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Abstract 
 

Normalised difference vegetation index (NDVI) data were analysed to identify the 

seasonal patterns and the time series trends of vegetation in Kathmandu. The data were 

managed in three steps: reordering, removal of unreliable values and validating. A cubic 

spline function was used to examine annual seasonal patterns that revealed regular 

seasonal peaks (day 225 to 280) and troughs (day 50 to 81) of vegetation and start of 

greening from April and of browning from November. Linear regression models were 

fitted to seasonally adjusted NDVI, which statistically showed 40.70% of the grid cells  had 

a significant increase and 24.71% of it had decreasing trends. To adjust for 

autocorrelation, generalized estimating equations (GEE) were fitted to the data for whole 

area that showed, the overall vegetation has been significantly declining at a rate of -

0.005 ̊C and -0.006 ̊C per decade for 2000-2004 and 2010-2015 respectively. The recent 

period of decline is alarming for a growing city like Kathmandu. 

 

Keywords: Satellite data, normalised difference vegetation index, cubic spline function, 

linear model, generalized estimating equations 
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1.0  INTRODUCTION 
 

Vegetation is a general term for plant life, referring to 

the ground cover, and is the most abundant biotic 

element on Earth. It is essential for sustaining the 

ecological system of the Earth and serves critical 

functions at all possible spatial scales [1]. Therefore, 

quantifying the time trends of types, extents and 

characteristics of vegetation is of utmost importance 

for resource management, addressing the climatic 

issues among others. The worldwide studies of 

vegetation show that it has been changing in 

location dependent manners [2, 3]. The changes in 

vegetation on the land surface affect climates at 

both regional and global regions from short to 

extended periods of time [4]. Most of the factors that 

cause climate change are correlated with 

vegetation [3, 5, 6]. Therefore, a study of quantitative 

changes of vegetation is important for assessing 

climate change related issues. However, reliable and 

complete data are challenging to obtain, especially 

in low-income countries where the field data 

inventory system is not yet properly in place. In this 

situation, the remote sensing or satellite data provide 

the best alternative, and one of the most common 

types of satellite based data is the Normalised 

Difference Vegetation Index (NDVI) from Moderate 

Resolution Imaging Spectro-radiometer (MODIS) [2, 7, 

8, 9, 10].  

MODIS is a sensor, fitted aboard the Terra and 

Aqua satellites by the National Aeronautics and 

Space Administration (NASA), and it monitors 

environmental changes due to fire, vegetation, 

temperature, earthquakes, droughts and floods ot 
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Earth [10]. Normalised Difference Vegetation Index 

(NDVI) is created based on MODIS remote sensors 

capturing the spectral behaviour of vegetation. The 

theory behind these sensing data is that vegetation 

reacts differently to different parts of the 

electromagnetic spectrum (including visible light). 

The electromagnetic waves are typically absorbed in 

the red and blue wavelengths, so reflected light 

retains the green wavelengths, with strong reflection 

also in the near infrared (NIR) wavelengths [11]. 

Based on this, the NDVI is calculated as a normalised 

ratio of the NIR and red bands. In every grid, each 

observation time is 16-day period. Therefore, in every 

year, the number of observation times is 23 and, 

consequently, a total of 345 times for 15 years period. 

NDVI for each observation time can be computed as 

follows,  

 

           
   iiiii REDNIRREDNIRNDVI  /    (1) 

 

where i  denotes an observation time (1, 2, 3, …, 

345). iNDVI  is the NDVI value of the observation  i , 

while iNIR is the NIR reflectance and iRED  is the 

RED reflectance of the observation i , respectively. 

NDVI has been found more reliable [12] than 

other data types and equally useful for study 

purposes in either local [13] regional [7] or global 

scales [3]. The analysis of large areas is common in 

prior research studies [2, 6, 9, 13] in which NDVI has 

been applied for detecting changes. The local 

changes need to be analysed in a relatively small 

area for benefit of the local government or the local 

people. In a macro-level spatial variation analysis, 

often the local level changes have been overlooked. 

Additionally, an analysis of remote sensing data over 

a smaller area for understanding the seasonal 

patterns and trends in detail is still seldom pursued. 

