

79:7–2 (2017) 45–50 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

TACKLING IMBALANCED CLASS IN SOFTWARE DEFECT

PREDICTION USING TWO-STEP CLUSTER BASED RANDOM

UNDERSAMPLING AND STACKING TECHNIQUE

Adi Wijayaa,c*, Romi Satria Wahonob

aInformatics Engineering Department, MH Thamrin University,

Jakarta, Indonesia
bFaculty of Computer Science, Dian Nuswantoro University,

Semarang, Indonesia
cIT Department, STIKIM, Jakarta, Indonesia

Article history

Received

1 February 2017

Received in revised form

15 July 2017

Accepted

6 September 2017

*Corresponding author

adiwjj@stikim.ac.id

Graphical abstract

Abstract

The cost of finding and correcting the software defects are high and increases

exponentially in the software development. The software defect prediction (SDP) can be

used in the early phases to reduce the testing and maintenance time, cost and effort; thus,

improves the quality of the software. SDP performance is poor caused by imbalanced class

in datasets where defective modules as minority compared to defect-free ones. In this

study, we propose the combination of random undersampling based on two-step cluster

and stacking technique for improving the accuracy of SDP. In stacking technique, Decision

Tree, Logistic Regression and k-Nearest Neighbor are used as base learner while Naive

Bayes as stacking model learner. The proposed method is evaluated using nine datasets

from NASA metrics data program repository and area under curve (AUC) as main

evaluation. Results have indicated that the proposed method yield excellent performance

for 5 of 9 datasets (AUC > 0.9). Compared to the prior researches, the proposed method

has first position for 3 datasets, second position for 5 datasets and only 1 dataset in third

position for AUC value comparison. Therefore, it can be concluded that the proposed

method has an impressive and promising result in prediction performance for most datasets

compared with prior research performance.

Keywords: Software defect prediction, two-step cluster, random undersampling, ensemble

learning, stacking technique

© 2017 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Software defect prediction (SDP) is the process of

predicting which parts of a code are defective and

which are not [1]. The consequences of software

failures may result in monetary and human losses [2]

since the cost of correcting the defects increases

exponentially if the defects are encountered later in

the software development [3]. The accurate

prediction of defect-prone software modules can

help direct test effort, reduce costs and also improve

the software testing process by focusing on fault-

prone modules [4]. The SDP models can be used in

the early phases of software development life cycle

[3].
SDP becoming challenging task since software

defect data in nature have a class imbalance

because of the skewed distribution of defective and

non-defective modules [5]. Although various

techniques have been proposed by various

researchers to address class imbalance problem

issue, but no single technique outperformed the

others in all the studies [6]. In many domain

applications, learning with class imbalance

distribution happens regularly. Imbalanced class

distribution in datasets occur when one class, often

46 Wijaya & Wahono / Jurnal Teknologi (Sciences & Engineering) 79:7–2 (2017) 45–50

the one that is of more interest, that is insufficiently

represented [7].

Various methods has been introduced to tackle

this problem with two common approaches: data

level and algorithm level [7]. Data level approach

employs a pre-processing step to rebalance the class

distribution. This is done by either employing

undersampling or oversampling to reduce the

imbalance ratio in training data [1]. Undersampling

removes a smaller number of instances from majority

class in order to minimize the discrepancy between

the two classes whereas oversampling duplicates

instances from minority class. Meanwhile, the

algorithm level methods could be categorized as

dedicated algorithms that directly learn the

imbalance distribution from the classes in the

datasets, such as: one class learning classifications,

cost-sensitive learning and ensemble learning [7].

Undersampling which reduce certain instances

from a majority class could lead to loss of potentially

important information about the class; while in

oversampling, the duplication only increase the

number of examples but do not provide new

information about the class [7]. In algorithm level,

although various techniques have been proposed by

various researchers to address this issue, but no single

technique outperformed the others in all the studies

[6]. A combination of data level and algorithm level

as proposed by [8]–[10] yield an impressive

performance in handling imbalanced class

classification in SDP.

Many researches have been conducted in SDP

both in class imbalance issue and noisy attribute

issue. SDP datasets have imbalance class in nature,

since positive class (defective module) is minority

compared to majority class (non-defective module).

To tackle these problems, some approaches were

proposed by researcher, such as: data level by using

association rule [11], [12], algorithm level by using

optimization [5] and ensemble or meta-learning

technique [8], [9], [13].

