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Abstract 
 

This study evaluates the utility and suitability of a simple discrete multiplicative random 

cascade model for temporal rainfall disaggregation. Two of a simple random cascade 

model, namely log-Poisson and log-Normal 𝛽 models are applied to simulate hourly rainfall 

from daily rainfall at seven rain gauge stations in Peninsular Malaysia. The cascade models 

are evaluated based on the capability to simulate data that preserve three important 

properties of observed rainfall: rainfall variability, intermittency and extreme events. The 

results show that both cascade models are able to simulate reasonably well the commonly 

used statistical measures for rainfall variability (e.g. mean and standard deviation) of hourly 

rainfall. With respect to rainfall intermittency, even though both models are 

underestimated, the observed dry proportion, log-Normal 𝛽 model is likely to simulate 

number of dry spells better than log-Poisson model. In terms of rainfall extremes, it is 

demonstrated that log-Poisson and log-Normal 𝛽 models gave a satisfactory performance 

for most of the studied stations herein, except for Dungun and Kuala Krai stations, which 

both located in the east part of Peninsula.  
 

Keywords: Rainfall disaggregation, random cascade models, statistical moment scaling, 

rainfall variability, intermittency, rainfall extremes 

 

Abstrak 
 

Kajian ini dijalankan untuk menilai kebergunaan dan kesesuaian model lata rawak mudah 

secara pendaraban diskrit untuk mendisaggregasi siri masa hujan. Dua daripada model 

lata rawak mudah iaitu model log-Poisson dan log-Normal 𝛽 digunakan untuk 

mendisaggregasi data hujan skala jam-jaman daripada data hujan skala harian di tujuh 

stesen hujan di Semenanjung Malaysia. Model lata tersebut dinilai berdasarkan 

keupayaan untuk mensimulasi data hujan yang dapat mengekalkan tiga ciri penting 

yang terdapat pada cerapan data hujan: kevariabelan data hujan, selang masa hujan 

terputus-putus dan peristiwa hujan ekstrem. Hasil analisis data menunjukkan kedua-dua 

model berupaya untuk mensimulasi data hujan per jam dengan agak baik di mana data 

simulasi mengekalkan ukuran statististik yang sering digunakan (min dan sisihan piawai). 

Berkenaan selang masa hujan terputus-putus pula, walaupun kedua-dua model 

menganggarkan nilai perkadaran jam kering kurang daripada perkadaran jam kering 
yang dicerap, model log-Normal 𝛽 menghasilkan bilangan jam kering lebih baik daripada 

model log-Poisson. Berkenaan analisis ekstrem hujan, hasil kajian menunjukkan model log-

Poisson dan log-Normal 𝛽 memberikan keputusan yang memberangsangkan di hampir 

kesemua stesen hujan, kecuali di stesen Dungun dan Kuala Krai yang mana kedua-dua 

stesen ini terletak di bahagian timur semenanjung.  
 

Kata kunci: Disaggregasi hujan, model lata rawak, penskalaan momen statistic, 

kevariabelan data hujan, selang masa hujan terputus-putus, hujan ekstrem 
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1.0  INTRODUCTION 
 

Long and continuous rainfall data at hourly or finer 

resolutions are often needed in a wide range of real-

world water engineering problems, related to diverse 

fields such as urban storm drainage, soil erosion and 

response studies of small watersheds to name a few. 

However, fine resolution rainfall data are not often 

available, especially in developing and under-

developed countries, mainly because of the high cost 

and low reliability of monitoring such data. Rainfall 

series of considerable length are usually available at 

coarser resolution (e.g. daily) due to low cost and ease 

of collection. This situation has made it beneficial as one 

practical solution to overcome the paucity of fine 

resolution rainfall data. Fine resolution rainfall 

distributions can be estimated from those observed 

data at a lower resolution by using an appropriated 

stochastic rainfall disaggregation model.  

The purpose of such stochastic rainfall 

disaggregation model is to extend historical records or 

generate new ones and it’s essential that the model 

preserves important statistical properties of the 

observed rainfall records, such as the scaling of 

distributions, intermittency, autocorrelation 

characteristics and behaviour of extreme events. To this 

end, a vast number of rainfall disaggregation models 

have been proposed in the literature on which models 

are based on many different concepts (reader may 

refer to Sivakumar and Sharma [1] for some review on 

the existed disaggregation models). One of the most 

studied models is multiplicative random cascade 

models which is based on scale invariance theory (e.g. 