A country where the vegetation data are 

considered fairly significant for environmental issues is 

Nepal, as the Department of Forest Research and 

Survey has reported that 40.36% of its total land areas 

is still covered by forests [14]. Regarding the 

vegetation in Nepal, most studies have been 

regional [15, 16] or on the national level [17, 18]. 

Studies have been carried out using remote sensing 

data to investigate the changes in land covers [16, 

18, 19] and farming or grazing areas [15, 17] and the 

associated factors. However, assessment of changes 

in vegetation as a natural resource, in particular for 

Nepal, is still lacking. Moreover, the current and 

accurate data on vegetation index, especially 

including historic time series has not been widely 

available. It is also difficult to survey the vegetation in 

Nepal because of complications in its geography. 

This lack of vegetation studies and relevant data is 

also evident for Kathmandu valley, a part of the 

mountain range in middle Nepal. Because 

Kathmandu valley is the fastest growing urban 

region, the vegetation changes are necessary to 

assess for urban planning and environmental 

concerns. Therefore, a preliminary step is to 

understand the interactions of vegetation and other 

factors, and to identify the patterns and trends 

through temporal and spatial analysis techniques. 

This study was aimed to identify the inter-annual 

temporal trends and intra-annual seasonal patterns 

using NDVI as remote sensing data for Kathmandu 

valley from 2000 to 2015 by using appropriate 

statistical methods. 

 

 

2.0  METHODOLOGY 
 

2.1  The Data 

 

The Kathmandu valley, covering an area of 900 km2, 

consists of the three major districts, Kathmandu, 

Bhaktapur and Lalitpur, with the highest population 

density (>4000/ km2) in Nepal. Kathmandu valley has 

a warm temperate climate with dry and cold winters 

[14]. The temperature is highest (>30°C) in April and 

May, and the lowest (<1°C) in December and 

January. There is a heavy monsoon period in middle 

of the year. It has three main annual seasons, 

summer, rainy fall and winter. Regarding vegetation, 

the valley consists of mostly the temperate varieties. 

The plants shed off their leaves during winter, give 

sprout from March, and become fully canopy 

loaded in June [20]. 

 

  
 

Figure 1 Study area in Kathmandu (demarked as 

parallelogram at the center) 

 

 

The NDVI data were downloaded from MODIS’s 

website for data subset [21] for the study area around 

Kathmandu valley as shown in Figure 1. The 

coordinates of the central point of the study area are 

27.595°N and 85.394°E. Regarding the format of NDVI 

data from MODIS, the area around the central point 

was obtained with 250×250 m2 grid as spatial 
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resolution. The covered area extended on all four sides 

10 km away from the center (East, West, North and 

South). As a result, the study area was automatically 

generated to cover 20.25×20.25 or 410.0625 km2, with 

6561 grid cells (81×81) of 250×250 m2 each. The 

downloaded data were specified for a period from 

2000, the starting point of MODIS service, to 2015. The 

NDVI data were recorded once every 16 days. For 

each grid cell, there were around 23 observations per 

year, accumulating to maximally 345 observations over 

the 15 years. Some observations were missing due to 

the sensor’s technical problems, and the actual total 

count of observations for each grid cell was typically 

below this maximum. 

The raw data for each selected NDVI grid cell 

were divided by 10000 to adjust the values to the 

range from −1 to 1. The negative values up to 0 

correspond to water. The values from 0 to 0.1 

indicate soil, rocks or concrete, snow land and 

barren land. The low positive values (0.2 to 0.4) mean 

shrubs and grass land. Values close to 1 (0.6 and 

above) are detected for forests [22]. Therefore, the 

greater the NDVI value is, the denser the vegetation 

is in the area. 

