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Abstract 
 
In this research, Bayesian network is proposed as the model to construct gene regulatory networks from
Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset due to its 
capability of handling microarray datasets with missing values. The goal of this research is to study and to
understand the framework of the Bayesian networks, and then to construct gene regulatory networks from
Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset by developing 
Bayesian networks using hill-climbing algorithm and Efron’s bootstrap approach and then the 
performance of the constructed gene networks of Saccharomyces cerevisiae are evaluated and are 
compared with the previously constructed sub-networks by Dejori [14]. At the end of this research, the 
gene networks constructed for Saccharomyces cerevisiae not only have achieved high True Positive Rate 
(more than 90%), but the networks constructed also have discovered more potential interactions between 
genes. Therefore, it can be concluded that the performance of the gene regulatory networks constructed
using Bayesian networks in this research is proved to be better because it can reveal more gene
relationships. 
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Abstrak 
 
Dalam penyelidikan ini, Bayesian network adalah dicadangkan sebagai model untuk membina gene 
regulatory networks dari kitar sel S. cerevisiae set data disebabkan keupayaannya untuk mengendali set 
data microarray yang mempunyai nilai-nilai yang hilang. Tujuan penyelidikan ini adalah untuk 
mempelajari dan memahami rekabentuk untuk Bayesian network, dan kemudian untuk membina gene 
regulatory networks dari data Saccharomyces cerevisiae cell-cycle gene expression dan data Escherichia 
coli dengan membina model Bayesian networks dengan menggunakan algoritma hill-climbing serta 
Efron’s bootstrap approach dan gene networks yang dibina untuk Saccharomyces cerevisiae
dibandingkan dengan sub-networks yang dibina oleh Dejori [14]. Pada akhir kajian ini, gene networks
yang dibina untuk Saccharomyces cerevisiae bukan sahaja telah mencapai True Positive Rate yang tinggi 
(lebih dari 90%), tetapi gene networks yang dibina juga telah menemui lebih banyak interaksi berpotensi
antara gen. Oleh kerana itu, dapat disimpulkan bahawa prestasi gene networks yang dibina menggunakan
Bayesian network dalam kajian ini adalah terbukti lebih baik kerana ia boleh mendedahkan lebih banyak 
hubungan antara gen. 
 
Kata kunci: Bayesian network; gene regulatory networks; interaksi berpotensi antara gen 
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1.0  INTRODUCTION 
 
Microarray technologies have produced tremendous amounts of 
gene expression data in the recent years [1]. Mining these 
microarray data to understand the gene expression and gene 
regulation brings a major challenge in bioinformatics field. The 
major focus on microarray data analysis is the reconstruction of 
gene regulatory network (GRN), which aims to discover the 

underlying network of interactions between genes from the 
measured dataset of gene expression [2–3]. 
  Gene regulatory networks are also known as genetic regulatory 
networks (GRN). It is a collection of DNA segments in a cell 
which interact with each other and with other substances in the 
cell. According to Mao and Resat [4], a gene regulatory network 
can be explained as a graph consisting of nodes and edges. In the 
network graph, a node represents a gene and its promoter region. 
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The edges (links) of the network graph represent the interactions 
between any pair of genes.  
  In the past few years, many algorithms have been proposed 
and developed to infer and to construct gene regulatory networks 
from microarray data. However, most of the algorithms proposed 
are still have their own different limitations and weaknesses. 
According to Bansal et al. [5], clustering algorithm is the current 
choice to visualize and to analyze gene expression data. 
Clustering algorithm is developed based on the idea of grouping 
genes with similar expression profiles into clusters [6]. However, 
clustering is not a proper network inference algorithm because it 
can only be used to construct undirected network graph.  
  Besides that, Boolean network has also been used in 
constructing gene networks. According to Huang [7], Boolean 
networks have proved successful in modeling real world 
regulatory networks. However, several weaknesses still exist with 
the application. For example, analysis can be problematic due to 
the exponential growth in Boolean states and the lack of tool 
supports in this area. Besides that, they are also unable to handle 
incomplete regulatory network data that occur in practice 
frequently. 
  Other than that, ordinary differential equations (ODEs) have 
been widely used as well to model gene regulatory networks. 
Gene regulatory network model based on ordinary differential 
equations (ODEs) relate the changes in gene transcript 
concentration to each other and to an external perturbation. 
Advantages of ODEs-based model including it can produce 
signed directed graphs and can be applied to both steady-state and 
time-series expression profiles. However, finding appropriate 
parameter values that fit with the data is very difficult and this is 
the model’s greatest weakness. Therefore, this approach is 
restricted to very small systems. 
  Recently, Bayesian networks have been widely used to analyze 
expression data [8]. According to Steele et al. [9], Bayesian 
networks are graph-based model of probability distributions that 
is capable to capture the properties of conditional independence 
between variables. The expression levels of genes are represented 
by the nodes in the network graph and dependencies between 
genes are represented by the directed edges in gene regulatory 
network modeling.  
  Compared with other algorithms, Bayesian networks have the 
ability of uncovering independency among genes which helps to 
study the interaction of gene regulation. Besides that, Bayesian 
networks also have the ability of handling noisy and uncertainty 
in microarray dataset which contains missing values. Other than 
that, Bayesian networks are also capable to handle large scale of 
DNA microarray data, which is very crucial in gene regulatory 
network construction. Therefore, in this paper, Bayesian networks 
have been used for gene regulatory networks construction from 
Saccharomyces cerevisiae cell-cycle gene expression dataset by 
Spellman et al. [10]. 
 