[2, 3, 4]). The interest in these models is related to their 

ability to describe the complex rainfall process over a 

wide range of scales with few parameters, as well as 

their link to the multifractal theory. 

The multiplicative random cascade model, in the 

beginning, has been introduced into practice for 

describing geophysical fields [2, 3, 5, 6], and later, due 

to the encouraging results from modelling the 

multifractal structure of rainfall fields, the cascade 

model has been applied to the temporal rainfall 

disaggregation [7]. Successful tests of a simple random 

cascade model in temporal rainfall disaggregation 

have been reported in numerous studies, of which the 

cascade model showed the ability to simulate realistic 

fine resolution rainfall series. Some of the studies 

included Onof et al. [8] who has followed Deidda et al. 

[9] in using a discrete random cascade algorithm 

based on the log-Poisson generator to generate 

synthetic 5 min rainfall series from the 13 years of hourly 

rainfall for stations at Heathrow, near London. The 

cascade model did not only do well in reproducing the 

temporal structure, but it was also able to preserve the 

extreme behaviour of observed rainfall series. Molnar 

and Burlando [10] have adopted the intermittent log-

Normal 𝛽 model proposed by Gupta and Waymire [3] 

to disaggregate quasi daily rainfall down to 10 min 

intervals for 20-year record period in Zurich, Switzerland. 

They compared the performance of the model with a 

cascade model with a bounded (i.e. time scale 

dependent) generator distributed as Beta probability 

density and found that the intermittent log-Normal 𝛽 

model is better at preserving the distribution of rainfall 

and its extreme behaviour at the 10-min scale.  

Considering the encouraging results of a simple 

random cascade model to simulate rainfall series while 

preserving important statistical properties of the 

observed rainfall records, the present study thus intends 

to assess utility and suitability of the cascade model as 

temporal rainfall disaggregation for maritime continent 

conditions. By far, no study has been conducted in the 

present study areas on stochastic rainfall 

disaggregation using random cascade models. Two 

earlier studies only focused on the investigation of 

scaling behaviour for rainfall series in Singapore [11, 12]. 

A simple random cascade model will be employed to 

disaggregate daily rainfall data down to hourly rainfall 

data for seven rain gauge stations located sparsely in 

Peninsular Malaysia. The prime focus of this study is in the 

generation of synthetic rainfall time series and 

comparisons of those with the real observations in the 

context of rainfall variability and intermittency as well as 

rainfall extremes behaviour.  

 

 

2.0  METHODOLOGY 
 

2.1  Rainfall Data 

 

The rainfall data set from seven selected rain gauge 

stations located in Peninsular Malaysia were obtained 

from the Department of Irrigation and Drainage 

Malaysia rainfall archive. The length of recorded years 

for these stations ranged from 22 to 42 years. The 

geographical coordinates of the stations along with the 

period of records are listed in Table 1 and Figure 1 show 

the locations of those stations.  
 

Table 1 Geographic coordinates and period of records for 

seven rain gauge stations in Peninsular Malaysia 

 

Stations Latitude Longitude Period of records 

Kuala Nerang 6.25 100.61 1985-2012 

Tanjung Malim 3.68 101.52 1979-2012 

Kajang 3.00 101.79 1976-2012 

Raub 3.81 101.85 1979-2012 

Pekan Nenas 1.52 103.49 1979-2012 

Dungun 4.76 103.42 1971-2012 

Kuala Krai 5.31 102.28 1990-2012 

 

 

2.2  Multiplicative Random Cascade Disaggregation 

Model 

 

The rationale of the discrete multiplicative random 

cascade framework is that a measurement (e.g. rainfall 

intensity, R) defined on a specific support at a given 

coarser scale can be recursively redistributed across 

finer scales through a multiplication process. The theory 

of random cascade arose in the statistical theory of 

turbulence, where its development was motivated by a 
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desire to model the fields and series that have 

statistically scale-invariant properties and it was put in 

the basic discrete form used here by Mandelbrot [13]. 

The ability of random cascade models to reproduce 

the structures in observed rainfall and its statistical 

properties such as the scaling of distributions, 

intermittency, and characteristics of extreme events, 

has justified their rapid implementation in numerous 

studies on generating fractal or multifractal rainfall fields 

or time series under different climatic conditions.              
 

