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STATISTICAL VIBRATION BASED DAMAGE IDENTIFICATION
USING ARTIFICIAL NEURAL NETWORK

NORHISHAM BAKHARY !

Abstract. Artificial Neural Network (ANN) has been widely applied to detect damages in structures
based on structural vibration modal parameters. However, uncertainties that inevitably exist in finite
element model and measured vibration data might lead to false or unreliable prediction of structural
damage. In this study, a statistical approach is proposed to include the effect of uncertainties in the
ANN algorithm for damage prediction. ANN is used to predict the stiffness parameters of structures
from measured structural vibration frequencies and mode shapes. Uncertainties in the measured
data and finite element model of the structure are considered in the prediction. The statistics of the
identified parameters are determined using Rossenblueth’s point estimation method and verified by
Monte Carlo simulation. The results show that by considering these uncertainties in the ANN model,
the damages can be detected with a higher confidence level.
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Abstrak. Artificial Neural Network (ANN) telah digunakan dengan meluas bagi tujuan mengesan
kerosakan dalam struktur menggunakan data-data mod dari gegaran. Walau bagaimanapun,
ketidakpastian yang wujud dalam model unsur terhingga dan data dari lapangan yang tidak dapat
dielakkan boleh menyebabkan kesilapan dalam meramalkan magnitud dan lokasi kerosakan. Dalam
kajian ini kaedah statistik digunakan untuk mengambil kira ketidakpastian ini. ANN digunakan
untuk meramalkan parameter-parameter kekukuhan dari frekuensi dan mod bentuk bagi sesebuah
struktur. Untuk mengambil kira ketidakpastian dalam ramalan, kaedah statistik digunakan di mana
kaedah Rossenblueth point estimation diperbandingkan dengan kaedah Monte Carlo diaplikasikan bagi
mangambil kira ketidakpastian ini. Keputusan menunjukkan bahawa dengan mengambil kira
ketidakpastian dalam membuat ramalan menggunakan ANN, kerosakan boleh diramalkan pada
tahap keyakinan yang tinggi.

Kata kunci: - Artificial neural network; ketidakpastian; kesilapan rawak

1.0 INTRODUCTION

Much research efforts have been spent on various structural health monitoring
techniques in order to develop a reliable, efficient and economical approach to
increase the safety and reduce the maintenance cost of civil structures. Many different
techniques have been proposed and investigated ranging from application of electrical
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impedance techniques to structural dynamics approaches. Among these techniques,
structural dynamics approaches have been extensively explored by many researchers
as they can provide information on unforeseen potential failure mechanisms. Since
the earliest work by Cawley and Adams [1], there has been much research utilising
modal parameters in damage identification. Many of these studies have concluded
that the use of modal parameters allows the existence and location of damage to be
identified. This is because dynamic parameters such as natural frequencies, mode
shapes and structural damping are functions of various structural parameters, and
any degradation of structural properties results in the changes of these parameters

Since last decade, artificial neural network (ANN) have become a popular method for
identifying structural damage location and severity due to their capability in providing
an efficient tool for pattern recognition. Many researchers in structural dynamics have
utilised ANN for damage detection. Modal parameters such as natural frequencies and
mode shapes, usually obtained from finite element analysis of the structural model,
have been used to train the ANN model for structural damage identification. Most
of these researchers concluded that ANN is a promising tool [2-5] and can reliably
identify damages in structures. However, in those studies, both the vibration data
and finite element model used to train the ANN model and identify the damages
are assumed to be error free. In practice, the finite element model of a real structure
inevitably contains some errors, and therefore the vibration parameters generated
from such a model may not be exact either.

ANN has also been applied to identify the conditions of real structure using data
obtained from field vibration tests [6-9]. In those studies, the field measured data
were assumed noise free. In reality, measurement noise is unavoidable. Thus, the
issue regarding the measurement noise on the reliability of ANN model for structural
damage prediction needs to be investigated.

