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Abstract 
 

The cost of finding and correcting the software defects are high and increases 

exponentially in the software development. The software defect prediction (SDP) can be 

used in the early phases to reduce the testing and maintenance time, cost and effort; thus, 

improves the quality of the software. SDP performance is poor caused by imbalanced class 

in datasets where defective modules as minority compared to defect-free ones. In this 

study, we propose the combination of random undersampling based on two-step cluster 

and stacking technique for improving the accuracy of SDP. In stacking technique, Decision 

Tree, Logistic Regression and k-Nearest Neighbor are used as base learner while Naive 

Bayes as stacking model learner. The proposed method is evaluated using nine datasets 

from NASA metrics data program repository and area under curve (AUC) as main 

evaluation. Results have indicated that the proposed method yield excellent performance 

for 5 of 9 datasets (AUC > 0.9). Compared to the prior researches, the proposed method 

has first position for 3 datasets, second position for 5 datasets and only 1 dataset in third 

position for AUC value comparison. Therefore, it can be concluded that the proposed 

method has an impressive and promising result in prediction performance for most datasets 

compared with prior research performance.  
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1.0  INTRODUCTION 
 

Software defect prediction (SDP) is the process of 

predicting which parts of a code are defective and 

which are not [1]. The consequences of software 

failures may result in monetary and human losses [2] 

since the cost of correcting the defects increases 

exponentially if the defects are encountered later in 

the software development [3]. The accurate 

prediction of defect-prone software modules can 

help direct test effort, reduce costs and also improve 

the software testing process by focusing on fault-

prone modules [4]. The SDP models can be used in 

the early phases of software development life cycle 

[3]. 
SDP becoming challenging task since software 

defect data in nature have a class imbalance 

because of the skewed distribution of defective and 

non-defective modules [5]. Although various 

techniques have been proposed by various 

researchers to address class imbalance problem 

issue, but no single technique outperformed the 

others in all the studies [6]. In many domain 

applications, learning with class imbalance 

distribution happens regularly. Imbalanced class 

distribution in datasets occur when one class, often 
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the one that is of more interest, that is insufficiently 

represented [7]. 

Various methods has been introduced to tackle 

this problem with two common approaches: data 

level and algorithm level [7]. Data level approach 

employs a pre-processing step to rebalance the class 

distribution. This is done by either employing 

undersampling or oversampling to reduce the 

imbalance ratio in training data [1]. Undersampling 

removes a smaller number of instances from majority 

class in order to minimize the discrepancy between 

the two classes whereas oversampling duplicates 

instances from minority class. Meanwhile, the 

algorithm level methods could be categorized as 

dedicated algorithms that directly learn the 

imbalance distribution from the classes in the 

datasets, such as: one class learning classifications, 

cost-sensitive learning and ensemble learning [7]. 

Undersampling which reduce certain instances 

from a majority class could lead to loss of potentially 

important information about the class; while in 

oversampling, the duplication only increase the 

number of examples but do not provide new 

information about the class [7]. In algorithm level, 

although various techniques have been proposed by 

various researchers to address this issue, but no single 

technique outperformed the others in all the studies 

[6]. A combination of data level and algorithm level 

as proposed by [8]–[10] yield an impressive 

performance in handling imbalanced class 

classification in SDP. 

Many researches have been conducted in SDP 

both in class imbalance issue and noisy attribute 

issue. SDP datasets have imbalance class in nature, 

since positive class (defective module) is minority 

compared to majority class (non-defective module). 

To tackle these problems, some approaches were 

proposed by researcher, such as: data level by using 

association rule [11], [12], algorithm level by using 

optimization [5]  and ensemble or meta-learning 

technique [8], [9], [13]. 

A novel supervised method for detecting software 

entities with defects, based on relational association 

rule mining, called DPRAR (Defect Prediction using 

Relational Association Rules) was proposed by [11]. 

Their classifier is based on the discovery of relational 

association rules for predicting whether a software 

module is or it is not defective. They used ten NASA 

metrics data program (NASA MDP) datasets, such as: 

CM1, KC1, KC3, PC1, JM1, MC2, MW1, PC2, PC3 and 

PC4. They used five evaluations, such as: area under 

curve (AUC), accuracy, recall or sensitivity, specificity 

and precision. Their model yield potential and 

promising result. 

