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1.0  INTRODUCTION 
 

Effective fault monitoring, detection and diagnosis of 

chemical processes is important to ensure the 

consistency and high product quality, as well as the 

safety of the processes. Any abnormal process 

operation should be detected and the root causes to 

be diagnosed early to reduce the risk of catastrophic 
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Abstract 
 

Effective fault monitoring, detection and diagnosis of chemical processes is important 

to ensure the consistency and high product quality, as well as the safety of the 

processes. Fault diagnosis problems can be considered as classification problems as 

these techniques have been proposed and greatly improved over the past few years. 

However, a chemical process is often characterized by large scale and non-linear 

behavior. When linear discriminant analysis is used for fault diagnosis in the system, a lot 

of incorrect diagnosis will occur. As solution, this paper presents a novel approach for 

feature extraction and classification framework in chemical process systems based on 

wavelet transformation and discriminant analysis. The proposed multi-scale kernel Fisher 

discriminant analysis (MSKFDA) method used the combination of kernel Fisher 

discriminant analysis (KFDA) and discrete wavelet transform (DWT) to improve the 

classification performance as compared to conventional approaches. A DWT is applied 

to extract the process dynamics at different scales by decomposed the data into 

multiple scales, analyzed by the KFDA and only dynamical characteristics with 

important information was reconstructed by inverse discrete wavelet transform (IDWT). 

Then, Gaussian mixture model (GMM) and K-nearest neighbor (KNN) method were 

individually applied for the fault classification using the output from the MSKFDA 

approach. These two classifiers are evaluated and compared based on their 

performance on the Tennessee Eastman process database. The proposed framework 

for GMM and KNN classifiers had achieved average classification accuracies of 84.72% 

and 82.00%, respectively, with the results show significant improvement over existing 

methods in fault detection and classification. 

 

Keywords: Fault Diagnosis, Discrete Wavelet Transform, Fisher discriminant analysis, 

Gaussian mixture model, K nearest neighbor 

 

© 2017 Penerbit UTM Press. All rights reserved 

  



90            Norazwan, Mohd Azlan &, Che Rosmani / Jurnal Teknologi (Sciences & Engineering) 79:5–3 (2017)89–96 

 

 

accident and economic losses before the corrective 

actions could move the plant back to normal operation 

condition.  

Various methods of process fault monitoring, 

detection and diagnosis are developed based on 

signal processing and data classifications. In general, 

these fault detection and diagnosis methodologies are 

broadly divided into three types: quantitative model-

based methods; qualitative model-based methods; 

and process history based methods [1].  

The process history based or data-driven method 

concerns with the transformation of large amounts of 

data into a particular form of knowledge and distinctive 

representation. Availability of vast amounts of process 

data has encouraged researchers to develop and 

improve the data-driven-based and multivariable 

statistical process monitoring based methods to extract 

key process information. However, compared to fault 

detection, the problem within fault classification and 

diagnosis have not yet been properly solved, and still 

present important practical limitations that make this 

area an open for further research [2].   

Fault diagnosis problems can be considered as 

classification problems as these techniques have been 

proposed and greatly improved over the past few 

years. For example, Bayesian classifier [3-5], Principal 

Component Analysis (PCA) [6-7], Fisher Discriminant 

Analysis (FDA) [8-9], Partial Least Squares (PLS) [10], 

Artificial Neural Networks (ANN) [11-12], Support Vector 

Machine (SVM) [13], and other techniques have been 

applied in fault classification problems. However, a 

chemical process is often characterized by large scale 

and non-linear behaviour. When linear FDA is used for 

fault diagnosis in non-linear system, a lot of incorrect 

diagnosis results will occur. As solution to deal with the 

nonlinear system, and to improve the classification 

ability, kernel-based FDA, called kernel FDA (KFDA), is 

introduced.  

On the other hand, discrete wavelet transform (DWT) 

also is considered as an effective tool for signal 

processing and classification for fault detection and 

diagnosis scheme. Discrete wavelet analysis 

decomposes the high-frequency part further and 

adaptively selects relative frequency based on 

character of signal to obtain a better resolution for 

analysing process.  This wavelet analysis could provide 

local feature in both time and frequency domains and 

has the feature of multi-scale, which enables wavelet 

analysis to distinguish the abrupt components of the 

signal.  

In this paper, two different fault detection and 

diagnosis system are proposed. Process history data are 

extracted using DWT before analysed by KFDA. Then, 

two different classifiers are proposed to be combined 

with multi-scale KFDA approach: The GMM as a 

parametric classifier and KNN as a non-parametric one. 