A novel supervised method for detecting software

entities with defects, based on relational association

rule mining, called DPRAR (Defect Prediction using

Relational Association Rules) was proposed by [11].

Their classifier is based on the discovery of relational

association rules for predicting whether a software

module is or it is not defective. They used ten NASA

metrics data program (NASA MDP) datasets, such as:

CM1, KC1, KC3, PC1, JM1, MC2, MW1, PC2, PC3 and

PC4. They used five evaluations, such as: area under

curve (AUC), accuracy, recall or sensitivity, specificity

and precision. Their model yield potential and

promising result.

Another method from association mining

approach was proposed by [12] and combines with

Naïve Bayes (NB). The proposed algorithm

preprocesses data by setting specific metric values

as missing and improves the prediction of defective

modules. NB classifier has been developed before

and after the proposed preprocessing data. They

used 5 NASA MDP datasets, such as: CM1, KC3, PC3,

MC1 and AR4 and used AUC, accuracy, recall or

sensitivity, specificity and precision as evaluation.

Their method showed that recall of the classifier after

the proposed preprocessing has improved and has

resulted in up to 40% performance gain.

A combination of traditional Artificial Neural

Network (ANN) and the novel Artificial Bee Colony

(ABC) algorithm are used by [5]. ABC was used to

find optimal weights of ANN. They used accuracy,

probability of detection, probability of false alarm,

balance, AUC, and Normalized Expected Cost of

Misclassification as the main performance indicators.

Five NASA MDP datasets were used such as: KC1,

KC2, CM1, PC1 and JM1. Their proposed method is

better compared to other five algorithms although

the performance difference is not significant.

Another approach to deal with imbalance class

classification in SDP was used Bagging as ensemble

technique and using feature selection using Genetic

Algorithm as proposed by [8] and Particle Swarm

Optimization as proposed by [9]. Their used 9 NASA

MDP datasets, such as: CM1, KC1, KC3, MC2, MW1,

PC1, PC2, PC3 and PC4. They used AUC as main

evaluation and their proposed method yield

impressive performance compared to ten standard

algorithms.

A combined selected ensemble learning models

with efficient feature selection was proposed by [13]

to address data imbalance and feature redundancy

and mitigate their effects on the defect classification

performance. They used 4 NASA MDP datasets such

as: KC3, MC1, PC2, PC4 and AUC as evaluation. The

ensemble technique, so called average probability

ensemble (APE) combined with greedy forward

selection was gain optimal result for AUC values of

above 0.9 for the NASA MDP datasets such as: PC2,

PC4, and MC1.

While there is no single method that achieves the

best performance for all NASA MDP datasets, this

indicated that SDP still open issue and challenging

task. In this study, a combination of data level and

ensemble technique is proposed. Stacking technique

is chosen as ensemble technique due to its

performance is often astonishingly good [14].

In this research, we propose the combination of

two-step cluster (TSC) based random undersampling

(RUS) and stacking technique (TSC-RUS+S) for

improving the accuracy of SDP. TSC-RUS is applied to

deal with the imbalanced class and Stacking

technique is used to leverage the performance of

classifier in SDP. RUS is chosen since many prior

research used this approach when deal with

imbalanced class classification. While TSC is chosen

as cluster algorithm since TSC promises to solve at

least some of these problems e.g.: the ability to deal

with mixed-type variables and large data sets,

automatic determination of the optimum number of

clusters, and variables which may not be normally

distributed [15].

47 Wijaya & Wahono / Jurnal Teknologi (Sciences & Engineering) 79:7–2 (2017) 45–50

This paper is organized as follows. In section 2, the

methodology of this study is explained including the

proposed method. The experimental results and

discussion of comparing the proposed method with

other prior researches are presented in section 4.

Finally, our work of this paper is summarized in the last

section.

2.0 METHODOLOGY

We propose a method called TSC-RUS+S, a random

undersampling based on two-step cluster (TSC) and

stacking technique for tackle imbalanced class

problem in software defect prediction. TSC is one of

clustering algorithm that developed firstly by [16] and

designed to handle very large datasets. TSC is

provided by the statistical package SPSS. TSC able to

handle both continuous and categorical variables

[15], [17]. In stacking technique, Decision Tree (DT),

Logistic Regression (LR) and k-Nearest Neighbor (kNN)

are used as base learner while Naive Bayes (NB) as

stacking model learner. Figure 1 shows block

diagram of the proposed method.