Another method from association mining 

approach was proposed by [12] and combines with 

Naïve Bayes (NB). The proposed algorithm 

preprocesses data by setting specific metric values 

as missing and improves the prediction of defective 

modules. NB classifier has been developed before 

and after the proposed preprocessing data. They 

used 5 NASA MDP datasets, such as: CM1, KC3, PC3, 

MC1 and AR4 and used AUC, accuracy, recall or 

sensitivity, specificity and precision as evaluation. 

Their method showed that recall of the classifier after 

the proposed preprocessing has improved and has 

resulted in up to 40% performance gain. 

A combination of traditional Artificial Neural 

Network (ANN) and the novel Artificial Bee Colony 

(ABC) algorithm are used by [5]. ABC was used to 

find optimal weights of ANN. They used accuracy, 

probability of detection, probability of false alarm, 

balance, AUC, and Normalized Expected Cost of 

Misclassification as the main performance indicators. 

Five NASA MDP datasets were used such as: KC1, 

KC2, CM1, PC1 and JM1. Their proposed method is 

better compared to other five algorithms although 

the performance difference is not significant. 

Another approach to deal with imbalance class 

classification in SDP was used Bagging as ensemble 

technique and using feature selection using Genetic 

Algorithm as proposed by [8] and Particle Swarm 

Optimization as proposed by [9]. Their used 9 NASA 

MDP datasets, such as: CM1, KC1, KC3, MC2, MW1, 

PC1, PC2, PC3 and PC4. They used AUC as main 

evaluation and their proposed method yield 

impressive performance compared to ten standard 

algorithms. 

A combined selected ensemble learning models 

with efficient feature selection was proposed by [13] 

to address data imbalance and feature redundancy 

and mitigate their effects on the defect classification 

performance. They used 4 NASA MDP datasets such 

as: KC3, MC1, PC2, PC4 and AUC as evaluation. The 

ensemble technique, so called average probability 

ensemble (APE) combined with greedy forward 

selection was gain optimal result for AUC values of 

above 0.9 for the NASA MDP datasets such as: PC2, 

PC4, and MC1. 

While there is no single method that achieves the 

best performance for all NASA MDP datasets, this 

indicated that SDP still open issue and challenging 

task. In this study, a combination of data level and 

ensemble technique is proposed. Stacking technique 

is chosen as ensemble technique due to its 

performance is often astonishingly good [14]. 

In this research, we propose the combination of 

two-step cluster (TSC) based random undersampling 

(RUS) and stacking technique (TSC-RUS+S) for 

improving the accuracy of SDP. TSC-RUS is applied to 

deal with the imbalanced class and Stacking 

technique is used to leverage the performance of 

classifier in SDP. RUS is chosen since many prior 

research used this approach when deal with 

imbalanced class classification. While TSC is chosen 

as cluster algorithm since TSC promises to solve at 

least some of these problems e.g.: the ability to deal 

with mixed-type variables and large data sets, 

automatic determination of the optimum number of 

clusters, and variables which may not be normally 

distributed [15].  
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This paper is organized as follows. In section 2, the 

methodology of this study is explained including the 

proposed method. The experimental results and 

discussion of comparing the proposed method with 

other prior researches are presented in section 4. 

Finally, our work of this paper is summarized in the last 

section. 

 

 

2.0  METHODOLOGY 
 

We propose a method called TSC-RUS+S, a random 

undersampling based on two-step cluster (TSC) and 

stacking technique for tackle imbalanced class 

problem in software defect prediction. TSC is one of 

clustering algorithm that developed firstly by [16] and 

designed to handle very large datasets. TSC is 

provided by the statistical package SPSS. TSC able to 

handle both continuous and categorical variables 

[15], [17]. In stacking technique, Decision Tree (DT), 

Logistic Regression (LR) and k-Nearest Neighbor (kNN) 

are used as base learner while Naive Bayes (NB) as 

stacking model learner. Figure 1 shows block 

diagram of the proposed method. 

The proposed method is evaluated using nine 

NASA metrics data program (NASA MDP) datasets 

[18], i.e.: CM1, KC1, KC3, MC2, MW1, PC1, PC2, PC3, 

PC4 as used by [8], [9], [11]. As shown in Figure 1, nine 

NASA MDP datasets multiplied first and feed to 

training phase and testing phase respectively; where 

training phase is used for build the model and testing 

phase is used to test the model and evaluate its 

performance. 

In training phase, dataset then clustered using TSC 

algorithm. Number of cluster is setup to 4 clusters as 

the same idea with create 4-binning or 4 quartile. 