KNN is chosen because of its simplicity and practicality. 

In the other hand, GMM is robust to variation and 

unbalanced number of involved samples for different 

classes of detection.  

Gaussian mixed model (GMM) is one of the general 

tool for probability distribution function estimation. It has 

been widely applied in monitoring of various processes. 

However, GMM method and its literature study is more 

focused on fault detection while little work has been 

reported to address the more challenging fault 

diagnosis issue [14]. GMM assumes the data under 

modelling is generated via a probability density 

distribution. Through the use of expectation 

maximization (EM) method, we can simultaneously 

identify the optimum set of parameters of GMM in an 

iterative manner and approximate the data distribution 

and pattern similarity. The mathematical formula of 

GMM and the derivation are a bit lengthy. Refer the 

references for details [15].  

K nearest neighbour (KNN) is a non-parametric 

classifier. This method classifies a sample of data 

according to the distance between this sample and 

some pre-labelled training samples. If most of the 

nearest samples to the unknown sample are from a 

specified class, the test sample will be assigned to that 

class. It used when train set embrace every possible 

faults included in the test data [16]. 

The paper is organized as follows. Section 2 presents 

the proposed multi-scale KFDA with different classifiers; 

GMM and KNN with application to Tennessee Eastman 

process case study. The results and discussion are 

included in Section 3 while Section 4 concludes the 

paper. 

 

 

2.0  METHODOLOGY 
 

2.1  Case Study 

 
Tennessee Eastman (TE) process as described by Downs 

and Vogel [17] in Figure 1 was used as a case study. The 

process includes a total of 52 variables, as listed in Table 

1, with 21 different faults were simulated for the process. 

The data set for the process and the details can be 

obtained from the Multi-scale Systems Research 

Laboratory [18]. To investigate the  

efficiency of multi-scale classification of KFDA with 

GMM and KNN, three classes of faulty data was 

simulated from the TEP simulator [8]. This three classes 

are corresponded to faults 4, 9, and 11 as listed in Table 

2.   

Fault 4 and 11 are selected because both faults are 

associated with reactor cooling water inlet 

temperature but with different type of fault (step 

change and random variation, respectively) while fault 

9 is selected for its random variation fault but in different 

location (D feed temperature). Thus, misclassification is 

expected for these overlap dataset. The multi-scale 

classification of KFDA with GMM and KNN were 

programmed using MATLAB 7.1. 
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Figure 1 Tennessee Eastman process diagram 

 

 

Table 1 Measured and Manipulated Variables of the TE Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Description Variable Description 

XMEAS(1) A feed Stream 1 XMEAS(27) Reactor feed component E 

XMEAS(2) D feed Stream 2 XMEAS(28) Reactor feed component F 

XMEAS(3) E feed Stream 3 XMEAS(29) Purge component A 

XMEAS(4) Total feed Stream 4 XMEAS(30) Purge component B 

XMEAS(5) Recycle flow XMEAS(31) Purge component C 

XMEAS(6) Reactor feed rate XMEAS(32) Purge component D 

XMEAS(7) Reactor pressure XMEAS(33) Purge component E 

XMEAS(8) Reactor level XMEAS(34) Purge component F 

XMEAS(9) Reactor temperature XMEAS(35) Purge component G 

XMEAS(10) Purge rate XMEAS(36) Purge component H 

XMEAS(11) Separator temperature XMEAS(37) Product component D 

XMEAS(12) Separator level XMEAS(38) Product component E 

XMEAS(13) Separator pressure XMEAS(39) Product component F 

XMEAS(14) Separator underflow XMEAS(40) Product component G 

XMEAS(15) Stripper level XMEAS(41) Product component H 

XMEAS(16) Stripper pressure XMV(1) D feed flow Stream 2 

XMEAS(17) Stripper underflow XMV(2) E feed flow Stream 3 

XMEAS(18) Stripper temperature XMV(3) A feed flow Stream 1 

XMEAS(19) Stripper steam flow XMV(4) Total feed flow Stream 4 

XMEAS(20) Compressor work XMV(5) Compressor recycle valve 

XMEAS(21) Reactor cooling water outlet temp. XMV(6) Purge valve 

XMEAS(22) Separator cooling water outlet temp. XMV(7) Separator product liquid flow 

XMEAS(23) Reactor feed component A XMV(8) Stripper product liquid flow 

XMEAS(24) Reactor feed component B XMV(9) Stripper steam valve 

XMEAS(25) Reactor feed component C XMV(10) Reactor cooling water flow 

XMEAS(26) Reactor feed component D XMV(11) Condenser cooling water flow 
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Table 2 Selected three fault classes 
 