 

2.0  MATERIALS AND METHODS 
 
2.1  Impute Missing Values 
 
In order to prepare a complete database for constructing Bayesian 
networks, the missing data in microarray datasets have to be 
imputed. Therefore, Least Local Squares (LLSimpute), an 
imputing algorithm that is developed by Kim et al. [11] is chosen 
and it is used to estimate the missing values in target genes. 
LLSimpute algorithm estimates the missing values in the target 
genes as the linear combination of their most k-similar neighbours 
chosen by the first k smallest Euclidean distance. Assume that the 
target gene ݃ଵ contains a missing value in the first position of its 

total n = 5 experiment measures, k similar genes are chosen, 
which consists of complete measurements before imputing the 
missing value into the target gene. Then, matrix A, vectors b and 
w, and the missing value are constructed as follows: 
 

ቀן ்ݓ

ܾ ܣ
ቁ ൌ  ൮

ן ଵݓ ଶݓ ଷݓ ସݓ
ܾଵ ଵ,ଵܣ ଵ,ଶܣ ଵ,ଷܣ ଵ,ସܣ
ڭ ڭ ڭ ڭ ڭ

ܾ ,ଵܣ ,ଶܣ ,ଷܣ ,ସܣ

 ൲  (1) 

 
where α represents the missing value in ݃ଵ, א ்ݓ ܴଵ ௫ ሺିଵሻ 
contains n - 1 elements of ݃ଵ whose first missing item is deleted. 
The elements of b א ܴ ௫ ଵ are the first components of the k-
nearest genes. Then, the rows of the matrix A which contain k-
nearest neighbour genes with their first values are deleted. With 
the above definition, the missing value α can be estimated as a 
linear combination of the vector b: 
 

ߙ ൌ ݔ்ܾ  ൌ  ்ܾሺ்ܣሻ (2)     ݓ 
 
where ሺ்ܣሻ  is the pseudoinverse of ்ܣ. All these procedures are 
implemented in LLSimpute function. 
  However, if a gene misses too many values across the entire 
microarray experiments, LLSimpute algorithm will not be able to 
estimate a coefficient for these missing data. Therefore, an 
imputing algorithm known as FinalImpute is implemented to 
impute too bad data into a specified value, which means the 
expression levels of the gene cannot be detected in these 
experiments.  
 
2.2  Construct Bayesian Networks 
 
According to Bansal et al. [5], Bayesian networks can be 
explained as graphical models for probabilistic relationships 
among a set of random variables ܺ, where i = 1 … n. the 
probabilistic relationships are represented in the structure of a 
directed acyclic graph G. The vertices (nodes) are the random 
variables ܺ. Then, the relationships between the variables can be 
explained by using a joint probability distribution P( ଵܺ, … , ܺ). 
The joint probability distribution is consistent with the 
independence assertions embedded within the graph G. It can be 
represented in the following form: 
 
