
Jurnal Teknologi, bil. 24, Disember 1994 him. 45 - 59
@Universiti Teknologi Malaysia

LOGIC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION

MOHAMED OTHMAN
Department of Computer Science

University Pertanian Malaysia
43400, Serdang, Selangor

Malaysia

BAMBANG SUNARYO SUPARJO
Department of Electronic and Computer

University Pertanian Malaysia
43400, Serdang, Selangor

Malaysia

Abstract. Computer Aided Design (CAD) is a tool that comprises of a program
written in Turbo Pascal ver 5.0. This CAD tool is use to minimize the states of
synchronous sequential logic automatically. In completely specified case , it will give
a minimum solution but in the incomplete case, it does not guarantee to produce a
minimum solution. .
Keywords: state-table, compatible tree, maximal compatible (MC), closure function.

1 INTRODUCTION

In sequential circuits, the outputs at any given time are functions of the external inputs as
well as some stored information determined by the previous inputs. It can be described as
a combination circuit with a memory section to remember the past inputs and feedback.
The variables that represent the past inputs before the present input is applied, are the
state variables. The clock is used in synchronous circuits only.

There are two classes of sequential circuit, synchronous and asynchronous. In synchro
nous type, the inpui, output and internal states are sampled at definite intervals of time,
controlled by the fundamental clock frequency of the system. Since the clock is generally
some form of square wave, synchronous circuits are often referred to as pulse circuits, the
timing being done by incorporating an element. This type of logic circuit is readily applied
to the processing of serial information. Furthers detail see Alamaini A. E. A. [1], Douglas
Lewin (3], Hill F. J. et. al. (5] and Murai S., et. al. [6].

Generally, in synchronous logic design, there are several steps to be followed:
1. Functional description
2. State diagram
3. State table
4. State minimization
5. State assignment
6. Implementation.

Typeset by A,MS-TeX

46 MOHAMED OTHMAN & BAMBANG SUNARYO SUPARJO

The main objective of this work is to develop a CAD tool functionally as a logic simulator.
With this tool, it can help the engineer to reduce the following problems such as labour
reduction, timescale reduction, error reduction, design integrity and reproducible results.

2 AN ALGORlTHM FOR STATE-TABLE REDUCTION
The State-Table Reduction is u ed instead of State Minimization, thi is because the algo
rithm described is not guarantee in the incompletely specified case in order to produce a
system requiring the minimum possible number of states. A tractable technique for deter
mining the true minimum solution has not yet been found. In the completely specified case
the algorithm always find a minimum solution.

The algorithm is easily described by means of an example, see Table 2.1 below:

Table 2.1 State table of problem

Next state Output

Present State 00 01 10 11 00 01 10 11

1 X X 6 9 X 1 X 1

2 7 X X X 1 X 0 X

3 X X X 2 X 0 X 1

4 X 4 9 X X X X X

.') 8 1 X X 1 0 0 X

6 X 1 X :3 X X X 1

7 :3 =~ X 9 X X 0 X

8 X ,') X 4 X X X 0

9 7 9 4 X 0 X I X

Based on this example, the processes of reduction can be described in the following four
subsecLions which outline th steps involved.

2.1 Determination of Compatible Pairs

The algorithm commences with. the determination of all compatible pairs of states. This
determination is an implication chart-like method which involve th following step .

Step 1:
For each row of the table in turn search the lower rows for states with incompatible

outputs. In Table 2.1, commence with state 1 and note that the outputs of state 1 are
incompatible with those of states 3 and 5. A square that corresponding to the inc.ompatible
pair (3- 1 square for state 1 and 3, and 5- 1 square for states 1 and 5) will be marked in the
implication chart as shown in Table 2.2 below:

After marking those states whose outputs are incompatible with th outputs of state 1,
a search is made through the state 2 below in the state table to locate any tates whose

LOGIC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION 47

Table 2.2 First step in formation of chart

2
3 X

4
5 X

6
7
8
9 I

I 2 3 4 5 6 7 8 I

outputs are incompatible with those of state 2. In this case, the outputs of state 9 ar
incompatible with those of state 2. The eorresponding square, 9-2 square is marked in the
chart. The method proc.eeds in the obvious fashion until all pairs of states with incompatible
outputs have been marked and the resulting chart is shown in Table 2.3. This complete
Step 1 in the determination of incompatible pairs of states.