The proposed method is evaluated using nine

NASA metrics data program (NASA MDP) datasets

[18], i.e.: CM1, KC1, KC3, MC2, MW1, PC1, PC2, PC3,

PC4 as used by [8], [9], [11]. As shown in Figure 1, nine

NASA MDP datasets multiplied first and feed to

training phase and testing phase respectively; where

training phase is used for build the model and testing

phase is used to test the model and evaluate its

performance.

In training phase, dataset then clustered using TSC

algorithm. Number of cluster is setup to 4 clusters as

the same idea with create 4-binning or 4 quartile.

Then, we do random undersampling for each cluster,

so majority class and minority class is the same

number for each cluster. After that, the new dataset

is made by combining from all clusters with same

proportion for each class.

After that, the new dataset is feed to stacking

technique with 10 fold cross validation approach

where dataset will split into 10 parts dataset, 1 part as

testing dataset and the rest as training datasets and

this process repeated 10 times. We use DT, LR and

kNN as base learner and NB as model learner in

stacking technique. After learning process complete,

the model will feed with testing dataset in testing

phase and then we record the evaluation result.

In this study, proposed method evaluated by

using the classifier effectiveness based on confusion

matrix with the main evaluation is area under curve

(AUC) as used by [5], [8], [9], [11], [12], [13]. AUC has

the potential to significantly improve convergence

across empirical experiments in software defect

prediction [8] and the use of the AUC to improve

cross-study comparability [19]. A basic guide for

classifying the accuracy of a diagnostic test based

on AUC as stated by [20] as follows:

 0.90 - 1.00 = excellent classification

 0.80 - 0.90 = good classification

 0.70 - 0.80 = fair classification

 0.60 - 0.70 = poor classification

 0.50 - 0.60 = failure.

Figure 1 Block diagram of the proposed method

Another evaluation of the proposed method i.e.:

recall or sensitivity (SN) as used by [5], [11], [12];

specificity (SP) and precision (PR) as used by [11],

[12]. These evaluations based on the confusion matrix

which contains the value true positive (TP), true

negative (TN), false positive (FP) and false negative

(FN) as shown in Table 1. TP means when predicted

label is defective and the actual label is defective

too. When predicted label is defective but the actual

label is non-defective, it called FP. TN is the same with

TP but in matter of non-defective label, while FN is

when predicted label is non-defective but actually it

label is defective. It calculated based on confusion

matrix that produces from the model. Based on

confusion matrix, the measurement calculation are

as follows:

(i) SN : measures the proportion of positive

pattern instances that are correctly

recognized as positive

 SN = TP / (TP + FN) (1)

(ii) SP : measures the proportion of negative

pattern instances that are correctly

recognized as negative

 SP = TN / (TN + FP) (2)

48 Wijaya & Wahono / Jurnal Teknologi (Sciences & Engineering) 79:7–2 (2017) 45–50

(iii) PR : measures the probability that a positively

predicted pattern instance is labeled as

positive

 PR = TP / (TP + FP) (3)

Table 1 Confusion matrix

Predicted
Actual

Defective non-Defective

Defective TP FP

non-Defective FN TN

3.0 RESULTS AND DISCUSSION

The experiments are conducted using a computing

platform based on Intel Core 2 Duo 2.2 GHz CPU, 2

GB RAM and Microsoft Windows 7 32-bit operating

system, Rapidminer version 5.3 as data analytics tool

and also IBM SPSS Statistics version 20 as statistics tool.

Rapidminer will produce both AUC and confusion

matrix as the calculation output; while IBM SPSS

Statistics will produce t-test for comparison between

proposed method and prior research statistically.

3.1 Stacking Only Technique

First of all, we conducted experiment on nine NASA

MDP datasets with stacking technique only. The

confusion matrix as shown in Table 2 is produced for

each datasets from Rapidminer and then we

evaluate the method by calculate SN, SP and PR,

while AUC is directly calculated by Rapidminer. Table

3 shows the complete method evaluation.