ܲሺ ଵܺ, … , ܺሻ ൌ  ∏ ܲ൫ ܺ ൌ ||ݔ  ܺ ൌ ,ݔ  … , ܺା ൌ ܺା൯ே

ୀଵ    (3) 
 
where the p + 1 genes are known as the parents of gene i on which 
the probability is conditioned. By applying the chain rule of 
probabilities and independence, the joint probability density is 
expressed as a product of conditional probabilities. The chain 
rules are based on the Bayes theorem as below: 
 

ܲሺܣ, ሻܤ ൌ ܲሺܣ||ܤሻ כ ܲሺܣሻ ൌ ܲሺܤ||ܣሻ כ ܲሺܤሻ   (4) 
 
  The joint probability distribution can be decomposed as the 
product of conditional probabilities only if the Markov 
assumptions hold. The Markov assumptions stated that each 
variable ܺ is independent of its non-descendants, given its parent 
is in the directed acyclic graph G. 
  In this research, Bayesian networks are used to construct gene 
regulatory networks from microarray data. After the missing 
values in microarray dataset are imputed by using LLSimpute 
algorithm, an R package bnlearn is implemented to learn 
Bayesian networks from the data.  
  R package bnlearn includes several algorithms for learning the 
structure of Bayesian networks with either discrete or continuous 
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variables. Both constraint-based and score-based algorithms are 
implemented within the package. Constraint-based algorithms are 
algorithms that learn the network structure by analyzing the 
probabilistic relations entailed by the Markov property of 
Bayesian networks with conditional independence tests and then 
constructing a graph which satisfies the corresponding d-
separation statements. The resulting models are often interpreted 
as causal models even when learned from observational data [12]. 
  On the other hand, score-based algorithms are algorithms that 
assign a score to each candidate Bayesian network and try to 
maximize it with some heuristic search algorithm. Hill-Climbing 
(hc) is the only available score-based learning algorithm in the 
package which performs greedy search on the space of directed 
graphs. One of the advantages of using hill-climbing is that it can 
be used in almost any kind of search procedure. Besides that, 
according to Marco [13], the network structure learned by 
constraint-based algorithms is equivalent to the one learned by 
hill-climbing. 
  Therefore, due to the several advantages mentioned earlier, 
hill-climbing algorithm is selected and is implemented in this 
research to learn Bayesian network. Finally, an optimized 
Bayesian network is obtained by using the hill-climbing algorithm 
from bnlearn R package. The obtained network structure encodes 
the conditional independence relationship among the genes in the 
domain. 
 
2.3  Bootstrap Bayesian Networks 
 
In order to fully make use of the limited experiment data as far as 
possible, several best reasonable Bayesian networks are generated 
from the microarray data by using Efron’s non-parametric 
bootstrap approach with replacement. This method provides a 
computationally effective approach to estimate the confidence 
levels on features of generated networks.  
  Then, by choosing edges whose confidence levels exceed the 
pre-defined threshold, a set of highly confident edges are obtained 
whose encoding relationships are believable. Furthermore, the 
bootstrap produced Bayesian networks are then used to construct 
gene regulatory network. This step is implemented by using 
BootstrapBN function in the package. The constructed Bayesian 
networks are then stored in matrix form by using WriteBootBN 
function in the package. 
 
2.4  Construct Gene Regulatory Network 
 
Based on the matrix form of Bayesian networks that are 
constructed using bootstrap approach earlier, a gene regulatory 
network in matrix form is constructed by using CalcEdgeSup 
function. Then, the gene regulatory network constructed is 
displayed in graph form using R package Rgraphviz and R 
package graph, which can be downloaded from 
http://www.bioconductor.org/.  
  Both R package Rgraphviz and R package graph are able to 
display nodes and edges in a network clearly without having the 
nodes overlapping with one and another. Besides that, both 
packages are also capable to display regulatory network with huge 
amount of genes (nodes). Hence, this is why R package Rgraphviz 
and R package graph are implemented in this research to visualize 
gene regulatory network constructed. 
 