 
 

Figure 2 The plot of NDVI from the central grid cell showing 

unreliable low indices 

 

 

As an example, the total scatter plot of NDVI data 

across the central grid is displayed in Figure 2. Here, n 

represents the total number of observations and 

every dot on each vertical grid line represents one 

observation value on the same recording period (23 

periods). Therefore, every vertical line on the x-axis 

displays 15 NDVI values corresponding to a particular 

day in each of the 15 years, in a consecutive 

manner. This plot starts from Julian day 1 and ends on 

day 365. However, the data needed to be further 

organized before going to analysis due to three 

problems. Firstly, during the raining season or 

between days 160 and 260, sparse NDVI values could 

be seen. This scarcity could affect the analysis for 

determining seasonal patterns, which needs 

uncensored data. The second problem was rapid 

increases in NDVI within a short time periods (within a 

few weeks or months), which was virtually impossible. 

This was attributed to growth of plants and these 

NDVI observations were considered unreliable (an 

example is illustrated by an arrow between two 

encircled dots in Figure 2). The final problem for these 

data was that, on a heavily clouded or wet day, 

NDVI might be perturbed by obstruction of the sensor 

by clouds or water vapour, and the data would 

need to be validated. The NDVI data then needed 

to be cross compared with another MODIS signal at 

the same location and time, to confirm it. 

 
 

Figure 3 The plot showing unreliable (cross marks) and 

doubtful (blue dots) data for the central grid cell 

 

 

To solve the aforementioned problems, the data 

were cleaned in the following steps. First, the data 

were reordered to start from day 190 and end on 

day 189 as shown in Figure 4 to move scarcity to 

beginning and end of the period. This made the data 

more continuous for further analysis. Second, the 

data points were deemed unreliable if they were 

greater than 0.02 or lower than −0.02, and 

consequently were removed to reduce the level of 

fluctuation, while still maintaining the normality 

assumption of residuals in data. Those data points are 

shown with cross marks in Figure 3. Finally, to check 

NDVI’s validity, Land Surface Temperature (LST) was 

selected to confirm that all the signals were valid. For 

the same location and the same observation day, if 

LST was not realistic, for example the LST went missing 

or the temperature could not be detected, it 

confirmed the MODIS did not work properly. Thus, 

other measured signals of that day, including NDVI, 

were doubtful. On these grounds, 23 NDVI values 

were identified as doubtful and were duly removed. 

These doubtful data are depicted as bigger dots in 

Figure 3. In total 59 unreliable and doubtful NDVI 

values were detected and removed. The remaining 

238 NDVI observations for this grid after removal of 

doubtful and unreliable values were used for the 

analysis. The same procedure was carried out for 

each grid cell of the study area. R Statistical 

Programming version 3.2.1 [23] was implemented for 

data management and graphical displays. 
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2.2  The Statistical Methods 

 

There were three main steps of data analysis in this 

study. First, the NDVI data, at individual grid cell level, 

were used for analysing the intra-annual seasonal 

patterns. The second step was trend analysis for each 

grid cell, for which, the data were seasonally 

adjusted and linear models were fitted to identify 

trends of individual grid cells. Finally, the data for the 

whole area were divided into three 5-year periods 

(2000 to 2004, 2005 to 2009 and 2010 to 2015) for 

analysis and comparison of the overall NDVI changes 

in a smaller time frame. To clarify the data structure in 

this study, the three main notations of the data are 

defined. Firstly, j  denotes an observation time after 

omitting the observations of unreliable and doubtful 

data for each grid cell. Therefore, it varies among 

different grid cells and takes the maximum of 345, 

but usually has the value below the maximum ( j  

1, 2, 3, ...,, n, where n =< 345). Secondly, q denotes 

an observation time after omitting unreliable and 

doubtful data for 5-year period for each grid cell with 

the maximum of 115 observations, so q  1, 2, 3, …, 

m, where m =< 115. Lastly, r denotes a grid cell, 

considered a cluster for the analysis. In this study, 

then, r  1, 2, 3, …, N, where N = 49. 

This study used the cubic spline function to find 

the seasonal pattern of NDVI. This pattern is 

calculated by fitting a cubic spline function to the 15-

year data combined and plotted in one-year format. 

This enables the extraction of the seasonal pattern in 

a year without concerning the long-term trend.  