 
 

Figure 1 Map of Peninsular Malaysia showing the geographical 

regions and the location of the selected seven rain gauge 

stations 

 

 

For temporal rainfall, the random cascade model 

starts by distributing the initial mass (in the present study, 

we used rainfall intensity, R) occurring at the coarse 

time scale, L among several subintervals of fixed size. 

The number of subintervals is defined by the branching 

number b, which often for simplicity (as done in this 

study), is set equal to 2. Figure 2 represents the basic 

structure of the random cascade model. At each 

cascade level, each segment is divided into b equal 

parts and the mass in each part is the product of the 

previous mass on the corresponding time scale and a 

non-negative weighted value derived from a specified 

distribution, which is known as the cascade generator 

W. The rainfall at the n-th cascade level at position j in 

time series can be expressed as: 

𝑅𝑗,𝑛 = 𝑅0 ∏ 𝑊𝑓(𝑖,𝑗),𝑖

𝑛

𝑖=1

 (1) 

where for branching 𝑏 = 2, 𝑗 = 1,2, ⋯ , 2𝑛. The function 

𝑓(𝑖, 𝑗) indexes the position of the time interval at the i-th 

cascade level and is given by rounding up 𝑗 2𝑛−1⁄  to the 

nearest integer. 

 

Figure 2 Example of the discrete MRC with branching number 

b=2 and cascade generator W for scales n=0, 1, and 2 
 

 

2.3  Statistical Moment Scaling 

 

The properties of the cascade generator W for cascade 

models used in the present study can be estimated 

using the statistical moment which characterized the 

fractal or scale-invariant behaviour of the multiplicative 

cascade process across scales. The statistical moment 

analysis of rainfall time series is considered in a non-

dimensional framework as done by de Lima [14]. The 

time scale is nondimensionalized by a scale ratio 𝜆 =
𝐿 𝑙⁄  where it is defined as a ratio of the largest scale of 

interest, L (e.g. 32h) to the smallest scale, l (e.g. 1h). l is 

varying from 1h to L h by a factor of 2, e.g. 𝑙 =
1, 2, 4, 8, 16, 32. While the dimensionless rainfall intensity 𝜀𝜆 

is obtained by dividing the intensity on a time scale of 

resolution 𝜆, 𝑅𝜆,𝑖 and the ensemble average intensity of 

the process, 𝐸(𝑅𝜆) = ∑ 𝑅𝜆,𝑖
𝜆
𝑖=1 𝜆⁄  : 

𝜀𝜆 =
𝑅𝜆,𝑖

𝐸(𝑅𝜆)
  ;  𝑖 = 1, ⋯ , 𝜆    (2) 

The statistical moments 𝑀𝑞(𝜆) of (arbitrary) order q 

were estimated for each time resolution 𝜆 by: 

𝑀𝑞(𝜆) = 𝐸(𝜀𝜆
𝑞

) ≈ 𝜆𝐾(𝑞) (3) 

where 𝐾(𝑞)  is the scaling exponent function, which can 

be obtained by estimating the slope of 𝑀𝑞(𝜆) versus 𝜆 in 

the logarithmic domain for various moment orders q. 

The shape of 𝐾(𝑞) is linked to the q-moments of the 

random number generator W by: 

𝐾(𝑞) = log𝑏 𝐸(𝑊𝑞) (4) 

The scaling exponent function 𝐾(𝑞) can be given a 

theoretical expression depending upon the nature of 

the random cascade. In the present study, we choose 

two theoretical distributions of cascade generator W in 

the light of the encouraging results by earlier studies as 

well as their appeal from a practical viewpoint since 

they are relatively parameter parsimonious. The two 

distributions are log-Poisson (e.g. [8, 15, 16]) and log-

Normal (e.g. [7, 10, 17]). The distribution of W is assumed 

to be independent and identically distributed with 

𝐸(𝑊) = 1, so that mass, on the average, conserved 

from level to level in the cascade development. These 

Cascade 

level 

n=0 

n=1 

n=2 

𝑅0 

𝑅0𝑊1,1 𝑅0𝑊2,1 

𝑅0𝑊1,2𝑊1,1 

 

𝑅0𝑊2,2𝑊1,1 𝑅0𝑊3,2𝑊2,1 𝑅0𝑊4,2𝑊2,1 

Time 

scale 

24h 

12h 

6h 
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two cascade models are differed in the way they deal 

with the intermittency in rainfall. 