Table 2.3 C'hart after making all pairs of states with incompatible outputs

2
J X

<I
5 X

6
7
8 X X

9 X X X I
I 2 ;~ 4 5 6 7 81

I
Step 2 of the prod'.Ss nses the information obtained in Step I to identify further incom-

patible pairs. For each square of the chart in turn (from top to bottom and then from left
to right) check whether the square has been marked or not. If the square is w1marked then
get the next state pair for every input eondition, and then check whether the states of the
next state are compatible or not by examining the appropriate square. If that square is
marked, it implies that the pair of current states are incompatible, and thus the current
square must be marked.

Step 2:
Search the unmarked square of the chart and then get the next state pair for every input

condition of that square. After that check if any states of the next state are compatible or
not; this is done by examining the appropriate square. If its marked then it is incompatible.
If any such incompatibility is found, the current square must be marked to indicate that
these two states are incompatible.

48 MOHAMED OTHMAN & BAMBANG SUNARYO SUPARJO

Thus in term of our example, Step 2 would commence by examining the 2-1 square.
Since there are no next state pair, therefore, just skip this square. This process is carry
on until 9-8 square. Let say that it has come to 7-3 square, the corresponding next state
pair is only one, that is 9- 2 (when input is 11). Therefore, the 9-2 square will be examined
whether it is marked or not. Since states 2 and 9 are incompatible, and the 9-2 square
has already been marked, this implies that states :3 and 7 are incompatible, and 7-3 squar
must be marked. Table 2.4 shown the chart after completion of Step 2.

Step 3:
Repeat Step 2 until no new incompatibilities are revealed.
On completion of Step 3, the final chart is as shown in Table 2.5. From th chart,

the unmarked ·quare is representing the compatible states. This completes the process of
determinatiOn of compatible pairs; the next stage in the algorithm requires the etting-up
of compatibility trees.

Table 2.4 Chart after completion of step 2

2
:3 X

4
5 X

6
7 X X X

8 X X X

9 X X X X I
1 2 3 4 5 6 7 8 I

1Dable 2.5 Final charL

2
3 X

4
5 X

6
7 X X X

8 X X X

9 X X X X X I
1 2 :3 4 5 6 7 8 j

2.2 Construction of Compatibility Trees
The construction of compatibility trees i used to determine the set of maximal compatibles
(MC). Each tree is c.onstructed by commencing with a single state, which form the root
of the tree, and then growing branches which link pairs of compatible states, see Writh

LOGIC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION 49

]11]. In the example commen with state 1 and, by reference to final chart (Table 2.5),
note that state 1 is compatible with states 2, 4, 6, 7, 8, 9 so that, with state 1 as the root,
a compatibility tre can be drawn which has the six branches hown in Figure 2.1. ote
that the leaves of the tree represent those states that compatible with its ancestor, state 1.

The process can now be taken further by creating the subtrees from the leaves. The
creation of the subtree involves the following teps:

Step 1:
From left-most leaf, check whether it's siblings are compatible with it or not by referring

to the final chart (Table 2.5).
For this example, start from state 2 and check wh ther it's siblings at the right-hand side

of tat 2 (i.e. states 4, 6, 7, 8, and 9) are compatible with state 2 or not. By referring to
final chart, note that ·tate 2 is compatible with state 4, 6 and 8, therefore from state 2, a
subtree can be drawn which has three branches as shown in Figure 2.2.

1

2 4 6 7 8 9

Fig. 2.1 Compatibility tree for pairs of stat including state l

2 4 6 7 a g

~
4 6 a

Fig. 2.2 A compatibility tree after step 1

Step 2:
By using the same manner, build anoth r subtrees until th re is no more ubtree. As

states 4 and 6, and states 4 and 8 are compatible, but tates 6 and 8 are incompatible,
therefore, the final subtre of state 2 can be drawn as shown in Figure 2.3. Note that all
the leaves are compatible with its ancestor .