Furthermore, the function satisfies a special boundary 

condition where the functions beyond the first and 

last knot points are linear with the same slope. Thus, 

the cubic spline function is a combination of cubic 

and linear terms. In this study, the cubic spline took 

the form,  

 

3

1

)( 


 kk

p

k

ttcbtS     (2) 

 

where, S
 
is the spline function, t  is time in Julian day,

 
and  , b and 

kc  are the coefficients of the model. 

kt  
is the location of a knot, while pttt  ...21

 
are 

the specified knots and   ktt is the positive part 

of  ktt 
 
or max   ktt ,0 . 

The data were, then, seasonally adjusted to 

stabilize the mean. Because of the additive form of 

the seasonal component retrieved from the cubic 

spline function, the seasonal adjustment can be 

realized by subtracting the original values from 

seasonal component and then adding the 

difference between the means of seasonal 

component and seasonally adjusted NDVI [24], 

which is presented as,    

 

xSxSxy jjjjj  )()(
  

(3) 

 

here, jy
 

is the seasonally adjusted NDVI at 

observation j , while jx
 

is NDVI and jS  is the 

seasonal component value extracted from cubic 

spline function at observation j , respectively. 

)( jj Sx   and x  are the means of )( jj Sx   and 

jx , respectively.   

The seasonally adjusted NDVI data were further 

used for detecting the time series trend over the 15 

year period. Therefore, linear models were fitted 

separately to the seasonally adjusted data at every 

grid cell, to extract the trends.  The form of a linear 

model is, 

  

jjj ty   10    (4) 

 

here, jy   is the seasonally adjusted NDVI, jt  is the 

time at each observation and j  is the error term of 

the data,  for each observation j , respectively. 0  

is the intercept of the linear equation and 1   is the 

coefficient of the time jt . 

To account for the overall change in the study 

area, trends for the whole study area were 

computed. However, the data for a linear trend in 

each grid cell had spatial correlation within the cell. 

To tackle this problem, the Generalized Estimation 

Equations (GEE) were applied in this study. GEE is an 

extension of linear model that is specially designed 

for correlated data [25]. Furthermore, from the fitted 

models explaining the NDVI changes for all 15 years, 

it was difficult to distinguish the details of trends within 

this period. Therefore, the data were divided into 

three periods of 5 years each (2000-2004, 2005-2009 

and 2010-2015) and fitted with GEE models 

separately. To display the results, 95% confidence 

intervals were calculated for each sub-period and 

plots were produced to show the changes in three 

time frames for NDVI in Kathmandu valley. The 

equations for GEE and related equations [25, 26] can 

be explained as follows. The generalized linear model 

can take the form of, 

 

 
                

)(,)( 1  
qrqrqrqr TgYE 

             

(5) 

 

where qrY  is a vector of seasonally adjusted NDVI at 

observation time q  in a grid cell  r . )( qrYE  or qr  

is an expected value of qrY , 
1g  is an inverse link 

function of qrT , a matrix of observation days and  ,  

a vector of regression coefficients. 
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Taking into account of all 49 grid cells together for 

the data of 5-year period, the GEE or quasi-score 

equation to estimate   is as follows, 

  

                     


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here, 
T
r

r

B
)(




 is a transposed matrix of partial 

derivatives, where r  is a vector of expected values 

of NDVI at a grid cell  r . ry  is a vector of NDVI 

data at a grid cell a grid cell  r  and 
1

mV  is the 

inverse of the variance-covariance matrix of NDVI. 

All data analysis and graphical displays were in R 

Statistical Programming version 3.2.1 [23]. 

 

 

3.0  RESULT AND DISCUSSION 

 
3.1  Result 

 

3.1.1  Seasonal Pattern from Cubic Spline Function 

 

Eight knots were selected to fit the cubic spline 

function, shown as plus signs at the bottom of  Figure 

4, at the position of  15, 40, 70, 120, 150, 200, 230 and 

350 days. The model gave the coefficient of 

determination (R2) equal to 50%. The thin line in Figure 

4 is the spline fitted before removal of unreliable and 

doubtful values, while thick line is the spline fit after 

rearrangement of data and removal of unreliable 

and doubtful values. 

  

3.1.2  Trends for Individual Grid Cells from Linear 

Model 

 

For each grid cell, a linear regression model was 

fitted for the whole 15-year seasonally adjusted data. 