 

2.3.1  log-Poisson Model 

 

The cascade generator W for log-Poisson model is given 

by: 

𝑊 = 𝐴𝛽𝑁 (5) 

where 𝑃(𝑁 = 𝑚) =
𝑐𝑚𝑒−𝑐

𝑚!
. Since the condition of the 

mean intensity requires that 𝐸(𝑊) = 1, therefore this 

leads to 𝐴 = 𝑒𝑐(1−𝛽) which leaves only two independent 

parameters 𝛽 and 𝑐 that are needed to identify. The 

theoretical expression of 𝐾(𝑞)  for log-Poisson cascade 

is given as: 

𝐾(𝑞) = 𝑐
𝑞(1 − 𝛽) + 𝛽𝑞 − 1

𝑙𝑛(2)
 (6) 

A feature of log-Poisson cascade is  it is always equal to 

positive values. This means that this cascade generator 

does not generate any zeros. Therefore, this study needs 

to provide a method for generating zeros rainfall. Since 

the data were recorded from a tipping bucket 

measurement, thus we adopted approach by Onof 

and Arnbjerg-Nielsen [18] wherein a tipping bucket is 

used as a filter for the generated hourly rainfall series. 

The simulated hourly rainfall data is set to 0 if the total 

depth in that interval is below a given threshold (i.e. 

threshold is set to 0.1 mm), and the amount being 

subtracted is then added to the next hourly interval. 

Implementing this approach will avoid the problems of 

systematic errors from the tipping bucket rain gauge 

influencing the results, such as bias in the mean rainfall 

intensity [18]. 

 

2.3.2  log-Normal 𝜷 Model 

 

The cascade generator W in log-Normal 𝛽 model is 

written as a product of two independent random 

variables, 𝑊 = 𝐵𝑌 where B is a random variable that 

controls the intermittency in rainfall and Y is a strictly 

positive random variable that represents the weight for 

assigning a rainfall amount in an interval. The rain and 

non-rain interval in a rainfall process is determined 

based on the following probabilities that derived 

according to the Bernoulli distribution: 

where 𝑐 is a parameter and 𝐸(𝐵) = 1. Variability in the 

positive part of the generator is obtained from the log- 

Normal distribution, and with the condition 𝐸(𝑌) = 1, the 

expression is given as: 

𝑌 = 𝑏
−𝜎2𝑙𝑛𝑏

2
+𝜎𝑋

 (8) 

where X is a normal N(0,1) random variable and 𝜎2  is a 

parameter defining the variance of Y. The generator W 

is then distributed as: 

𝑃(𝑊 = 0) = 1 − 𝑏−𝑐 and  

𝑃 (𝑊 = 𝐵𝑌 = 𝑏𝑐 . 𝑏
−𝜎2𝑙𝑛𝑏

2
+𝜎𝑋) = 𝑏−𝑐 

(9) 

and the scaling exponent function of W is: 

𝐾(𝑞) = 𝑐(𝑞 − 1) +
𝜎2𝑙𝑛𝑏

2
(𝑞2 − 𝑞) (10) 

 

2.4  Goodness-of-Fit Tests (GOF) 

 

Three different goodness-of-fit tests (GOF) have been 

used as a measure of the relative quality of log-Poisson 

and log-normal 𝛽 models in disaggregating hourly 

rainfall time series. The three tests, namely root mean 

squared error (RMSE), Nash-Sutcliffe efficiency (NSE) 

and percent bias (pbias) are among common GOF 

tests used to evaluate the model performance in 

hydrological modelling. The tests are based on the 

degree of discrepancy between observed and 

simulated values at hourly resolution. The formula of the 

GOF tests are given as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
 (11) 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 

where �̅� =
∑ 𝑂𝑖

𝑛
𝑖=1

𝑛
 

(12) 

𝑝𝑏𝑖𝑎𝑠 =
∑ (𝑆𝑖 − 𝑂𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

× 100 (13) 

where 𝑆𝑖 is the 𝑖th hourly simulated series, 𝑂𝑖 is the 𝑖th 

hourly observed series and 𝑛 is the length of the hourly 

rainfall series. The preferred distribution is chose based 

on the minimum value of RMSE and the maximum value 

of NSE (−∞ < 𝑁𝑆𝐸 ≤ 1). Meanwhile, the optimum value 

of pbias is 0, with low-magnitude values indicate 

accurate model simulation. The positive values of pbias 

indicate the overestimation while the negative values 

indicate the underestimation of the model. 