In most ANN applications in damage detection, ANN models are trained using the
damage cases generated from analytical finite element (FE) model. The experimental
measured modal data for damage structure are introduced to the trained ANN models
to obtain the damage location and severity. Most studies assumed that the training data
generated from FE model is error free to represent the relationships between the modal
parameters and the stiffness parameters. In practice, there are many uncertainties
exist, including the inaccuracy of physical parameters, non-ideal boundary condition
and structural nonlinear properties which may result in inaccurate FE model and at
the same time, the measurement noise is inevitable [10]. Since the efficiency of ANN
prediction relies on the accuracy of both components, this might limit the effectiveness
of ANN in predicting structural damages [11-13].
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Several studies have considered uncertainty effect in application of ANN, and
the noise injection learning method proposed by Matsuoka [14] has been a popular
approach to reduce the effect of noise in measurement data [11, 12, 15]. However,
studies that consider both error in FE model and noises in measurement data are quite
limited.

The objective of this work is to apply ANN in damage detection with consideration
of uncertainties in FE model and measurement data. A single span steel frame tested
in the laboratory [21] is used as an example in the study. The ANN model is trained
with vibration data generated from FE model, but smeared with random variations.
The trained model is used to predict two damage scenarios that are generated by
reducing the stiffness parameter values. Measured vibration data that will be used as
input to the ANN model for damage detection are also smeared with random noises.
An approach introduced by Papadopoulos and Garcia [16] is used to take into account
the uncertainties in FE model and measurement noise.

2.0 THEORETICAL BACKGROUND

To include the uncertainty effect in the analysis, the uncertainties in FE model and
measurement data are assumed to be normally distributed independent random
variables with zero means and specific standard deviations. Thus, the frequencies,
mode shapes and stiffness parameters for training and testing are:

A =00 (1+X,,) (1a)
h=2 (1+X,,) (1b)
o, =47 (1+X,,) (Lc)
¢, =1 (1+X,,) (1d)

o, =a) (1+X,)) (le)

where A, ¢ and A,,§, are the ith frequencies and mode shapes for training and testing,
respectively, and @ is the stiffness parameter for the jth segment. Superscript ‘0’
represents the corresponding mean value and X, X , X are the zero mean random
noises in frequencies, mode shapes and stiffness parameters, which are assumed in
this study to be the same for both training and testing data.
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By using the Rosenbleuth’s point estimation method, the mean values and standard
deviations of the stiffness parameters for each element are estimated. Thus, four ANN
models are developed by considering the mean values and standard deviations (0) of
the random noises applied to each variable. The training functions and input and
output variables for testing are listed in Table 1.

Table 1  Training functions and testing variables used in point estimation method

.. . Testing variable
Model Training function gY
Input Output

— 0 ~ A~ A~
b % T e g oy i 40,0 +0, .,
2 o = S0, 80, M -0,,.9! -0, a__

- 0 0 ~ A~ 9
5 @, = flli+o,d -0, A +0,,0 -0, -

= 0 _ 0 n A ~
4 (x]'-*' ﬁz(ll UM’ ¢Li + O'¢I'> }\,0 _Oqu)? +0¢i %

The expectation (mean values, w ) and standard deviations ( 0, ) of @ are calculated
as below:

E(a) =—(a,, +d__+d,_+d._,) (2)

o, = [E(ocz)—[E(oc)]2 ]; (3)

where E (%) is calculated using Eq. (2) with o terms substituted for the o terms.