 
 
 
 
 
 

3.0  RESULTS AND DISCUSSION 
 
3.1  Dataset and Experimental Setup 
 
For this research, two microarray datasets are selected to be used 
to construct gene regulatory networks for further analysis. The 
selected microarray datasets are Saccharomyces cerevisiae dataset 
and Escherichia coli dataset.  
  The Saccharomyces cerevisiae dataset chosen is the cell-cycle 
gene expression dataset by Spellman et al. [10].  Saccharomyces 
cerevisiae is selected because it is widely available and contains 
less noise. Besides that, the dataset is available in a text file 
format and can be easily downloaded from 
http://www.cls.zju.edu.cn/binfo/BNArray/. The dataset consists of 
6178 genes in total and 78 expression measurements. However, 
only 800 differentially expressed genes are selected for further 
gene network modelling.  
  The Escherichia coli dataset chosen is the Escherichia coli 
whereby the expression levels of the genes are measured by using 
Affymetrix GeneChips. The dataset file is available freely to the 
public and can be downloaded in a text file format from 
http://cybert.microarray.ics.uci.edu/datasets/. The file contains 
4241 genes in total and 12 expression measurements. 
  Firstly, LLSimpute algorithm is applied to impute missing 
values in the genes. These genes are then being used to construct 
Bayesian network by using an R package bnlearn. From bnlearn, 
hill-climbing algorithm is selected and is implemented in this 
research to learn Bayesian network. After that, the microarray 
data are bootstrapped 3 times by using Efron’s non-parametric 
bootstrap approach to produce 3 best reasonable Bayesian 
networks. Next, a gene regulatory network in matrix form is 
constructed by using CalcEdgeSup function and is displayed 
using Rgraphviz R package. 
 
3.2  Results and Discussion 
 
Overall, this section is divided into two parts for two different 
datasets. Firstly, the gene networks constructed for 
Saccharomyces cerevisiae dataset are displayed and compared 
with the sub-networks constructed by Dejori [14]. After that, gene 
networks for Escherichia coli dataset are displayed and explained 
generally. 
 
3.2.1  Saccharomyces cerevisiae 
 
The gene networks constructed for Saccharomyces cerevisiae 
dataset in this research are compared with the sub-networks 
produced by Dejori [14]. The research done by Dejori [14] is 
implemented in Java and he has implemented Bayesian network 
to construct gene networks which is also being implemented in 
this research. Besides that, the research done by Dejori [14] also 
has used Saccharomyces cerevisiae cell-cycle gene expression 
dataset by Spellman et al. (1998) as the dataset, which is the same 
for this research.   
  Therefore, the sub-networks constructed by Dejori [14] are the 
benchmarks for this research’s networks. The sub-networks that 
are chosen to be compared are YOR263C sub-network and 
YPL256C sub-network. True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN) are calculated to 
evaluate the performance of the sub-networks constructed from 
the research.  
  Figure 2.0 shows the YOR263C sub-network that is 
constructed by Dejori [14]. This sub-network consists of 8 nodes 
(genes) and 6 undirected edges. The undirected edge between 
YOR263C and YOR264W is the most conspicuous feature in the 
sub-network. This is mainly because both genes are located next 
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to each other on the DNA strand of chromosome XV. However, 
the biological and molecular functions for both genes are 
unknown still. 
  Another feature with high confidence level is the undirected 
edge between YNR067C and YGL028C. The function of 
YNR067C is still unknown currently. The function of YGL028C 
is known to be a soluble cell wall protein. It has an undirected 
edge with YER124C, but the function of YER124C is unknown. 
Gene YGL028C is also related to YLR286C, an endochitinase 
that is involved in cell wall biogenesis. These two nodes (genes) 
are again connected by an undirected edge of high confidence. 
  Since YER124C had undirected edge with two nodes 
(YLR286C, YGL028C) and both nodes are functionally related to 
cell wall biogenesis, therefore, it can be assumed that it is also 
involved in cell wall biogenesis. Therefore, this gene network 
constructed using Bayesian networks have provided a testable 
prediction of an unknown gene function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.0  YOR263C sub-network constructed by Dejori [14] 
 