Then, we do random undersampling for each cluster, 

so majority class and minority class is the same 

number for each cluster. After that, the new dataset 

is made by combining from all clusters with same 

proportion for each class. 

After that, the new dataset is feed to stacking 

technique with 10 fold cross validation approach 

where dataset will split into 10 parts dataset, 1 part as 

testing dataset and the rest as training datasets and 

this process repeated 10 times. We use DT, LR and 

kNN as base learner and NB as model learner in 

stacking technique. After learning process complete, 

the model will feed with testing dataset in testing 

phase and then we record the evaluation result. 

In this study, proposed method evaluated by 

using the classifier effectiveness based on confusion 

matrix with the main evaluation is area under curve 

(AUC) as used by [5], [8], [9], [11], [12], [13]. AUC has 

the potential to significantly improve convergence 

across empirical experiments in software defect 

prediction [8] and the use of the AUC to improve 

cross-study comparability [19]. A basic guide for 

classifying the accuracy of a diagnostic test based 

on AUC as stated by [20] as follows:  

 

 0.90 - 1.00 = excellent classification  

 0.80 - 0.90 = good classification  

 0.70 - 0.80 = fair classification  

 0.60 - 0.70 = poor classification  

 0.50 - 0.60 = failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Block diagram of the proposed method 

 

 

Another evaluation of the proposed method i.e.: 

recall or sensitivity (SN) as used by [5], [11], [12]; 

specificity (SP) and precision (PR) as used by [11], 

[12]. These evaluations based on the confusion matrix 

which contains the value true positive (TP), true 

negative (TN), false positive (FP) and false negative 

(FN) as shown in Table 1. TP means when predicted 

label is defective and the actual label is defective 

too. When predicted label is defective but the actual 

label is non-defective, it called FP. TN is the same with 

TP but in matter of non-defective label, while FN is 

when predicted label is non-defective but actually it 

label is defective. It calculated based on confusion 

matrix that produces from the model. Based on 

confusion matrix, the measurement calculation are 

as follows: 

(i) SN : measures the proportion of positive 

pattern instances that are correctly 

recognized as positive 

 SN = TP / (TP + FN)                       (1)  

(ii) SP : measures the proportion of negative 

pattern instances that are correctly 

recognized as negative 

 SP = TN / (TN + FP)     (2) 
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(iii) PR : measures the probability that a positively 

predicted pattern instance is labeled as 

positive 

 PR = TP / (TP + FP)      (3) 

 
Table 1 Confusion matrix 

 

Predicted 
Actual 

Defective non-Defective 

Defective TP FP 

non-Defective FN TN 

 

 

3.0  RESULTS AND DISCUSSION 
 

The experiments are conducted using a computing 

platform based on Intel Core 2 Duo 2.2 GHz CPU, 2 

GB RAM and Microsoft Windows 7 32-bit operating 

system, Rapidminer version 5.3 as data analytics tool 

and also IBM SPSS Statistics version 20 as statistics tool. 

Rapidminer will produce both AUC and confusion 

matrix as the calculation output; while IBM SPSS 

Statistics will produce t-test for comparison between 

proposed method and prior research statistically. 

 

3.1 Stacking Only Technique 

 

First of all, we conducted experiment on nine NASA 

MDP datasets with stacking technique only. The 

confusion matrix as shown in Table 2 is produced for 

each datasets from Rapidminer and then we 

evaluate the method by calculate SN, SP and PR, 

while AUC is directly calculated by Rapidminer. Table 

3 shows the complete method evaluation. 

 

Table 2 Confusion matrix for stacking only technique 

 

Dataset TP TN FP FN 

CM1 16 271 31 26 

KC1 128 1607 164 197 

KC3 13 147 17 23 

MC2 19 76 7 25 

MW1 15 202 35 12 

PC1 22 651 47 39 

PC2 8 1515 54 8 

PC3 132 239 746 8 

PC4 1187 97 81 34 

 

 

As shown in Table 3, the method yields 2 AUC with 

excellent classification, 3 good classifications and 4 

fair classifications. Meanwhile, SN vary from 0.361 – 

0.972, SP vary from 0.243 – 0.966 and PR vary from 

0.129 – 0.936. In matter of AUC, the method mostly 

produced fair classification; while in matter of SN and 

PR, the method produced mostly low result; while in 

matter of SP, the method produced excellent result 

mostly. However, based on this result, the method is 

promising enough since it still produced 2 excellent 

classification and the recall (SN) is still better than its 

precision (PR). As one of the objective of the 

research conducted by [12] that try to improving the 

recall. 