Class Fault  Fault description Type 

1 Fault 4 Reactor cooling water 

inlet temperature 

Step 

change 

2 Fault 9 D feed temperature Random 

variation 

3 Fault 11 Reactor cooling water 

inlet temperature 

Random 

variation 

 

 

2.2  Multi-Scale Kernel FDA Feature Extraction 

 

The detailed in multi-scale kernel FDA (MSKFDA) 

application procedure of fault diagnosis were 

discussed briefly in this section. The normalization of the 

data was done with each of the variables were linearly 

scaled to the range of [0, 1]. It is important to scale the 

data before applying the multivariable methods to 

avoid the variables with greater numerical range 

dominating those with smaller numerical range. Then, 

each of the m variables is first decomposed individually 

by applying discrete wavelet transformation (DWT).  

Then, the kernel FDA is performed on the wavelet 

coefficients for each selected scale. Appropriate 

numbers of component loading vectors are retained 

and the wavelet coefficients are reconstructed at each 

selected scale. In this work four scales (s=4) are used for 

discrete wavelet transformation (DWT) of the original 

signal. After that, the wavelet coefficients larger than a 

selected threshold corresponding to a significant event 

are retained. The variables consisting of deterministic 

components are reconstructed from the retained 

wavelet coefficients through inverse discrete wavelet 

transformation (IDWT) and the loadings of the extracted 

deterministic components are computed. 

The new observations are projected into lower 

dimensional subspace. This subspaces measures the 

systematic or state variations occurring in the process. 

KFDA is used to search the optimal one-dimensional 

discriminant direction between the fault data and the 

normal data. The outputs of this step were used as an 

input for GMM and KNN classification step individually.  

After reducing the original data dimension using 

KFDA, which finds a set of orthogonal discriminant 

vectors, a GMM is constructed to describe the faulty 

patterns. In the GMM, each local model represents one 

fault. In systems with complex patterns, it is difficult to 

characterize each fault pattern using only a single 

Gaussian model. This problem is overcome by 

increasing the number of Gaussians used to represent a 

fault. The mean and covariance obtained from each 

faulty dataset are taken as the initial parameters of the 

corresponding local Gaussian model. Then, the model 

parameters are fine-tuned through the training 

procedure. 

For KNN application, the test sample probability is 

adaptively estimated without any prior assumption, 

except 𝑘 which will be chosen such that the best results 

obtain on train data. For test sample classification, all 

the train data points must be saves and the distances 

between the test sample and all the training samples 

must be calculated and sorted. Then, the k that is 

nearest to the neighbours are selected to make the 

final decision. The efficiency of the multi-scale KFDA-

GMM and KFDA-KNN-based fault detection and 

diagnosis system were validated by comparing it to the 

traditional FDA and KFDA method.  The classification 

results are shown in Table 3 and Table 4. 

 

 

 
Table 3 Comparison among Diagnosis Accuracy 

 

 

 

Diagnosis accuracy (%) 

Multi-scale KFDA-GMM Multi-scale KFDA-KNN 

Fault 4 89.48 82.75 

Fault 9 72.81 76.50 

Fault 11  91.88 86.75 

Average 84.72 82.00 

 
 

Table 4 Diagnosis Accuracy Using Different Approaches for Selected Faults  

 

 Multi-scale 

KFDA-GMM 

Multi-scale 

KFDA-KNN 

FDA 

[8] 

KFDA-Bayes 

[18] 

PCA-KNN 

[18] 

Diagnosis 

accuracy (%) 

84.72 82.00 62 48.05 47.00 
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3.0  RESULTS AND DISCUSSIONS 
 

In this paper the multi-class classification problem was 

studied with the implementation of multi-scale KFDA 

with the GMM and KNN classifiers. The proposed 

method was implemented to detect the faults of the TE 

process.  

Figure 2 shows a normal (no fault) and Fault 4 

decomposition coefficients for approximation and 

details after transformation by DWT approach for level 

1, 3 and 5. From the figures, the approximation 

coefficient for Fault 4 data of the transformed signal 

clearly shows a significant differences in amplitude of 

the plot compared to the normal data. This implied that 

disturbance or faulty event has occurred in this data. 

The detailed coefficient for level 5 (d5) also shows some 

distinctive characteristics to differ the normal and faulty 

condition in the database. After fault data are 

decomposed by DWT wavelet analysis, KFDA is 

performed on these multi-scaled fault data, which 

offers important supplemental classification information 

to KFDA.  