50 MOHAMED OTHMAN & BAMBANG SUN ARYO SUPARJO

Step 3:
Move to the nearest sibling at right-hand side, and build another subtree. After that

repeat step 1 and step 2 on the above until it has reached to the right-most sibling.
On completion of step 3, the final form of the compatibility tree is shown in Figure 2.4.

2

~
4 e a

A
e a

Fig. 2.3 A compatibility tree after completion of subtree of state 2

1

2 4 a 7 a 9

~ ~ I
4 a a a 7 a 9 9 a

1\ I I
a a 9 a

t t t A
MC- (1.4,7.a)

MC - (1 ,4,a,9)

MC - (1 ,2,4,a)

MC - (1 ,2,4,a)

Fig. 2.4 Completed compatibility tree for state 1

After the completion of a compatibility tree, a preorder traversal search will be used to
get all the MCs, see Writh N. [11]. Whenever the traversal reach to a leaf, it will record
down the leaf and its ancestors as a set of compatible states, then compare it with the
existed MCs. If it is not a subset of one of the MCs, automatically, it will become an MC.

For this example, the compatibility tree in Figure 2.4, has generated four MCs, which
have been pointed by an arrow. The remaining leaves of the t:::· HI) not r~pr=~nt MCs
because each represents a set of states that is a subset of one of the pointed (maximal)

t

LOGIC IMULATOR: SEQUENTIAL LOGIC MINIMIZATION 51

sets. All MCs generated by the tre necessarily contain state 1 as the root of the tree. The
procedure now continues with a search for other MCs.

The next logical step is to search for MCs containing state 2, but in carrying out the
search, bear in mind that some have already been generated by means of the tree in Figure
2.4. In order to avoid generating these MCs again, the tree with root 2 is constructed
using only those states located below state 2 in Table 2.5. The resulting tree is shown in
Figure 2.5{a). Note that only one MC has been generated by this tree. All the other sets
of compatibles are either subset of {2, 3, 4, 5, 6) or subsets of a MC generated by the tree
in Figure 2.4.

The process continues by constructing compatibility tree for the remaining states. For
each tree, only those states located below the root state (in Table 2.5) are considered; as
explained above, this avoids duplication of MCs. The r ulting compatibility tree are shown
in Figure 2.5(b)- (h).

There are six MCs exist for this problem. Note that it is essential for the full set of
compatibility trees be generated to ensure that no MCs are missed.

2

3 4 5 6 a

ffi ffi I
4 5 6 5 6 a 6

/\I I
5 66 6

I
6 MC = (2,3.4,5,6)

Fig. 2.5(a) Completed compatibility tree for state 2

3

4 5 6 g

~ I I
5 6 g 6 g

I I
6 g MC = (3,4,6,9)

Fig. 2.5(b) C-ompleted compatibility tree for stat<" 3

52 MOHAMED OTHMAN & BAMBANG SUNARYO SUPARJO

5 6 7 a 9

I I I
6 9 a

Fig. 2.5 (c) Completed compatibility tree for state 4

5

6

Fig. 2.5(d) Completed compatibility tree for state 5

6

9

Fig. 2.5(e) Completed compatibility tree for state 6

2.3
Th
R
(t
Ta
2.
of
in
th
co

as
sh
p
(

LOGIC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION 53

7

8

Fig. 2.5(f) Completed compatibility tree for state 7

8

Fig. 2.5(g) Completed compatibility tree for state

9

Fig. 2.5(h) Completed compatibility tree for state 9

2.3 Determination of Minimum Cover
The next stage of the algorithm is to get a set of MCs which include all the original states.
Recall that our objective is to obtain state table which describes a system whose behaviour
(to the outsid observer} is indistinguishable from the behaviour of the system described in
Table 2.1. However it also requires a smaller number of states than those employed in Table
2.1. The compatibility trees in Figure 2.4 and Figure 2.5 have given us a set of MCs, each
of which represents a group of compatible states. It i not necessary to use all these MCs
in order to provide a complete description of required system behaviour. In other words,
the set of MCs provides a redundant cover for the states in Table 2.1 and seek a minimum
cover.