The probability of damage existence (PDE) can be estimated from statistical
distributions of the stiffness parameters of the undamaged and damaged models.
For example, if the stiffness parameter (o, Jof the undamaged segment j 1s normally
distributed with mean £ (o) and standard deviation o (o), the probability density
function can be obtained as illustrated in Figure 1.
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Figure 1 Probability density functions for o, and 0" and probability of damage existence, P)

where L is the lower bound of the healthy parameter. In this study, the confidence
level is set to 95%, thus the lower bound L, = E(a) — 1.6450(0.), which indicates that
there 1s a probability of 95% that the healthy stiffness parameter falls in the range of
[£lc) — 1.6450(at), 0] Similarly, for the stiffness parameter of segment;in the damaged
state (o} ), the distribution is again assumed as normal with mean £(a ) and standard
deviation o(a), and the corresponding probability density function is also plotted in
Figure 1. The PDE is defined as that of o) not within the 95% confidence healthy
interval. Thus the PDE of segment is

Pl =1—prob(L  <x <o)
o o
=prob-o<=x <L) 4)

PDE is a value between 0 and 1, and if the PDE of a segment is close to 1, then it
1s most likely the element 1s damaged. If the PDE is close to 0, damage existing in the
element is very unlikely.

3.0 NUMERICAL EXAMPLE

A single span steel portal frame as shown in Figure 2 was used as an example. The
model was fabricated and tested in the laboratory. The cross section of beam is 40.50 x
6.0 mm?, and columns are 50.50 x 6.0 mm?. Rigid connections were applied between
beam and columns and supports were welded to a steel plate with fixed boundary
condition. The frame was divided to 6 sections as shown in Figure 2. Each section
consists of 5 elements. The material properties used are:

E=21x10"N/m?* p=7.67x 10% v=10.2
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Figure 2 Finite element model of the frame

Modal analysis was conducted using FE model to generate input and output data
to train ANN models. Two damage scenarios have been generated to assess the ANN
prediction performance. Scenario 1 consists of damage in two sections of the frame
(section 1 & 4), and, Scenario 2 consists of damage in four sections (section 1, 3, 5 &
6). The detail of the damages provided in Table 2. The frequencies and mode shapes
of the first three modes are shown in Table 3 and Figure 2. The modal parameters
produced by FE model are considered as noise-free data.

Table 2 E values for scenario 1 and scenario 2

Segment 1 2 3 4 5 6
Scenario 1 04 xE 1.0xE 1.0xE 0.2 x E 1.0xE 1.0xE
Scenario 2 0.4 x E 1.0x E 0.3xE 1.0xE 0.4 x E 0.3 xE

Table 3 [Irequencies of frame for undamaged, scenariol and scenario 2 for the first three modes

Undamaged Scenario 1 Scenario 2
Mode 1 4.628 3.9373 3.530
Mode 2 16.112 12.567 11.269
Mode 3 20.649 16.491 14.891
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Figure 3 Mode shapes for undamaged, scenariol and scenario for first 3 modes

4.0 ARTIFICIAL NEURAL NETWORK MODEL

An ANN model was developed to achieve a model that can relate modal parameters
with stiffness parameters of the frame. This model was trained using data from original
FE model. A multilayer perceptron with Levenberg-Marquardt backpropagation
algorithm was utilised to train the model. There were 1200 data used in training.
The training data were selected using Latin hypercube sampling [17]. To deal with
overfitting problem, early-stopping method [18] has been used, therefore the data
were divided to three parts with the ratio of 2:1:1. A trial and error method based
on Kalmorogov’s and Lippmann approach [19] was utilised to attain the best ANN
topology. To avoid the ‘curse of dimensionality’ as discussed by Bishop [20], only nine
mode shape points and frequencies for the first three modes were used as the input
parameters. The output parameters are Young’s modulus (E values) of every sections.
The numbers of neurons in the input and output layers are the same as the number
of input and output variables respectively.