 

2.5  Analysis Setup 

 

Our analysis setup for testing both of log-Poisson and 

log-Normal 𝛽 models in the context of their ability for the 

disaggregation of coarse resolution rainfall data into 

synthetic fine resolution was as follows: 

1. The observed rainfall series at the 1h resolution, 

defined as the scale 𝜆 = 32, was aggregated with 

𝑏 = 2 up to 32h resolution, where the scale is 𝜆 = 1. 

At the 1h resolution, the standard statistics that 

considered as important and necessary to be 

fulfilled for an adequate model in water resource 

studies were computed. These included mean, 

standard deviation, and dry proportions. We also 

computed the annual maxima for extreme value 

analysis which later will be analysed to examine 

the ability of the models used here to reproduce 

the distribution of annual extremes. 

2. The statistical moment analysis was done for each 

rain gauge stations in a non-dimensional 

framework. The parameters of each cascade 

model will be estimated by fitting the scaling 

exponent function derived from the data to a 

theoretical form. The fitting is carried out by using 

the least squares method. If we denote 𝐾𝑑(𝑞) as 

the empirical scaling exponent function and 𝐾𝑇(𝑞) 

𝑃(𝐵 = 0) = 1 − 𝑏−𝑐 and 𝑃(𝐵 = 𝑏𝑐) = 𝑏−𝑐 (7) 
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as the theoretical expression of each model, then 

the parameters are found with the following 

minimization program: 

𝑚𝑖𝑛 ∑[𝐾𝑇(𝑞𝑗) − 𝐾𝑑(𝑞𝑗)]
2

𝑛

𝑗=1

 (14) 

where n is the number of values of q-moments 

used in the fitting. 

3. With the parameters for each cascade models, 

historical daily rainfall (aggregated from hourly 

data) were then disaggregated to hourly rainfall 

for 100 realizations. In this study, the daily data at 

1440 min resolution (i.e. daily) was subdivided to 45 

min after five successive disaggregation levels. The 

hourly rainfall series was obtained by performing 

linear interpolation from 45 min to the nearest 1h 

time step [19]. 

4. The performances of the cascade models in 

rainfall disaggregation were first evaluated based 

on the values of the three GOF criteria. To further 

evaluate the models’ performance, the standard 

statistics and the behaviour of rainfall extremes in 

the simulated hourly data were analysed. The 

results of both cascade models were compared 

and statement regarding the utility and suitability 

of the models for rainfall disaggregation at the 

studied stations were made. 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Parameter Estimation 

 

Statistical moments for each scale 𝜆 were calculated 

per Eq. (3) and owing to uncertainties in the estimation 

of high order moments [14], the moment analysis was 

limited to orders q in the range 0 ≤ 𝑞 ≤ 3. A relationship 

between 𝑀𝑞(𝜆) versus 𝜆 in the logarithmic domain for 

each q-moment was then developed. The slope of 

each fitted line was determined by linear regression as 

the function of scaling exponent 𝐾(𝑞). Figure 3 displays 

an example of the statistical q-moments with scale ratio 

𝜆 on log-log plot and the empirical relation of 𝐾(𝑞) 

versus q, which presents the results obtained for Tanjung 

Malim rainfall data. The shape of the empirical 𝐾(𝑞) in 

Figure 3(b) was slightly convex, rather than a straight 

line. This is an indication of the presence of multifractal 

behaviour in the rainfall series in the studied station. In 

addition, the departure from monofractal behaviour in 

the data was evident (i.e. the theoretical 𝐾(𝑞) =
𝑐(𝑞 − 1) of monofractal 𝛽 model would be shown as 

straight line [10]).  

The parameters of log-Poisson and log-Normal 𝛽 

models were estimated from the 𝐾(𝑞) function given in 

Eq. (6) and Eq. (10), respectively, using the least square 

method in Eq. (11). For log-Poisson model, the 

estimation of 𝐾(𝑞) for values of q smaller than 1 is not of 

high quality, so these values were not considered in the 

fit. The fitted 𝐾(𝑞) for each model was then plotted 

along with the empirical 𝐾(𝑞) as shown in Figure 3(b). 