Firstly, commence by labelling the MCs. Any labelling will arbitrary assigned label
as shown in Table 2.6. The important features of the determination of a minimum cover
should become clear in th following preamble.
Preamble: Th proc · commence with a search for essential maximum compatibles
(EMC's} and, if any states are found, it must be included in the final cover.

Table 2.6 Labelling of maximal compatibles

Maximal compatible Label

(1,2,4,6} Gl

(1,2,4,6) G2

(1,4,6,9} G3

(1,4,7,8) G4

(2,3,4,5,6} G5

(:3,4,6,9) G6

54 MOHAMED OTHMAN & BAMBANG SUNARYO SUPARJO

In this example there are two EMCs, via G4, which provides the only cover for state 7,
and G5 which provides the only cover for state 5. Thus, these two MCs must be included
in the final cover.

Now note that each of the EMCs is made up of a group of states and that, according to the
state table (Table 2.1)-. Each state has four next states, which each next state corresponding
to a particular input. One of the conditions for a group of state to be compatible is that
the next state of each state must be in the group.

The EMC G4 has the next states shown in Table 2.7 (these next states are taken directly
from the state table). The table indicates that if the group of states 1,4,7,8 is compatible,
then the group (4,3,5), (6,9), and (9,4) must also be groups of compatible states.

Table 2. 7 The next for EMC G4

Next state

Present state 00 01 10 11

1 X X 6 9

4 X 4 9 X

7 3 3 X 9

8 X 5 X 4

The objective is to obtain a minimum state description of the system using MCs as states.
MC G4 has to be included in the state description (it provides the only cover for state 7)
but now from Table 2. 7 that the final cover must allow the system to move from state G4
to states with other compatibility properties. There are such states as follow:

a. A state compatible with state 3, 4, 5
b. A state compatible with states 6, 9
c. A state compatible with states 4, 9

From Table 2.6, MC G5 constitutes the only state compatible with the three states 3,4,
and 5. This implies that G5 should be included in the final cover and obviously it should
be included because it is an EMC.

There are two MCs that include states 6,9 via G3 and G6. In addition G3 and G6 include
the pair 4,9 so that inclusion of one of these MCs is the final cover {along with G5). This
will allow satisfaction of the next-state requirements of the G4.

How to decide whether to select G3 or G6 for the final cover?. In general case, this kind
of selection of one MC rather than another will lead to a better solution (i.e: one with fewer
states) . We are not aware of any other selection procedure that guarantees a minimum-state
except as follows:

Rule 1. Pick up the MC that cover the largest number of states.
Rule 2. If there is more than one candidate for selection under Rule 1, then select

from these candidates the MC that has the smallest closure function.

Actually, these rules were applied at the very beginning (ie: in the selection of the EMCs)

7,
d

te

g
~t

y . . ,

I.

)
4-

j

LOGlC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION 55

because it turns out that the order in which EM 's are selected can influence the number
of MC's in the final cover.

The procedure: From the example, ther are two EMCs, Rule 1 tells us to select G5
first. Having selected G5, then check the state table (Table 2.1) to determine the next-state
condition implied by G5. These conditions are displayed in Table 2.8, where selection of
G5 requires that the final cover contains a state in which 7 and 8 are compatible, a state
in which 4 and 1 are compatible and a state in which 2 and 3 are compatible.

Table 2.8 The next for EMC G5

ext state

Present state 00 01 10 11

2 7 X 6 X

3 X X X 2

4 X 4 9 X

5 X 1 X 3

X 1 X X 3

The first of these requirement is satisfied if selection of G4 (1,4, 7,8) is selected for the final
cover. The second requirement (a state in which 4 and 1 are compatible) can be satisfied
by selecting any one of the MCs G 1, G2, G3 or G4. The final requirement will be satisfied
by selection of G5 itself.

Thus, following selection uf G5 will cause the selection of G4 and either GI or G2 or G3
or G4. This can be written as a Boolean expression as G5 ::::!> G4. (Gl+G2+G3+G4) which
should be read selection of G5 implies the selection of G4 and eitlter GJ or G2 or G3 or
G4. The right-hand side i c.alled the closure function for G5. In this case, any elementary
rule of Boolean algebra that X.(X + Y) = X, the clo ure function reduces to a single MC,
G5 ::::!> G4 so that selection of G5 implies that G4 must also be selected.

