can lead to a software
design for machine control which should be flexible, reusable and easily modifi d as required.
In order to design effective reusable application task soflware, one must nnd r ·tand how to

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS 15

decompose specific applications into potentially reusable modules and how to arrange these
modules into an architectur to support reuse with minimal modification.

Machine
Level

Software
architecture
based on
NASREM

UMC reference architecture

Fig. 4 The unification of NASREM and UMC architecture

Task Level

Handler Level

vice Level

Fig. 5 Th~ current UMC run -time architcctun•

16 S. ARIFFIN, R.H. WE. TON & R. HARRISON

The Task Level Architecture (TLA) propo ed by the authors organize· the control mo
dules :;o a:; to reate the ftmctional relation hips and information flows in Figure 6, this
essentially being ba ed on th. reference model propo ed in, Albus, M gain, Lumia [1]. Th
Sensor Module (SM) pro esses sensory information to acquire and maintain an internal
model of the devices in a machine. Actuator Module (AM) handles problems of motion
planning, task monitoring, control of machines and int rfaccs with t,h operator. Th World
Data Module (WDM) coordinates the above m ntioned modules and maintains a knowl
edge database, keeping it curr nt. and consi tent. The archiL cture prop ed replicat and
distributes the relationship depicted in Figure 6 over a hierarchical and modular computing
structure with the logical and temporal properties illustrated in Figure 7. Figure shows
in greater detail the required modification and extension of the software architecture. ur
rent.ly, the U MC handlers functions and commands ar still being utilised. Thi.s includes
analysing tllf' ·chedulability of application tasks for r .at-time y tems requiring int grated
motion control. This architecture will permit modification of machine ontrol algorithms
and a multiple sensing-recognition capability. This will allow multiple machine sy terns to
operate as a distributed motiou system in a manufacturing workcells.

The capability for motion planning of modular robotic sy terns i de igned to enable the
following:

Flexible real-time computational power for modular robotic algorithms,
Easy iutegration of multiple external sensors through UMC handlers,
Communication with various input/out put devices and human interfaces,
Independency from manufacturing machines (including robots) configuration.

Task Level

Handler
Level

Device
Level

Sensorv.
Piocessmg

Axis

Fig. 6 The proposed elements of task control function (T 'F')

D

is
1e

a!
:l-

Id
·l
td
•g
VS

r-
es
:d
15

;o

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS

Task Level

handler

Global
Sensory

::~~~~~~~~~~~~~~~~~~~~
level

F ig. 7 ThE> tMk level architecture

hierarchical
extension

task level

Fig. 8 The hierarchical and horizontal relationships
in machine control systems

17

18 S. ARIFFIN, R.H. WESTON & R. HARRISON

5 SOFTWARE MODULARITY AND INTERPROCESS COMMUNICATION
Responsibility for different aspects of the motion control problem is attributed within the
above architecture in the manner illustrated by Figure 7. Each modul will be assigned a
given responsibility to achieve particular objectives. In abstracting the functional aspects
of a module to enable implementation of that function (e. g. algorithm used), the interface
of each module should be pecified within the c nfigura.tion. The interface defines both the
type of data and kind of action to be taken by an instance of a module, and all communica
tion with the instance must be through its interface. At the configuration level, this should
be the only information required to u e the module. Th typ of inter-process communica
tion between modules and the types of responsibilities assigned to different modules could
have a significant imJ?.~ ton the way in which the system will interact with its environment.

As illustrated in Figure 7, th function of the Actuator Module (AM) module is to
decompose task commands into ·ubtask command and action::> down to the lowe t level.
Input to AM module onsist of command and priorities from the AM module at the next
higher level. The Sensor Modul (SM) hierarchy obtains and processes data from the
system sensors. A World Data Module (WDM) coordinates the processes b tw en SM and
AM modules and maintains the conm1on memory knowledge base. The WDM acts as a
controller which accept~ data from sensors, perform a computation. and uses the results
to move actuators. The consequcnc s of actuator movement ar fed back to the controll r
throught the outise environment and the sensors. Global Memory is the database where
knowledge is stored about the internal state of the control system. Increasing the modularity
of the hierarchical and heterachical element of the Task Level Architecture (TLA) play
a crucial role. Here the term 'modularity ' is us d to indicate a high degree of indepedence
among individual elements, exc llcnt reusability and ea e of interfacing between lements.