Table 3 presents the parameter values of each 

 

 
(a) Moment scaling relationships 

 

 
(b) The scaling exponent function, 𝐾(𝑞) 

 

Figure 3 An example for the observed data at the Tanjung 

Malim station 

 

 

cascade models for rainfall series from all the stations 

studied herein. These parameters were computed from 

the entire historical records that were constant. 

 
Table 3 Parameter values for the log-Poisson and log-Normal 𝛽 

model for all studied stations 

 

Stations log-Poisson log-Normal 𝜷 

 𝑐 𝛽 𝑐 𝜎2 
Kuala Nerang 0.580 0.083 0.586 0.151 

Tanjung Malim 0.614 0.077 0.583 0.212 

Kajang 0.578 0.046 0.643 0.140 

Raub 0.598 0.074 0.619 0.154 

Pekan Nenas 0.526 0.039 0.612 0.108 

Dungun 3.264 0.649 0.452 0.271 

Kuala Krai 0.462 0.016 0.586 0.070 

 

 

3.2  Assessment of the Random Cascade Models 

 

The performance of log-Poisson and log-Normal 𝛽 

models, for all the studied stations, were first evaluated 

using RMSE, NSE and pbias GOF tests. Results of the tests 
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are presented in Table 4. Based on the values of RMSE 

and NSE criteria, the log-Poisson model seems to be the 

preferred distribution for rainfall disaggregation as 

compared to the log-normal 𝛽 model, except for 

Dungun station. The former model gave lower RMSE 

values and higher NSE values than the latter model. 

Results of the pbias test indicate that both models are 

either overestimated or underestimated the hourly 

rainfall data. The result of the pbias test, however, 

inconsistent with the RMSE and NSE tests. Thus, in this 

study, we chose the best suited distribution based on 

the RMSE and NSE values, while the pbias test is used to 

measure the degree of overestimation or 

underestimation by the models. 

 
Table 4 The results of the goodness-of-fit tests (GOF) for log-
Poisson and log-Normal 𝛽 models for all studied stations 

 

Stations GOF 

tests 

log-Poisson log-Normal 
𝜷 

Kuala Nerang RMSE 0.122 0.178 

 NSE 0.994 0.986 

 pbias 0.271 0.103 

Tanjung Malim RMSE 0.146 0.375 

 NSE 0.995 0.968 

 pbias 0.160 0.063 

Kajang RMSE 0.145 0.291 

 NSE 0.994 0.977 

 pbias -0.129 0.031 

Raub RMSE 0.133 0.192 

 NSE 0.993 0.983 

 pbias -0.073 0.124 

Pekan Nenas RMSE 0.125 0.216 

 NSE 0.995 0.985 

 pbias -0.103 -0.291 

Dungun RMSE 1.089 1.058 

 NSE 0.762 0.776 

 pbias 0.129 -0.210 

Kuala Krai RMSE 0.182 0.258 

 NSE 0.990 0.980 

 pbias 0.448 -0.460 

 

 

The performance of the cascade models was further 

evaluated to assess the models’ ability to reproduce a 

number of important hourly rainfall statistics estimated 

from the observed records. This study will assess and 

compare how realistically each model simulates hourly 

rainfall variability, intermittency and rainfall extremes. 

 

3.2.1  Rainfall Variability 

 

Both log-Poisson and log-Normal 𝛽 models were able to 

reproduce the mean of hourly rainfall amount at all rain 

gauge stations (see Table 5 and Figure 4). These results 

were expected since the mean is known to be well 

reproduced on theoretical grounds of cascade 

models. The log-Normal 𝛽 model was slightly 

underestimated the mean at the hourly resolution for 

Dungun station. For Kuala Krai, the simulated mean of 

both cascade models was obviously differed from the 

observed mean, such that the log-Poisson model 

overestimated the mean, while the log-Normal 𝛽 model 

underestimated the mean of hourly rainfall amount. 