Knew that G4 had to be selected (it is an EMC), but in general, the closure function
indicates that other MCs, not previously considered should also be added to the cover.
ln this case, th closure function tell us that G4 should be added to the cover next and,
whenever an MC is added to the cover, the closure function must be drawn up in order to
see if it requires the addition of further MC to the cover.

From investigatiou of the next-stat r quirements of G4 (in the preamble to the solution
of this problem), its clo ure function can be written as G4 ::::!> G5.(G3+G6). Since G5 has
already been selected, d ci ion has to be made whether to add either G3 or G6 to final
cover. Rule 1 does not assi t u in the sel ction because both G3 and G6 have the same
number of states. Th ref ore, apply Rule 2 and draw up the closure function for each of the
MCs. For G3, the next tate requirements imply the need for stat in which (1 4,9), (4,6,9),
and (3 9) fom1 r.ompatible groups. Thus, the closur function for G3 i G3 ::::!> G3.(G3 +
G6).G6 G3.G6 and sine looking for the next-stat requirements following selection of
G:3. the closure function requir ment can be written as G3 ::::!> G6.

56 MOHAMED OTHMAN & BAMBANG SUNARYO SUPARJO

Similarly, for G6 the closure function is G6 ~ G3.(G3 + G6).G5 = G3.G5 and since G5
has already b n selected, the clo ur function requirement is G6 ---+ G3.

Thus, found that if election of G3 will cause the selection of G6 and vice ver a. lienee
both G3 and G6 are selected for the cover. ·

The cover now contains G3, G4, G5, and G6 as MCs. While G4 and G5 are both EMCs
and, to satisfy their next-state requirements, the G3 and G6 had to be included in the
cover. Addition of G3 and G 6 to the cover does not generate any next-state requirements
that cannot be satisfied by the four MCs G3, G4, G5 and G6. Consequently, these four
MCs are said to form a closed group. This i the origin of the term closure function.

Having selected a closed group of MCs for the cover now check if any states remain to
be covered. In this case, the MCs G3, G4, G5 and G6 provide a complete cover and the
procedure terminates.

When a closed group of MCs has been determined and th group does not provide a
complete cover, the procedure continues with a search for a minimum cover of the remaining
states. It can happen that one or more of the EMCs has not yet been included in the cover
and the procedure should recommended with this consideration. In other cas s there may be
quasi-essential MCs (i.e: MCs that provide a unique cover for one of the r maining states)
and the procedure would recommended with these. The third possibility is that there are
neither, nor quasi-essential MCs remaining and the procedure would then recommended by
implementing Rul 1 and Rule 2.

The basic steps of the procedure ar as follows:

1. Select the largest MC as an initial EMC. If there are more than one candidates,
then use Rule 2 to select an initial an EMC.

2. Generate the closure function forth lected MC.
3. Satisfy the closure function by adding the minimum possible number of MCs to th

cover; use Rule 1 or 2 where necessary.
4. For each MC added to the cover, return to step 2.
5. Once a closed group of MCs has b n found, check if all states are covered by the

group and any groups previously added to the over. If they are, go to 8.
6. Check any remaining EMCs. If any are found go to 1.
7. Select an MCs using Rule 1 or 2; go to 2.
8. End.

2.4 Relabel the State Table

The last stage of the algorithm is relabelling the state table. The M 's provide a complete
and closed cover for the states of the sy tem. Each row of the new state table represents
a group of compatible states and the entries in given row are obtained by merging th
corresponding entries from the original tate tab] . For instance, G3 represents the group
of states 1,4,6,9 and so in the new state table, the row corresponding to G3 is drawn up by
merging the entries in rows 1,4,6 and 9 of the original state table. The new state table is
shown in Tabl 2.9.

The final step is to relabel the new states. Note that some of the next state entries can
be identified with more than one MCs (for instance, (4,6,9) can be identified with either G3
or -G6). In such case, it does not matter which choice is made. Thus, there is no general
and a unique relabelling scheme. Table 2.10 displays the relabelled state table from the
Reduced state table as in Table 2.9.