To illustrate the result, 12 grid cells were selected as 

representatives of three types of changes- an 

increase (e.g. grid cells, 242, 2086, 2574, 2580, 4942, 

4948 and 5430), a decrease (e.g. grid cells, 248, 730, 

736 and 2092) and a no-change (e.g. grid cell 5436), 

which are shown in Figure 5(a) to 5(l). The annual 

seasonal fluctuation cycle of NDVI, obtained from 

the spline function was added back for plotting and 

is shown as a wavy red line, along with a straight 

green line depicting the NDVI patterns and trends 

over 15 years. The dots in the figure are year-wise 

data points. The crosses are unreliable and doubtful 

data, removed before the cubic spline fit. The 

increasing or decreasing trend (Inc/dec) per decade  

and respective p-values from linear regression are 

shown in each picture. Here, n represents the number 

of observations in each plot. 

 

 
 
Figure 4 Spline curves before (thin line) and after (thick line) 

removing unreliable and doubtful values 

 

 

The results from all grid cells showed NDVI ranging 

from 0.3 to 0.9. The seasonal pattern was roughly 

unchanged for every year as shown in Figure 5. The 

linear trends illustrated a distinct variation between 

different years and locations among the grid cells. 

Moreover, 40.7% of the cells had statistically 

significant rise, while significantly declining trends 

were seen in 24.7% of the cells. Out of all grid cells, 

only 1.2% of the cells did not show any change in 

NDVI while rest 33.4% grid cells had changes but 

were not significant at all. Hence, the results showed 

a mixed picture of increasing and decreasing trends 

in NDVI, by grid cell location in the study area. 

 
3.1.3  Trend for the Whole Area and Confidence 

Interval Plots from GEE 
 

Finally, the GEE were fitted to the data divided into 

three time periods. The time series plots were drawn 

to illustrate the trend from GEE in each period. The 

rates per decade change are -0.005, -0.003 and  

-0.006 during 2000-2004, 2005-2009 and 2010-2015, 

respectively. The rate of change showed statistically 

significant association in only the first and the last 

periods (p values 0.050 and 0.018 respectively) and 

the overall decline throughout 15 years period is 

evident in the graph (Figure 6 (a), (b) and (c)). 
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As the results from GEE models, 95% CI plots of NDVI 

for all 49 grids were drawn to observe the confidence 

levels of the change. In Figure 7, the CI for the period 

of 2005-2009 is crossing a zero value. Therefore, NDVI 

can be considered statistically unchanged, 

coinciding with the p value. However, in other two 

periods of 2000-2004 and 2010-2015, NDVI showed a 

statistically declining trend with negative CIs. As 

shown in Figure 7, the rate of change for the years 

2000 to 2004 is ranging from -0.010 to 0 per decade, 

while that for the years 2010 to 2015 is ranging from -

0.011 to -0.001 per decade.  

Regarding the distribution of the data, NDVI is 

found slightly left skewed. However, this distribution is 

acceptable in this study because GEE can be used 

with the condition of the distribution assumption 

being relaxed [27]. 

 

Figure 5 Time series plot of vegetation showing increasing, decreasing and no-change trends in 12 different grids 

 

 

3.2  Discussion 

 

In this study, the seasonal pattern of vegetation 

showed the highest level in the rainy season during 

days 241 to 257 (September) and gradually declined 

to the lowest level in the winter season during days 50 

to 97 (February to April). Actually the winter begins 

from December, but the vegetation declines from 

the end of the rainy season to the end of January. 

This time variation of NDVI (decline) by season might 

be due to the time taken for plant defoliation till the 

minimum temperature day. The greening of 

vegetation started from day 97 (April) to the time 

when the atmospheric temperature adequately 

warmed up in the summer, while the rising of 

temperature began from mid of February (after day 

45). The seasonal pattern of NDVI growth, however, 

presented a slight gap between seasons and the 

vegetation growth, can be another inherent topic for 

further study. 

During the rainy season, the plant growth and 

refoliation is much favoured by high humidity, 

temperature and rainfall. Later the growth ceases 

with heavy defoliation and physiological dormancy 

after the onset of dry and cold winter season. 