 
  Figure 2.1 shows the YOR263C sub-network that is 
constructed in this research. The constructed network consists of 8 
nodes (genes) and 10 directed edges. The main difference 
between the sub-networks constructed by Dejori [14] with this 
research is that the edges in the network constructed in this 
research are directed, whereby they can show the interactions 
between genes clearer. For example, the edge formed between 
YOR263C and YOR264W in sub-network by Dejori [14] cannot 
show which gene is regulating which gene. However, the network 
formed in this research can show clearly that YOR263C is 
regulating YOR264W. This means that the expression level of 
YOR264W is depending on YOR263C and YNR067C as well.  
  Table 2.0 shows the comparison of edges in YOR263C sub-
network between network constructed by Dejori [14] and with the 
network constructed in this research. True Positive (TP) is the 
number of edges that exist in network constructed by Dejori and 
in the network formed in this research. False Negative (FN) is the 
number of edges that exist in Dejori [14]’s sub-network, but do 
not exist in the network in this research. False Positive (FP) is the 
number edges that exist in this research, but not in the network by 
Dejori [14]. True Negative (TN) is the number of edges that do 
not exist in the network by Dejori [14] and in this research.  
  For YOR263C sub-network, the sensitivity (true positive rate) 
is 100%. This means that all the 6 edges that exist in Dejori [14] 
are also exist in the network formed in this research as well. This 
shows the program used in this research has successfully 
predicted and formed all the possible existing edges or 

interactions between genes in the network like the one by Dejori 
[14].  
 

 
 

Figure 2.1  YOR263C sub-network constructed in this research 
 
 

Table 2.0  Comparison of YOR263C sub-networks 
 

 Number of Edges 
True Positive, TP 6 

False Negative, FN 0 
False Positive, FP 4 
True Negative, TN 18 

 
 
  The specificity (true negative rate) is 82%; whereby there are 4 
edges formed in the network in this research do not exist in the 
network by Dejori [14]. The 4 edges are YNR067C with 
YOR263C, YOR263C with YJL196C, YOR325W with 
YGL028C, and YOR325W with YOR263C. This shows that the 
program used in this research is capable of uncovering more 
edges or interactions between genes if compared with Dejori [14].  
  Overall, the gene network constructed through this research 
shows that the Bayesian networks implemented in this research 
not only have successfully predicted all the edges that have been 
constructed by Dejori [14] in his research, but the Bayesian 
networks implemented are also capable to discover more new 
possible edges or interactions between genes. Hence, it can be 
concluded that the Bayesian networks implemented in this 
research have optimized performance and they perform better 
than the Bayesian networks developed in Dejori [14]’s research in 
predicting interactions between genes. 
  Figure 2.2 shows the YPL256C sub-network that is 
constructed by Dejori [14]. The network consists of 12 nodes and 
9 directed edges. However, there is one node does not form any 
edges with other nodes in the network, that is node YGR108W.  
  There is one directed edge from YPL256C to YIL066C. This 
means that there is a causal dependency between these two genes. 
Gene YPL256C encodes for G1 – cyclin which involves in 
regulation of the cell cycle. While gene YIL066C involves in 
DNA replication, which appears in the S-phase. Therefore, a 
causal dependence of YIL066C from YPL256C is biologically 
logical since their functions are correlated.  
  Gene YDR146C encodes for transcription factor that activates 
transcription of genes that expressed at the M/G1 boundary and in 
the G1 phase of the cell cycle. Gene YDR146C regulates 
YHR023W, which encodes a protein that plays a non-essential 
role in cytokinesis, in M phase. An unexpected result is that gene 
YGR108W doesn’t form any edge with other nodes. However, in 
a research by Spellman et al. (1998), it formed edges with other 
nodes. 

YER124C

YLR286C

YGL028C

YNR067

YOR264

YOR263C

YJL196C

YOR325
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Figure 2.2  YPL256C sub-network constructed by Dejori [14] 
 
 
 

 
 

 
 

Figure 2.3  YPL256C sub-network constructed in this research 
 

Figure 2.3 shows the YPL256C sub-network that is constructed 
in this research. The network consists of 12 nodes and 18 
directed edges. The main difference of the network formed in 
this research with the network done by Dejori [14] is that the 
number of edges that are found through this research is 2 times 
more than the one done by Dejori [14]. Besides that, all the 
edges in the network developed through this research have at 
least one directed edge with other nodes. However, the network 
done by Dejori [14] has failed to find or construct any edge for 
one node, which is YGR108W. All these proved that the 
methods implemented in this research is able to predict and 
form more potential edges between genes in a sub-network. 
 