Figure 3 and 4 show the selected fault classification 

based on FDA and multi-scale KFDA projection for the 

case study database, respectively. The data consists of 

different type of faults, which are Fault 4, Fault 9 and 

Fault 11. From Figure 3, FDA is able to classify the Fault 4 

and Fault 9 data, but failed to separate and classify 

Fault 11. The FDA method was unable to distinguish the 

Fault 11 since the separation between-classes is not 

large enough while the distribution within-classes also 

was quite large. This is because all variables are in a 

same level without proper variable weighting and the 

data sets are masked with irrelevant information. 

 
Figure 2 Variable XMV10 of normal and Fault 4 approximate and detail coefficients; approximate level (a), first decomposed level 

(d1), third decomposed level (d3), and fifth decomposed level (d5) 
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Figure 3 Selected fault classification projection using normal FDA

 

 

 
Figure 4 Selected fault classification projection using multi-scale KFDA 
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The integration of DWT with KFDA improved the features 

extraction that are relevant to the abnormal operation 

in both time and frequency domain and lead to better 

classification. Figure 4 shows the projection data onto 

the first two multi-scale KFDA vectors. From the figure, 

there is a large separation in between-classes 

distribution while the scattering of within-classes 

distance is shorten compared to FDA, which shows that 

the discriminant power of multi-scale KFDA is better 

than FDA. 

The classification accuracy is evaluated by two 

types of classifiers: Gaussian mixture method (GMM) 

and K-Nearest Neighbor (KNN). Table 3 presents the 

validation results obtained using the combination of 

DWT and KFDA for feature extraction and classification. 

From the table, classification and diagnosis 

performance of GMM is found to be the best averagely 

with 84.72% accuracy compared to KNN classifier with 

82%. However, KNN classifier also shows decent 

performance, especially in Fault 9 classification. This is 

due to the method’s advantage in determining the 

boundaries for Fault 9 via a 𝑘 coefficient selection 

method.   

A summary of the classification results for FDA, KFDA-

Bayesian, PCA-KNN, MSKFDA-GMM and KFDA-KNN is 

tabulated in Table 4. The table lists the average 

diagnosis accuracy rate by utilizing the selected faults 

of TE process dataset. Comparing the diagnosis 

accuracy percentage presented in the table, it can be 

observed that the diagnostic accuracy percentage for 

MSKFDA-GMM and MSKFDA-KNN are significantly 

higher than the traditional FDA method. On average, 

the multi-scale KFDA classifications (MSKFDA-GMM and 

MSKFDA-KNN) also produced higher diagnosis 

accuracy than KFDA-Bayesian and PCA-KNN 

approaches. Multi-scale KFDA-GMM has the highest 

average of classification accuracy (84.72%) compare 

with MSKFDA-KNN (82.00%), FDA (62%), KFDA-Bayes 

(48.05%) and PCA-KNN (47.00%).  

Through this case study, results show that the 

proposed multi-scale KFDA with GMM and KNN have 

superior capability in diagnosing faults when compared 

to traditional FDA methods, its modified method of 

KFDA-Bayes and methods of PCA-KNN. The use of the 

multi-scale KFDA classification method can help 

operators immediately rectify the process when a fault 

occurs. This is particularly important for the process 

industries such as chemical processes which may 

involve plant safety problems. 
 
 

4.0  CONCLUSIONS 

 
In this paper, we have presented the application of multi-

scale KFDA with GMM and KNN classifier-based for fault 

diagnosis system. The effectiveness of multi-scale KFDA is 

demonstrated with the help of fault classification of TE 

process. From the results, the combination of multi-scale 

feature extraction using DWT with KFDA and GMM 

method for classification proved the proposed method 

suitable for implementation in fault diagnosis system of 

chemical processes. The data discrimination and fault 

detection based on multi-scale KFDA methodology 

enhanced the diagnosis proficiency by taking into 

consideration the multi-scale information compared to 

other methods that considered only single scale nature. 

Moreover, it can provide a better separation of the 

deterministic features and improve the features 

extraction that are relevant to a faulty situation from both 

time and frequency domain aspects. By comparing 

performance of the classification accuracy of FDA, PCA-

KNN, KFDA-Bayes and multi-scale KFDA (MSKFDA-GMM 

and MSKFDA-KNN) for handling the TE process database, 

the results showed that the performance of the classifier 

by multi-scale KFDA-GMM and KFDA-KNN were better 

than the others. Further research can extend the 

proposed method to a batch process which is more 

complex in contrast to a continuous process. 
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