Table 2 Confusion matrix for stacking only technique

Dataset TP TN FP FN

CM1 16 271 31 26

KC1 128 1607 164 197

KC3 13 147 17 23

MC2 19 76 7 25

MW1 15 202 35 12

PC1 22 651 47 39

PC2 8 1515 54 8

PC3 132 239 746 8

PC4 1187 97 81 34

As shown in Table 3, the method yields 2 AUC with

excellent classification, 3 good classifications and 4

fair classifications. Meanwhile, SN vary from 0.361 –

0.972, SP vary from 0.243 – 0.966 and PR vary from

0.129 – 0.936. In matter of AUC, the method mostly

produced fair classification; while in matter of SN and

PR, the method produced mostly low result; while in

matter of SP, the method produced excellent result

mostly. However, based on this result, the method is

promising enough since it still produced 2 excellent

classification and the recall (SN) is still better than its

precision (PR). As one of the objective of the

research conducted by [12] that try to improving the

recall.

Table 3 The method evaluation for stacking only technique

Dataset AUC SN SP PR

CM1 0.785c 0.381 0.897 0.34

KC1 0.804b 0.394 0.907 0.438

KC3 0.743c 0.361 0.896 0.433

MC2 0.796c 0.432 0.916 0.731

MW1 0.785c 0.556 0.852 0.3

PC1 0.805b 0.361 0.933 0.319

PC2 0.949a 0.5 0.966 0.129

PC3 0.804b 0.943 0.243 0.15

PC4 0.953a 0.972 0.545 0.936
a. excellent, b. good, c. fair

3.2 TSC-RUS+S Technique

In the second experiment, we implemented random

undersampling based on two-step cluster (TSC-RUS)

and combined with stacking technique (TSC-RUS+S).

The experimental result showed in Table 4 and Table

5. The confusion matrix is produced for nine datasets

from Rapidminer and then we calculate SN, SP and

PR, while AUC is directly calculated by Rapidminer.

Table 4 Confusion matrix for TSC-RUS+S technique

Dataset TP TN FP FN

CM1 37 91 211 5

KC1 209 1547 224 116

KC3 27 99 65 9

MC2 12 79 4 32

MW1 22 156 81 5

PC1 12 681 17 49

PC2 16 1299 270 0

PC3 92 835 150 48

PC4 1185 60 118 36

As shown in Table 5, the second experiment yield

better result in all evaluation rather than the first

experiment. In matter of AUC, 6 classified as excellent

and 3 classified as good. SN vary from 0.262 – 1; SP

vary from 0.603 – 0.979 and PR vary from 0.047 –

0.962. In matter of SN and PR, the second experiment

produced less in lower value and higher in upper

value rather than the first experiment. While in matter

of SP, the second experiment produced higher result

lower value and upper value rather than the first

experiment.

49 Wijaya & Wahono / Jurnal Teknologi (Sciences & Engineering) 79:7–2 (2017) 45–50

Table 5 The method evaluation for TSC-RUS+S technique

Dataset AUC SN SP PR

CM1 0.86b 0.952 0.652 0.276

KC1 0.916a 0.935 0.738 0.396

KC3 0.843b 1 0.64 0.379

MC2 0.926a 0.409 0.952 0.818

MW1 0.916a 1 0.603 0.223

PC1 0.893b 0.262 0.979 0.516

PC2 0.955a 1 0.792 0.047

PC3 0.917a 1 0.644 0.285

PC4 0.952a 0.93 0.747 0.962
a. excellent, b. good

3.3 Experimental Results Comparison

In order to more detailed comparison between the

first and the second experiment, we presented the

comparison in Table 6. The bold font face indicates

that the best value for each evaluation. As shown in

Table 6, the second experiment (TSC-RUS+S) is

outperforms in almost datasets in matter of AUC (8 of

9 datasets). Meanwhile, the first experiment (stacking

only) outperforms the second experiment only in PC4.

Table 6 Result comparison stacking only vs. TSC-RUS+S

technique

Data-

set

AUC SN SP

(1) (2) (1) (2) (1) (2)

CM1 0.785 0.86 0.381 0.952 0.897 0.652

KC1 0.804 0.916 0.394 0.935 0.907 0.738

KC3 0.743 0.843 0.361 1 0.896 0.64

MC2 0.796 0.926 0.432 0.409 0.916 0.952

MW1 0.785 0.916 0.556 1 0.852 0.603

PC1 0.805 0.893 0.361 0.262 0.933 0.979

PC2 0.949 0.955 0.5 1 0.966 0.792

PC3 0.804 0.917 0.943 1 0.243 0.644

PC4 0.953 0.952 0.972 0.93 0.545 0.747

(1). stacking only; (2). TSC-RUS+S

In matter of SN, the second experiment

outperforms the first experiment in almost dataset (6

of 9 dataset). Meanwhile, in matter of SP, the first

experiment outperforms the second experiment in

almost dataset (5 of 9 datasets). However, overall the

second experiment outperform and better than the

first experiment since the main evaluation in

imbalanced class classification such as SDP is AUC as

stated by [8], [19].