LOGIC SIMULATOR: SEQUENTIAL LOGIC MINIMIZATION 57

Table 2.9 Reduced state table for example

Next state Output

Present state 00 01 10 11 00 01 10 11

G3(1,4,6,9) 7 1,4,9 4,6,9 3,9 0 1 1 1

G4(1,4,7,8) 7 3,4,5 6,9 4,9 X 1 0 0

G5(2,3,4,5,8) 7,8 1,4 9 2,3 1 0 0 1

G6(3,4,6,9) 7 1,4,9 4,9 2,3 0 0 1 1

Table 2.10 Relabelled state table

Next state Output

Present state 00 01 10 11 00 01 10 11

1 2 1 1 4 0 1 1 1

2 3 3 1 1 X 1 0 0

3 2 1 1 3 1 0 0 1

4 2 1 1 3 0 0 1 1

3 SYSTEM DESIGN

This system is implemented with Thrbo Pascal 5.0 on an IBM PC compatible, see Thrbo
Pascal ver. 5.0 Reference Guide [91 and Thrbo Pascal User's Guide [101. This language was
cho en because of the following reasons:

a. It is a structured high-level language
b. It has an amazing compilation speed
c. It provides a library of powerful standard units
d. It supports separate compilation using units
e. Its built-in project management performs automatic recompilation of dependent

source files including units and others.

From the system flowchart, see Figure 3.1, this system provides the help and error mes
sages, user guide, softcopy and hardcopy facilities, and screen display.

During the operation, help messages are available in any input section as a guidance so
that user can use this CAD tool easily. Beside tha.t, if any error was encountered during
the operation, the system will display the corresponding error mes age so that the user can
do the appropria.te correction if possible.

The input (contents of state table) for this system can be retrieved either from input file
or done manually. User can save the input data into a fil (if the user keyed in the input

58 MOHAMED OTfiMAN & BAMBANG SUNARYO SUPARJO

State-table
file

Relabelled
state-table
file

Detail
proc-s
file

Fig. 3.1 System flowchart

User guide
Help utilities
Error messages
Output

manually) so that any modification can be done easily later.
If the user wants to know about the detail processing steps (algorithm) of the system,

he may select the appropriate options, then view it at the required output device. The user
guide is used to teach the user how to use this CAD tool. ·

4 CONCLUSION AND FUTURE WORKS
This work has been successful in achieving its objective and fulfil the CAD basic require
ments even though the program produced have some limitations.

Further expansion of this work are; 1) Once the reduction state table has been obtained,
the next step in the design procedure is to allocate a binary code to every internal state, or
row, in the table so that input equations for the storage elements (JK or SR bitstables, etc)
may be derived - state assignment. 2) In all practical cases (say circuits with more than
five states) to attempt for determine an optimum assignment by enumeration methods is
obviously impossible and some form of algorithm technique (programmed for a computer)
must be used. Therefore, it is suggested that an automatic state assignment program be
produced.

Il l
[2]

131
141

lSI

161

171
[81
191
1101
1111

REFERENCES
A. E . A Alamaini, Electronic Logic System , Prentice-Hall International, UK, 1986.
Douglas Lewin, Computer-Aided Deslgn of Digital System, Crane, Russak and Company Inc, New
York, USA, 1977.
Douglas Lewin, Design of Logic System, Van Nostrand Reinhold , UK , 1986.
Gerald Musgrave, Computer-Aided Design of Digital Electronic Circuits and System, North Holland
Publishing Company, Netherlands, 1979.
F . J. Hill & G. R . Peterson , Switching Theory and Logic Design, John Wiley and Son, New York,
1981.
S. Murai & H. Matsushita & K. Enomoto, Logic Simulation Programs, Advances in CAD for VLSI 2
(1986), 135-163.
R. M. McDernott, Computer-Aided Logic Design, Howard W. Sams and Co. Inc., New York, 1985.
E. J . McCluskey, Logic Design Principles, Prentice Hall Inc, New York, 1986.
- , Turbo Pascal tier 5.0 Reference Guide, Borland International, USA, 1988.
-, Turbo Pascalver 5.0 User 's Guide, Borland International, USA, 1988.
N. Writh, Algorithms + Data Structures= Programs, Prenti e Hall , Inc, USA, 1988.