 
Table 3 The method evaluation for stacking only technique 

 

Dataset AUC SN SP PR 

CM1 0.785c 0.381 0.897 0.34 

KC1 0.804b 0.394 0.907 0.438 

KC3 0.743c 0.361 0.896 0.433 

MC2 0.796c 0.432 0.916 0.731 

MW1 0.785c 0.556 0.852 0.3 

PC1 0.805b 0.361 0.933 0.319 

PC2 0.949a 0.5 0.966 0.129 

PC3 0.804b 0.943 0.243 0.15 

PC4 0.953a 0.972 0.545 0.936 
a. excellent, b. good, c. fair 

 

 

3.2  TSC-RUS+S Technique 

 

In the second experiment, we implemented random 

undersampling based on two-step cluster (TSC-RUS) 

and combined with stacking technique (TSC-RUS+S). 

The experimental result showed in Table 4 and Table 

5. The confusion matrix is produced for nine datasets 

from Rapidminer and then we calculate SN, SP and 

PR, while AUC is directly calculated by Rapidminer. 

 

Table 4 Confusion matrix for TSC-RUS+S technique 

 

Dataset TP TN FP FN 

CM1 37 91 211 5 

KC1 209 1547 224 116 

KC3 27 99 65 9 

MC2 12 79 4 32 

MW1 22 156 81 5 

PC1 12 681 17 49 

PC2 16 1299 270 0 

PC3 92 835 150 48 

PC4 1185 60 118 36 

 

 

As shown in Table 5, the second experiment yield 

better result in all evaluation rather than the first 

experiment. In matter of AUC, 6 classified as excellent 

and 3 classified as good. SN vary from 0.262 – 1; SP 

vary from 0.603 – 0.979 and PR vary from 0.047 – 

0.962. In matter of SN and PR, the second experiment 

produced less in lower value and higher in upper 

value rather than the first experiment. While in matter 

of SP, the second experiment produced higher result 

lower value and upper value rather than the first 

experiment. 
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Table 5 The method evaluation for TSC-RUS+S technique 

 

Dataset AUC SN SP PR 

CM1 0.86b 0.952 0.652 0.276 

KC1 0.916a 0.935 0.738 0.396 

KC3 0.843b 1 0.64 0.379 

MC2 0.926a 0.409 0.952 0.818 

MW1 0.916a 1 0.603 0.223 

PC1 0.893b 0.262 0.979 0.516 

PC2 0.955a 1 0.792 0.047 

PC3 0.917a 1 0.644 0.285 

PC4 0.952a 0.93 0.747 0.962 
a. excellent, b. good 

 

 

3.3  Experimental Results Comparison 

 

In order to more detailed comparison between the 

first and the second experiment, we presented the 

comparison in Table 6.  The bold font face indicates 

that the best value for each evaluation. As shown in 

Table 6, the second experiment (TSC-RUS+S) is 

outperforms in almost datasets in matter of AUC (8 of 

9 datasets). Meanwhile, the first experiment (stacking 

only) outperforms the second experiment only in PC4. 

 

Table 6 Result comparison stacking only vs. TSC-RUS+S 

technique 

 
Data- 

set 

AUC SN SP 

(1) (2) (1) (2) (1) (2) 

CM1 0.785 0.86 0.381 0.952 0.897 0.652 

KC1 0.804 0.916 0.394 0.935 0.907 0.738 

KC3 0.743 0.843 0.361 1 0.896 0.64 

MC2 0.796 0.926 0.432 0.409 0.916 0.952 

MW1 0.785 0.916 0.556 1 0.852 0.603 

PC1 0.805 0.893 0.361 0.262 0.933 0.979 

PC2 0.949 0.955 0.5 1 0.966 0.792 

PC3 0.804 0.917 0.943 1 0.243 0.644 

PC4 0.953 0.952 0.972 0.93 0.545 0.747 

(1). stacking only; (2). TSC-RUS+S 

 

 

In matter of SN, the second experiment 

outperforms the first experiment in almost dataset (6 

of 9 dataset). Meanwhile, in matter of SP, the first 

experiment outperforms the second experiment in 

almost dataset (5 of 9 datasets). However, overall the 

second experiment outperform and better than the 

first experiment since the main evaluation in 

imbalanced class classification such as SDP is AUC as 

stated by [8], [19].  