The reliability of the trained ANN model was then assessed by using modal
parameters of the two damage scenarios. Figure 4 shows the predicted E values in
comparison with the actual values. Damage severities are quantified using an elemental
Stiffness Reduction Factor (SRF), defined by Equation (5). The higher the SRE the
more severe is the damage.

o
SRF=1-— (5)
E
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Figure 4 Prediction of ANN for scenario 1 and scenario 2 compared to the actual value using noise-
free input data

The results show that the ANN model is able to predict the damage successfully
if’ introduced by noise-free input data. To obtain the effect of noise, artificial error
was introduced to the damage data, whereby 2% and 15% random errors in terms
of coefficient of variations (C.O.V) were applied to frequencies and mode shapes
respectively. Figure 5 shows the ANN prediction using input data with error for both
damage scenarios.
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Figure 5 Prediction of ANN for scenario 1 and scenario 2 compared to the actual value using input
data with error

The Figure shows that for scenario 1, the false damage identification occurs
at segment 2 and 3, while the stiffness of segment 6 is overpredicted. The same
situation occurred in scenario 2, where ANN falsely identified damage at segment 2,
overestimated damage at segment | and 3, but underestimated at segment 6. This
indicates that the common ANN model trained with simulated vibration parameters
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from finite element model cannot give reliable structural damage prediction if the
testing data contain noise.

5.0 STATISTICAL APPROACH

As mentioned above, the measured data and the initial FE model inevitably
contain errors, which lead to unreliable or even false prediction. To consider these
uncertainties, the error in FE model and input data are assumed consisting of normal
distribution random variable with zero means and specific variance [21]. This implies
that if the system is measured many times independently, 95% of the measurement
will fall within the mean values with plus or minus two standard deviations. By using
the same training and input data with error (testing), a normally distributed random
variable is added to training and testing data.

In this study, it was assumed that the noise levels of frequencies, and mode shapes
were 2% and 15% respectively. This indicates that the standard deviation of noises for
frequencies and mode shapes are 2% and 15% respectively. Using point estimation
method as mentioned previously, mean values of undamaged states were obtained
by developing 8 ANN models. Each of them provides the output of different I value;
therefore the mean and standard deviation can be calculated. The result was then
verified by Monte Carlo simulation.

In Monte Carlo simulation, the random noise was added to the training and testing
data in each cycle. The training and testing process was repeated until the means and
standard deviations of E values converge. The results show that the E values have
normal type of characteristic. This was verified by Kolmorogov-Smirnov goodness-
of-fit test (K-S test). In the simulation stopped at 192™ iteration. The K-S test results
are shown in Table 4. Figure 6 shows the mean values and C.O.V of E values for both
methods.

Table 4 K-S test result

Section K-S test
KS value Critical value
1 0.067 0.097
2 0.078 0.097
3 0.051 0.097
4 0.089 0.097
5 0.039 0.097
6 0.041 0.097
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Figure 6 Mean values and coefficients of variation (C.O.V) of E values in undamaged state

It is observed that both methods provide the similar results, indicating the point
estimation method is reliable. After the distribution of undamaged and damage states
are obtained, the probability of damage existence (PDE) can be estimated for every
section. The PDE for both scenarios are listed in Table 5.

Table 5 Probability of damage existence (PDE) for every section of scenario 1 and scenario 2

Section1l Section2 Section3 Section4 Section> Section 6

Scenario 1 0.850 0.385 0.003 1.000 0.000 0.000
Scenario 2 1.000 0.0342 0.998 0.333 1.000 1.000

It can be seen that the damages for both damage scenarios are correctly identified.
The PDEs of section 1 & 2 of scenario 1 and section 1,3,5,& 6 of scenario 2 are high
indicating that it is very likely that damages exist in these sections. This demonstrates
that the statistical approach can provide confidence estimation of the damage
occurrence by taking into consideration all the uncertainties.

6.0 CONCLUSION

A statistical approach has been used together with ANN model to consider uncertainties
in this study. A point estimation method has been used to obtain the statistics of stiffness
parameters of the undamaged and damaged structure. By assuming that the FE model
and input data contain normal distribution noise, the PDE of damage sections can
be estimated, thus the damaged section can be identified correctly. The following
conclusions have been made based on the results obtained.
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The point estimation method is an efficient method to be used together with ANN
model to calculate the mean and standard deviation of stiffness parameters with
consideration of uncertainties.

A probabilistic approach with ANN model is capable of identifying the damaged
members with high confidence.
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