3.4 AUC Comparison with Prior Researches

Since this research used the public dataset and

many existing prior researches conducted and using

the same datasets, therefore we must compare our

research result with those prior researches. Six prior

researches were selected and the comparison is

presented in Table 7. Three prior researches

conducted with the same nine datasets, while 3 prior

researches have conducted with the same three

datasets. In this comparison, we use AUC since AUC

is main evaluation in imbalanced class classification.

Table 7 AUC comparison with prior researches

DS (1) (2) (3) (4) (5) (6) (7)

CM1 0.77 0.70 0.89 - 0.73 0.77 0.860

KC1 0.85 0.79 0.82 - - 0.80 0.916

KC3 0.71 0.68 0.85 0.86 0.92 - 0.843

MC2 0.73 0.74 0.87 - - - 0.926

MW1 0.75 0.72 0.92 - - - 0.916

PC1 0.79 0.78 0.92 - - 0.82 0.893

PC2 0.82 0.81 0.96 0.95 - - 0.955

PC3 0.78 0.78 0.91 - 0.77 - 0.91

PC4 0.85 0.86 0.89 0.96 - - 0.952

Note that, (1) method called PSOFS+B proposed

by [9], (2) method called GAFS+B proposed by [8],

(3) method called DPRAR proposed by [11], (4)

method called Enhanced APE proposed by [13], (5)

method called NB+AM proposed by [12], (6) method

called ANN+ABC proposed by [5] and (7) is the

proposed method called TSC-RUS+S. In this

comparison, bold font face means the best value in

AUC, while underline font face means the second

best value in AUC.

As presented in Table 7, proposed method

outperforms 3 of 9 datasets and became the second

best 5 of 9 datasets and only 1 dataset had fourth

position. This result indicated that the proposed

method is promising and yield excellent result since

produced excellent AUC in almost datasets (6 of 9

datasets). In this comparison, we also test our

proposed method result compared to other prior

research statistically as shown in Table 8. We used t-

test to compare between our proposed method with

method (1), (2) and (3); since these methods had the

same all datasets.

Table 8 T-Test AUC comparison with prior researches

Comparison

schemes
p-value

Mean

Difference
Difference

Proposed Method

vs. (1)
0.000 0.127 Significant

Proposed Method

vs. (2)
0.000 0.145 Significant

Proposed Method

vs. (3)
0.394 0.013

not

Significant

50 Wijaya & Wahono / Jurnal Teknologi (Sciences & Engineering) 79:7–2 (2017) 45–50

We conducted t-test to detect whether there is

difference between proposed method and others or

not and also to show which methods is the better

performance. As shown in Table 8, in pair 1, proposed

method vs. PSOFS+B (1), p-value = 0.000 which

means there is significant difference between

proposed method with PSOFS+B. Proposed method is

the better method rather than PSOFS+B since the

mean difference is positive value (0.127); it indicated

that the first method (which is proposed method)

had higher value in AUC. In pair 2, proposed method

vs. GAFS+B (2), has the same result with pair 1, where

there is significant difference (p-value = 0.000) and

proposed method gain better result since the mean

difference is 0.145 (positive value). In pair 3, proposed

method vs. DPRAR (3), there is not significant

difference since p-value = 0.394 (p-value > 0.05) and

the mean difference is also very small (0.013). Based

on t-test, proposed method indicated excellent and

competitive result with the state-of-the-art research

result.

4.0 CONCLUSION

A novel hybrid method that integrates random

undersampling as data level approach based on

two-step cluster and stacking technique as algorithm

approach is proposed in this paper, to improve the

accuracy of software defect prediction (SDP). The

proposed method is applied to deal with the class

imbalance problem in SDP. Experimental results show

that the proposed method yields an impressive and

promising improvement in prediction performance

for most datasets and prior research results both in

AUC and recall or sensitivity. This promising result in

line with several prior research were conducted

which aim to improve not just AUC but also recall or

sensitivity as well.

Future research will be concerned with

benchmarking the proposed method with other

clustering techniques, such as DBSCAN, Fuzzy C-

means, etc. and other meta-learning techniques,

such as bagging and boosting. Feature discretization

based on clustering technique to tackle noisy

attribute as nature of SDP dataset also challenging to

be studied in our future work.