Table 2.1  Comparison of YPL256C sub-networks 
 

 Number of Edges 
True Positive, TP 8 

False Negative, FN 1 
False Positive, FP 9 
True Negative, TN 12 

 
 
  Table 2.1 shows the comparison of edges formed within 
YPL256C sub-network between the network build by Dejori 
[14] and the network formed in this research. The sensitivity 
(true positive rate) for this network is approximately 89%, 
whereby 8 directed edges that exist in the network by Dejori 
[14] have been captured by the program in this research as well. 
However, there is one directed edge that exists in network by 
Dejori [14], but it doesn’t exist in the network by this research, 
the edge is between YGL021W and YMR001C.  
  The specificity (true negative rate) for this sub-network is 
around 57%. This research has captured 9 new edges between 
nodes that were unable to be captured by Dejori [14]. The new 
edges are from YPL163C to YIL066C, from YLR131C to 
YMR001C, from YIL140W to YPL163C, from YER001W to 
YIL066C, from YPL163C to YER001W, from YMR199W to 
YPL163C, from YDR146C to YGR108W, from YDR146C to 
YGL021W, and from YLR131C to YHR023W.  
One of the new edges is directed from YPL163C to YIL066C. 
Gene YIL066C is expressed only after DNA damage occurred 

YPL163C 

YMR199W 

YPL256C 

YER001W 

YIL140W YIL066C 

YGR108W

YHR023W 

YLR131C 

YDR146C 

YMR001C 

YGL021W 
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in order to cope with the function of YPL163C. Gene YPL163C 
is responsible in cell rescue, defence and virulence. Therefore, it 
is biologically logical for YPL163C regulates the expression of 
YIL066C. Another newly edge that was discovered in this 
research is from YLR131C to YMR001C. Gene YLR131C 
encodes the transcription factor that activates transcription of 
genes expressed in the G1 phase of the cell cycle. On the other 
hand, YMR001C encodes a protein that is involved in regulation 
of DNA replication. Therefore, YLR131C is likely to regulate 
YMR001C.   
  Overall, the gene network constructed through this research 
shows that the Bayesian networks implemented in this research 
not only have successfully predicted nearly 90% the edges that 
have been constructed by Dejori [14] in his research, but the 
Bayesian networks implemented are also capable to discover 
more new possible edges or interactions between genes. Hence, 
it can be concluded that the Bayesian networks implemented in 
this research have optimized performance and they perform 
better than the Bayesian networks developed in Dejori [14]’s 
research in predicting interactions between genes. 
 
3.2.2==Escherichia coli 
 
Basically, the gene networks constructed for Escherichia coli 
dataset through this research cannot be compared with other 
networks because currently there are no research have construct 
gene networks from this data using Bayesian networks. 
Therefore, six genes are selected randomly from the dataset to 
construct a gene network and then this network is discussed 
generally. 
 

 
 

Figure 2.4  Gene network constructed for Escherichia coli 
 
 
  Figure 2.4 shows the gene network constructed for six 
randomly chosen genes from Escherichia coli. The gene 
network consists of 6 nodes and 5 directed edges. From the 
network graph, it is clearly shown that the gene node with gene 
symbol “accA” is co-regulated by all other genes in the graph; 
they are gene “aas”, gene “aat”, gene “abc”, gene “abrB”, and 
gene “accB”. This means that the expression level of gene 
“accA” is dependent on all other genes in the network graph. If 
one of the genes in the network graph failed to express, then, 
gene “accA” will not be able to express as well.  
  Besides that, from the network graph, it is also clearly shown 
that the gene expression for gene “aas”, gene “aat”, gene “abc”, 
gene “abrB”, and gene “accB” are independent. This means that 
these genes are able to express independently without depending 
on the expression levels of other genes in the network.  
 
 

4.0  CONCLUSION 
 
All the methods and algorithms that were implemented in R 
language in this research have shown that the gene networks 
constructed through this research have better performance in 
predicting and discovering interactions or edges between genes. 
Nearly all the edges that have constructed by Dejori [14] in both 
YOR263C and YPL256C subnetworks are captured in this 
research successfully. Besides that, this research has also 
successfully discovered many new interactions or edges 
between genes that were failed to be captured in the networks 
constructed by Dejori [14]. Therefore, it can be concluded the R 
implementation in this research is a very good and useful tool 
for scientists to discover and to understand the potential 
interactions between genes by using Bayesian networks to 
construct gene regulatory networks. 
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