Within the single triangular architecture as shown in Figur<' 6. o11e process is composed
of a software proce . Jt has the job of forking the ot,her softwar<' process, which make up
the application , and may thenu,elves fork another procc -- . In a multiLasking application,
processe.'\ must work together to perform the overall job. This requires the passing of data
and synchronization bet,ween the proce.ssc.s. For example, 011e process must not continue its
job until another process has collect d dat,a for it. These fn11ctions of synchronization and
data tran ·fer are known as inter-proc~~ communication \!PC) [17J. Correct use of these
fnnctious is essential to the operation of a multita..-,king application. OS-9 has several diffe
rent inrer-process conmmnication met,hod , Paul S Da.\·an Jl 'J available for use by applica
tion programs. By -plit.ting the application tasks into separate programs. which execute a::,
separate processes, anot,her problem ha::-. bC'Cil int,ronccd. A procP&'i mnst. be able to ex ·hange
data with other processes, am.l must be able to aet.ivate a sleeping proces:; when it. has data
1eady for t,hat process. This is the purpose of IPC' . The !PC' mechanisms including signal,
event, pipe and data modules are being incorporated into t.hc proposed application tasks
architcctur . For example, the OS-9 events will play the role to synchronize the concurrent.
process<>.s (between SM and AM) , so that only one updates t,he WDM at a time.

The implementation of UMC' software us - the Microwarc OS-9 operating system as
a platform. Booth [8] . The propo-ed functional architectnre ntilis~ the concepts of fPC'
provided by the OS-9 operating system. It provides the mechanisms for task to taks and task
to handler conmmnications by utilising the 0 '-9 events, signal:; and user data modules. This
provide synchronization and data transfer betw .en modnles. This research is invcstigaLing
the functional capability of tasks in a hierarchical as well as in)l('tcract1Jcal mantle,·. The

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS 19

proposed architecture requires the use of multiple concurrently executing processes using
the UMC handlers. lnterprocess communication within the proposed system architecture is
supported by a data-passing or message-passing system based on the UMC tasks commands.

6 HARDWARE AND SOFTWARE DEVELOPMENTS
Identification of available and suitable hardware and software tools is very important in
order to realise the research objectives outlined above. The earliest effort was focused on
realizing how UMC software works and feed results for its future enhancement. UMC is
implemented to run on Motorola 68xxx family hardware and runs under the OS-9 multitask
ing, real-time operating system. Currently, the implementation fully supports application
tasks written in the Microware ANSI C language, Booth [8]. Thus, the application task
source code created throughout the research is also written in C, using the operating system
UNIX. This is because applications written in C are portable with relatively little effort is
required to move them from one machine to another. C programs that are written for a
UNIX environment can then be compiled using the Microware Ultra C cross compiler and
rw1 on OS-9 development system target without changes.

The component elements of a functional architecture should cooperate to realize a global
goal defined at the highest hierarchical level, as illustrated in Figure 7. This global task is
successively decomposed through its hierarchy of tasks in simpler commands which are to
be obeyed at lower level. At the lowest hierarchical level, input signals are provided for the
actuators. In addition, sensory data are accepted at the lowest level and use to estimate
the results and perform and corresponding subtask, by carrying out necessary planning and
execution activities. The UMC handlers which provide standard interface between tasks
and external devices, can still be utilised.

The software is being built in a modular and layered fashion, in conformance to the pro
posed functional task architecture. The main objects of attention are the interfaces rather
than the contents of single modules. It is very important to define with precision interfaces
or interaction points between the modules. These points will be used for synchronization
and conmmnication between the processes. The language interfaces for inter-process com
munication provided by OS-9 system plays an important role in the software development,
Dayan [18J. For tasks to exchange information in shared memory area, the exact data
structure must be defined in advance for shared data modules.

Once the model architecture has been created, it will be used as a basis for simulation.
Process behaviour can be emulated by the generation of events for every node of the model.
A node could represents for example an assembly station or a buffer anJ is described by a list
of its properties. An event is simply a statement that information or control is transferred
for processing at some other node at some specified time. The event-generating process is
repeated automatically IUJtil a breaking-off criterion has been reached or simulation opera
tion interferes. The approach will allow the simulation of real processes to be done either
using physical model (e. g. scaled models in device setup) or c:omput,er models. Computer
models will normally be selected since they have the advantage of making possible expe
rimental examination anJ analysis which otherwise would be costly and time cousuming.
After experiment:, based on this model, the results has to be transferred to the real systent
and it ought Lo he guaranteed that these results are useful and collapse system build lead
times. The re.sdts from t.he simulation should produce some form of virtual nHtchine sys
tem. A virtnal machine systems is one in which an actual machine systems is modelled in
computational form.