 

 

 

 

 

 

3.4  AUC Comparison with Prior Researches 

 

Since this research used the public dataset and 

many existing prior researches conducted and using 

the same datasets, therefore we must compare our 

research result with those prior researches. Six prior 

researches were selected and the comparison is 

presented in Table 7. Three prior researches 

conducted with the same nine datasets, while 3 prior 

researches have conducted with the same three 

datasets. In this comparison, we use AUC since AUC 

is main evaluation in imbalanced class classification. 

 
Table 7 AUC comparison with prior researches 

 

DS (1) (2)  (3)  (4)  (5)  (6)  (7) 

CM1 0.77 0.70 0.89 - 0.73 0.77 0.860 

KC1 0.85 0.79 0.82 - - 0.80 0.916 

KC3 0.71 0.68 0.85 0.86 0.92 - 0.843 

MC2 0.73 0.74 0.87 - - - 0.926 

MW1 0.75 0.72 0.92 - - - 0.916 

PC1 0.79 0.78 0.92 - - 0.82 0.893 

PC2 0.82 0.81 0.96 0.95 - - 0.955 

PC3 0.78 0.78 0.91 - 0.77 - 0.91 

PC4 0.85 0.86 0.89 0.96 - - 0.952 

 

 

Note that, (1) method called PSOFS+B proposed 

by [9], (2) method called GAFS+B proposed by [8], 

(3) method called DPRAR proposed by [11], (4) 

method called Enhanced APE proposed by [13], (5) 

method called NB+AM proposed by [12], (6) method 

called ANN+ABC proposed by [5] and (7) is the 

proposed method called TSC-RUS+S. In this 

comparison, bold font face means the best value in 

AUC, while underline font face means the second 

best value in AUC. 

As presented in Table 7, proposed method 

outperforms 3 of 9 datasets and became the second 

best 5 of 9 datasets and only 1 dataset had fourth 

position. This result indicated that the proposed 

method is promising and yield excellent result since 

produced excellent AUC in almost datasets (6 of 9 

datasets). In this comparison, we also test our 

proposed method result compared to other prior 

research statistically as shown in Table 8. We used t-

test to compare between our proposed method with 

method (1), (2) and (3); since these methods had the 

same all datasets. 

 
Table 8 T-Test AUC comparison with prior researches 

 

Comparison 

schemes 
p-value 

Mean 

Difference 
Difference 

Proposed Method  

vs. (1) 
0.000 0.127 Significant 

Proposed Method  

vs. (2) 
0.000 0.145 Significant 

Proposed Method 

vs. (3) 
0.394 0.013 

not 

Significant 
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We conducted t-test to detect whether there is 

difference between proposed method and others or 

not and also to show which methods is the better 

performance. As shown in Table 8, in pair 1, proposed 

method vs. PSOFS+B (1), p-value = 0.000 which 

means there is significant difference between 

proposed method with PSOFS+B. Proposed method is 

the better method rather than PSOFS+B since the 

mean difference is positive value (0.127); it indicated 

that the first method (which is proposed method) 

had higher value in AUC. In pair 2, proposed method 

vs. GAFS+B (2), has the same result with pair 1, where 

there is significant difference (p-value = 0.000) and 

proposed method gain better result since the mean 

difference is 0.145 (positive value). In pair 3, proposed 

method vs. DPRAR (3), there is not significant 

difference since p-value = 0.394 (p-value > 0.05) and 

the mean difference is also very small (0.013). Based 

on t-test, proposed method indicated excellent and 

competitive result with the state-of-the-art research 

result. 

 

 

4.0  CONCLUSION 
 

A novel hybrid method that integrates random 

undersampling as data level approach based on 

two-step cluster and stacking technique as algorithm 

approach is proposed in this paper, to improve the 

accuracy of software defect prediction (SDP). The 

proposed method is applied to deal with the class 

imbalance problem in SDP. Experimental results show 

that the proposed method yields an impressive and 

promising improvement in prediction performance 

for most datasets and prior research results both in 

AUC and recall or sensitivity. This promising result in 

line with several prior research were conducted 

which aim to improve not just AUC but also recall or 

sensitivity as well. 

Future research will be concerned with 

benchmarking the proposed method with other 

clustering techniques, such as DBSCAN, Fuzzy C-

means, etc. and other meta-learning techniques, 

such as bagging and boosting. Feature discretization 

based on clustering technique to tackle noisy 

attribute as nature of SDP dataset also challenging to 

be studied in our future work. 
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