Table 5 Observed and model generated rainfall variability and 

dry proportion for hourly data across all studied rain gauge 

stations. Rainfall variability and dry proportion of cascade 

models are computed from average of 100 realizations, with 

variations between model runs shown in Figure 4-6 

 

 Observed 
log-

Poisson 

log-
Normal 𝜷 

Mean    

Kuala Nerang 0.205 0.206 0.206 

Tanjung Malim 0.286 0.286 0.286 

Kajang 0.244 0.244 0.244 

Raub 0.203 0.203 0.203 

Pekan Nenas 0.259 0.259 0.258 

Dungun 0.281 0.281 0.280 

Kuala Krai 0.258 0.259 0.257 

    

Standard 

deviation 
   

Kuala Nerang 1.639 1.643 1.605 

Tanjung Malim 2.149 2.142 2.054 

Kajang 1.977 1.989 1.936 

Raub 1.613 1.625 1.587 

Pekan Nenas 1.864 1.875 1.828 

Dungun 2.259 2.219 2.467 

Kuala Krai 1.895 1.877 1.827 

    

Dry proportion    

Kuala Nerang 0.936 0.884 0.924 

Tanjung Malim 0.920 0.865 0.909 

Kajang 0.939 0.897 0.932 

Raub 0.937 0.886 0.925 

Pekan Nenas 0.930 0.885 0.921 

Dungun 0.923 0.775 0.886 

Kuala Krai 0.927 0.895 0.913 

 

 

 
 

Figure 4 Mean of hourly rainfall amount across all studied 

stations, red solid line denoted observed mean 
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Figure 5 shows that log-Poisson model was better at 

preserving the standard deviation of rainfall series at 

hourly time scale than the log-Normal 𝛽 model. The log-

Poisson cascade model able to reproduce the 

observed standard deviation for most of the stations 

with only a slightly overestimated for Kajang and Pekan 

Nenas stations and underestimated for Dungun and 

Kuala Krai stations.  

Meanwhile, the log-Normal 𝛽 model unable to 

perform well at all the studied stations by consistently 

underestimating the hourly standard deviation, except 

at Dungun station where the model overestimated it. 

The poor simulation of the standard deviation by the 

log-Normal 𝛽 model could be reasoned by the 

possibility of simulating two zero weights for a rainy 

period, and it could also be the inability of the variability 

parameter, 𝜎2 to adequately estimate the rainfall 

variability. 

 

 
 

Figure 5 Standard deviation for hourly data across all studied 

stations, red solid line denoted observed standard deviation 

 

 

3.2.2  Dry Proportions 

 

The log-Poisson and log-Normal 𝛽 models in general did 

not produce rainfall series with proper rainfall 

intermittency at the hourly resolution with 

underestimation for all the stations (see Figure 6). 

However, log-Normal 𝛽 model able to generate the 

number of dry spells closer to the observed than log-

Poisson model since the former model considered 

rainfall intermittency in its framework. The log-Poisson 

model, on the other hand, only generates positive 

values and the zeroes rainfall are obtained from the 

threshold mechanism described in Methodology 

section. 

3.2.3  Extreme Value Analysis 

 

In the present study, we analysed the behaviour of 

rainfall extremes using the intensity-frequency curves. It 

was formed based on an empirical cumulative 

distribution of the annual maxima which was extracted 

from observed and simulated rainfall series [17]. The 

annual maxima were ranked from the highest to the 

lowest and the annual exceedance probability (AEP) 

are estimated as: 

𝐴𝐸𝑃(𝑚) =
𝑚

𝑁 + 1
 (15) 

where m is the rank and N is the length of record. The 

estimated AEPs were then plotted against the 

corresponding log-transformed rainfall intensities. 

Confidence bands for the simulated intensity-

frequency curves for each model were constructed 

using results from 100 realizations and compared with 

those derived from observed curves. 

 

 
 

Figure 6 Dry proportion for hourly data across all studied 

stations, red solid line denoted observed dry proportion 

 

 

Figure 7 shows the intensity-frequency curves for each 

model versus observed values at each studied stations. 

Interesting results were observed, such that the 

observed rainfall maxima for most of the stations fall 

within the simulated bounds of both log-Poisson and 

log-Normal 𝛽 models even at low AEPs, except for 

Dungun and Kuala Krai stations. For Kuala Nerang 

station, the log-Normal 𝛽 model reproduced the 

observed intensity-frequency curves well compared to 

the log-Poisson model which slightly underestimated 

the curves at middle up to low return periods. 

Meanwhile, for Tanjung Malim station, the performance 

of the log-Poisson model was better than the log-
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Normal 𝛽 model, particularly, at high return periods. 

Both models were slightly underestimated the hourly 

intensity-frequency at low return period. Nevertheless, 

the observed values still fall within the simulated bounds 

of these two models. 