Therefore, the seasonal pattern of NDVI, as seen in 

the results, fluctuated driven by these phenomena. 

This result is particularly helpful in agricultural sector to 

understand the annual climate response of 

vegetation or crops, especially to understand the 
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existing phenological characteristics of the area. This 

summer-winter vegetation character is well 

supported by the previous studies where there is 

higher growth of vegetation in warmer seasons than 

in winter [8, 12]. Also, it is scientifically proved that, a 

relatively cooler air temperature reduces the plant 

metabolic rates including its growth [27]. These prior 

reports corroborate the results in this study. 

 
 
Figure 6 The trend of overall NDVI (from GEE model) during 

2000-2004 (a), 2005-2009 (b) and 2010-2015 (c) 

 

 

In the trend analysis, the statistical results showed 

that significantly increasing or decreasing grid cells 

were numerically close to each other and the rest 

were insignificant on the level of individual grid cells. 

After GEE, the trends in vegetation changes for the 

whole study area could be assessed. The 95% 

confidence interval plots of vegetation showed 

significant declines in the periods 2000-2004 and 

2010-2015, while the mid period showed no change 

and the rate of decline was the highest in recent 

years. The Global NDVI trend studied during 1982-

2012 showed an increasing trend in many parts of the 

world including India and Southeast China [3]. The 

similar result was seen in Tibetan plateau of China 

during 2000 to 2009 [13]. Nepal lies in between these 

land blocks and may have similar pattern overall. 

However, as Kathmandu is a growing densely 

populated city, it may have been locally affected by 

several other factors, such as high density of 

population, resource exploitation, pollution and 

unplanned urbanization causing the decline of 

vegetation. In addition, Uddin et al. [28] have 

explained that the overall vegetation in Nepal is in a 

state of decline over the past few years. This is 

consistent with the declining pattern of vegetation 

found in this current study. Additionally, the method 

of data rearrangement and cleaning significantly 

contributed to obtaining much improved results from 

cubic spline fitting, to get the seasonal patterns. 

Otherwise, the same spline fitting technique before 

data management showed a lower NDVI scale even 

in the rainy season. This method of managing data 

can also be applicable to other types of noisy data 

with periodic censoring. 

Hence it was found that the overall vegetation 

around Kathmandu valley is declining in recent 

years, at different rates by time period, while the 

seasonal patterns show no remarkable changes. 

Further investigation is still required to understand the 

potential reasons behind this seasonal pattern and 

the trend.  

The limitation of this study is that it covers only a 

part of Nepal. With extended study areas, a 

complete picture of the vegetation changes for the 

country could be revealed. Also, this study includes 

only one indicator from a variety of remote sensing 

data. Therefore, the inclusion of more indices of 

satellite data can provide more information 

regarding changes in vegetation and other related 

factors in the region. 

 
 
Figure 7 Confidence Interval plots of the overall NDVI trends 

in three time frames 
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4.0  CONCLUSION 
 

This study showed the changing pattern and trend of 

NDVI in three ways. Firstly, the seasonal pattern at 

grid cell level showed the local level annual 

changes, and secondly, the trend of individual grid 

cells indicated the changes in small, grid level areas 

and the proportions of each change. Finally, the 

detail of trends for the whole study area in three time 

periods were investigated. In addition, a comparison 

of rates of changes in those time segments was 

carried out. Hence, it was clear that the vegetation 

in this study site had different rates of decline in 

different time frames, since 2000. 

The spatio-temporal changes of vegetation are a 

serious threat to ecosystems today. Therefore, this is 

an alarming signal for the policy makers around 

Kathmandu valley and measures to prevent a further 

vegetation decline should be taken. Technically, the 

study concludes that applying spline function fit and 

linear models along with GEE help successfully 

analyse the seasonal patterns and time profiles of 

changes in NDVI. Some other environmental factors 

could be added to predict probable causes of 

vegetation decline. This study indicates that simple 

yet effective approaches to time series data for 

assessing spatial and temporal changes in urban 

vegetation at a local scale can provide basic 

information for urban planners and anthropogenic 

studies.  
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