20 S. ARIFFIN, R.H. WESTON & R. HARRISON

Software programs are being created by utilising UMC functions an then compiled to
executabl~ task modules in C programming language. ·A number of UMC functions are
available for use in application task programs. Application task source code is produced
using the standard UNIX text editors and compiled using the Microware Ultra C Cross
Compiler. Then the application tas objec code is transferred to the OS-9 target. The object
code file of a task programme is forked by the UMC machine configuration utility, namely
configuration editor {ce). This ce is the interactive terminal screen editor for creating
machine, handler, map and profile edit files, Booth [8]. Execution of the programming
output is displayed on a UMC Task Window. This task window is set to display real-time
responses from various UMC handlers. This also means that the OS-9 configuration, UNIX
text editors and UMC task window exist in the same computing environment.

7 CONCLUSION
The utilisation of a functional software architecture based on NASREM architecture gives
a promising result in terms of extensibility, protability and software reuse. However, this
architecture is modified in such a way that it is in compliance to the concept of multi
tasking and inter-process communication provided by the OS-9 operating system. This is
important in order to build a flexible high-performance modular machine control systems
which enables efficient implementation and experimental evaluation of different machine
control devices using OS-9 operating system as a platform. The approach to 'open' motion
and input/ output synchronization will be contineud within t~e UMC reference architecture,
which enables the implementation of reusable software processes for machine control. The
UMC run-time environment remains on OS-9 development computers. The emphasis of
work is on the hierarchical structuring of solutions and will enable the design and con
trol of distributes motion elements. Hopefully distributed motion control in the run- time
environment will be realised by exploiting the task level of the UMC reference architecture.

REFERENCES

[1] J. S . ~lbus, H. G. McCain & R. Lumia, NASA/NBS standard reference model for telerobot control
system architecture {NASREM), Nat. Inst. Standard and Tech., Tech. Rep 1235 (1989), Gaithersburg,
MD.

[2! J . S. Albus, Outline for a Theory of Intelligence, IEEE Transaction of Sytems, Man and Cybernetics
21 (1991), 387-390.

[3J Duelen G. et. a!., An Advanced Robot Control System for Manufacturing Processes, Annals of the
CIRP 40 (1991), 387- 390.

[4] - ,Universal Machine Control {UMC) , Modular System Group, Loughborough University of Technol
ogy, UMC Summary Document Issue 3, November 18th, 1992.

[5] R. Harrison, P. R. Moore, & R.H. Weston, Integmted Machine Design and Control, ACME/SERC
Application: Case for Support (1992) .

[6] H. Tsukune & M. Tsukamoto et. al., Modular Manufacturing, Journal oflntelligent 4 (1993), 163-181.
[7] Patrick, J. Eicker et. a!., Intelligent Systems and Technologies for Manufacturing, AT&T Technical

Journal (1991), 10-22 November/December.
[8] A. H. Booth, & A. J. Carrott, UMC Reference Manual Verston 3.0 June, 1993.
[9] M. G. Rodd, H. B . Verbruggen & A. J. Krijgsman, Artificial Intelligence in Real-ttme Control,

Engineering Application Artificial Intelligence 5 no 5 (1992), 385-399.
[10] Yutaka Ishikawa, Hideyuki Tokuda & C. W. Mercer, An Object-Oriented Real-time Progmmming

Language, IEEE Computer (1992), 66-73 October.
[~ 1] R. Harrison, A Generalised approach to Machine Control, A Ph.D Thesis, Loughborough University

of Technology, 1991.
[12] .J. S. Albus & M. Juberts, RGS: A reference Model Architecture JO• '"!lent Veh;~;, 'lnd Highway

Systems, ISATA 1992, Florence, 1992, pp. 447-453 June.

,o

·e

d
;s
:t
y
g
g
,e
)(

,S

i
s
s
e
n . . ,
e
f

e

s

e

[13)

[14]

[15)

116]

[17]

[18)

A SOFTWARE ARCHITECTURE FOR MODULAR ROBOTIC SYSTEMS 21

Hui-Min Huang & Quintero, R., Task Decomposition Methodology for the Design of a Goal Mining
Automation Hierarchical Real-Time Control System, 5th IEEE Proceeding Symposium on Intelligent
Control 2 (1990), 884-893.
J. S. Albus & M. Juberts, RGS: A Reference Model Architecture for Intelligent Vehicle and Highway
Systems, ISATA 1992 (1992), Florence, 447-453.
S. Szabo & H. A. Scott et. al., Control System Architecture for a Remotely Operated Unmanned Land
Vehtcle, 5th IEEE Proceedings Symposium on Intelligent Control 2 (1990), 876-883.
B. P. Zeigler, Object-oriented Modelling and Discrete-Event Simulation, Advances in Computers 33
(1991), Academic Press, Inc., 67-115.
J. Albus, Concepts of Reference Model Architecture for Real-time Intelligent Control Systems (AR·
TICS}, NIST/NBS Tech., No. 1277 (1991).
P. S. Dayan, The OS-9 Guru 1-The Facts, Galactic Industrial Limited.