For Kajang and Raub stations, both cascade models 

performed reasonably well, except for a slight 

overestimation of high return periods by log-Normal 𝛽 

model. For Pekan Nenas station, the log-Poisson model 

was able to reproduce the observed intensity-

frequency curves well at high return periods, but done 

poorly at low return period with an underestimation of 

the curves. Conversely, the log-Normal 𝛽 model 

performed well at low return periods and a slight 

overestimation at high return periods. In Dungun station, 

both models gave about similar simulated intensity-

frequency curves, with the observed values fall within 

the simulated bounds only at low return periods, while 

at high up to middle return periods, both models 

overestimated the curves. 

 

 
 

Figure 7 Empirical intensity-frequency curves derived from 

observed and cascade models for hourly data, with columns 

denoting cascade models (LP-log-Poisson and LN beta-log-
Normal 𝛽) and rows denoting rain gauge stations. Red dots 

denoting observed intensity-frequency behaviour and blue 

dots and blue dashed lines denoting the median and 5th and 

95th percentiles of 100 realizations, respectively 

 

 

For Kuala Krai station, the log-Normal 𝛽 model 

reproduced the curves rather well, apart from a slight 

underestimation of low return periods. In contrast, the 

log-Poisson model performed poorly with an 

underestimation of the hourly intensity-frequency from 

the middle to lower tails of the extreme value 

distribution. In view of these results, the log-Poisson 

model appeared to be fitted as a disaggregator tool 

for Tanjung Malim, Kajang and Raub rainfall data, while 

the log-Normal 𝛽 model was good in reproducing the 

rainfall series and extremes of the observed for Kuala 

Nerang and Pekan Nenas. However, both log-Poisson 

and log-Normal 𝛽 models failed to simulate the 

extremes well for Dungun and Kuala Krai stations. 

 

 
 

Figure 7 continued 

 

 

4.0  CONCLUSION 
 

The present study investigated the utility and suitability 

of a simple discrete multiplicative random cascade 

models for disaggregation of rainfall series from daily 

time scale to the hourly time scale in Peninsular 

Malaysia climate conditions. Two different distributions 

for cascade generator were used here, namely log-

Poisson and log-Normal 𝛽.  

Based on the RMSE and NSE goodness-of-fit tests, the 

log-Poisson model seems to be the best-suited model 

for all the stations studied herein, except for Dungun 

station which preferred log-Normal 𝛽 model for rainfall 

disaggregation. The performances of the cascade 

models were further evaluated based on their ability to 

obtain realistic hourly rainfall series. In general, both log-

Poisson and log-Normal 𝛽 models are good at 

preserving the mean of rainfall at the hourly time scale. 

In terms of standard deviation, the log-Poisson model 

performs better at reproducing the variability of 

observed rainfall than the log-Normal 𝛽 model. 

However, in terms of dry proportions, both models 

apparently failed to reproduce the rainfall 

intermittency. Nevertheless, the log-Normal 𝛽 model 

does better than the log-Poisson model. 

In terms of rainfall extremes, a fairly good 

performance by log-Poisson and log-Normal 𝛽 models 

were shown for most of the studied stations, except for 

Dungun and Kuala Krai stations which both located in 

the east part of Peninsular Malaysia. Both models 

unable to reproduce the behaviour of observed rainfall 

extremes in those stations. This could be due to the 
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different climate experiencing in both stations where 

the rainfall in the east regions is very much influenced 

by the seasons. Perhaps by taking into consideration 

the seasonal factors in parameterization may improve 

the multiplicative random cascade models’ 

performance, particularly in the aspect of extreme 

value simulation.  

Overall, the performance of log-Poisson and log-

Normal 𝛽 models on the reproduction of some 

important rainfall or hydrological statistics can be 

judged as satisfactory, given their parsimonious nature. 

Although the present study only involved seven rain 

gauge stations in Peninsular Malaysia, the information 

gained from the study can at least guide engineers in 

water resource fields in making decisions on the suitable 

disaggregation model for the simulation of rainfall series 

at fine resolution using data from coarse resolution.  

For the future research, the study may apply 

datasets from other rain gauge stations in Peninsular 

Malaysia to verify our findings on the suitability of 

cascade models, as well as employ microcanonical 

version of multiplicative random cascade model where 

the distribution of cascade weights is assumed to be 

dependent on time scale [7, 10, 20], on rainfall intensity 

and time scale [21, 22], and on interval class, i.e. 

intervals at the beginning, middle, or end of a rainfall 

event [4, 19]. 
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