Acknowledgement

We would like to express our gratitude to RSW

Intelligent Systems Research Group (RSW-ISRG) for

warm discussion about this research.

References

[1] M. J. Siers and M. Z. Islam. 2015. Software Defect

prediction using a Cost Sensitive Decision Forest and

Voting, and a Potential Solution to the Class Imbalance

Problem. Inf. Syst. 51: 62-71.

[2] H. B. Yadav and D. K. Yadav. 2015. A Fuzzy Logic Based

Approach for Phase-wise Software Defects Prediction

Using Software Metrics. Inf. Softw. Technol. 63: 44-57.

[3] R. Malhotra. 2016. An Empirical Framework for Defect

Prediction Using Machine Learning Techniques with

Android Software. Appl. Soft Comput. 1-17.

[4] C. Catal. 2011. Software Fault Prediction : A Literature

Review and Current Trends. Expert Syst. Appl. 38(4): 4626-

4636.

[5] Ö. F. Arar and K. Ayan. 2015. Software Defect Prediction

Using Cost-sensitive Neural Network. Appl. Soft Comput.

33: 263-277.

[6] I. Arora, V. Tetarwal, and A. Saha. 2015. Open Issues in

Software Defect Prediction. Procedia Comput. Sci. 46:.

906-912.

[7] A. Ali, S. M. Shamsuddin, and A. L. Ralescu. 2015.

Classification with Class Imbalance Problem: A Review. Int.

J. Adv. Soft Comput. its Appl. 7(3): 176-204.

[8] R. S. Wahono and N. S. Herman. 2013. Genetic Feature

Selection for Software Defect Prediction. Adv. Sci. Lett.

4(2): 400-407.

[9] R. S. Wahono and N. Suryana. 2013. Combining Particle

Swarm Optimization based Feature Selection and

Bagging Technique for Software Defect Prediction. Int. J.

Softw. Eng. Its Appl. 7(5): 153-166.

[10] I. H. Laradji, M. Alshayeb, and L. Ghouti. 2015. Software

Defect Prediction Using Ensemble Learning on Selected

Features. Inf. Softw. Technol. 58: 388-402.

[11] G. Czibula, Z. Marian, and I. G. Czibula. 2014. Software

Defect Prediction Using Relational Association Rule Mining.

Inf. Sci. (Ny). 264: 260-278.

[12] Z. A. Rana, M. A. Mian, and S. Shamail. 2015. Improving

Recall of software Defect Prediction Models Using

Association Mining. Knowledge-Based Syst. 90: 1-13.

[13] I. H. Laradji, M. Alshayeb, and L. Ghouti. 2015. Software

Defect Prediction Using Ensemble Learning on Selected

Features. Inf. Softw. Technol. 58: 388-402.

[14] R. S. Wahono. 2015. A Systematic Literature Review of

Software Defect Prediction: Research Trends, Datasets,

Methods and Frameworks. J. Softw. Eng. 1: 1.

[15] C. Michailidou, P. Maheras, a. Arseni-Papadimititriou, F.

Kolyva-Machera, and C. Anagnostopoulou. 2008. A Study

of Weather Types at Athens and Thessaloniki and Their

Relationship to Circulation Types for the Cold-wet Period,

Part I: Two-Step Cluster Analysis. Theor. Appl. Climatol.

97(1–2): 163-177.

[16] T. Chiu, D. Fang, J. Chen, Y. Wang, and C. Jeris. 2001. A

Robust and Scalable Clustering Algorithm for Mixed Type

Attributes in Large Database Environment. Proceedings of

the 7th ACM SIGKDD Internation-al Conference on

Knowledge Discovery and Data Mining. 263-268.

[17] S. M. Satish and S. Bharadhwaj. 2010. Information Search

Behaviour Among New Car Buyers: A Two-step Cluster

Analysis. IIMB Manag. Rev. 22(1–2): 5-15.

[18] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson.

2012. Reflections on the NASA MDP Data Sets. IET Softw.

6(February): 549-558.

[19] S. Lessmann, S. Member, B. Baesens, C. Mues, and S.

Pietsch. 2008. Benchmarking Classification Models for
Software Defect Prediction : A Proposed Framework and

Novel Findings. IEEE Trans. Softw. Eng. 34(4): 485-496.

[20] F. Gorunescu. 2011. Data Mining: Concepts,Models and

Techniques. Springer-Verlag Berlin Heidelberg.

