

59 (2012) 13–19 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696

Full paper Jurnal
Teknologi

An Efficient Reconciliation in Removing Errors Using Bose, Chaudhuri,
Hocquenghem Code for Quantum Key Distribution

Riaz Ahmad Qamara*, Mohd Aizaini Maarofa, Subariah Ibrahima

aFaculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, Johor Bahru, Johor Malaysia

*Corresponding author: rzaqmr@gmail.com

Article history

Received : 10 February 2012
Received in revised form : 31 May 2012
Accepted : 13 August 2012

Graphical abstract

Abstract

A quantum key distribution protocol(QKD), known as BB84, was developed in 1984 by Charles Bennett
and Gilles Brassard. The protocol works in two phases which are quantum state transmission and
conventional post processing. In the first phase of BB84, raw key elements are distributed between two
legitimate users by sending encoded photons through quantum channel whilst in the second phase, a
common secret-key is obtained from correlated raw key elements by exchanging messages through a
public channel e.g.; network or internet. The secret-key so obtained is used for cryptography purpose.
Reconciliation is a compulsory part of post processing and hence of quantum key distribution protocol.
The performance of a reconciliation protocol depends on the generation rate of common secret-key,
number of bits disclosed and the error probability in common secrete-key. These characteristics of a
protocol can be achieved by using a less interactive reconciliation protocol which can handle a higher
initial quantum bit error rate (QBER). In this paper, we use a simple Bose, Chaudhuri, Hocquenghem
(BCH) error correction algorithm with simplified syndrome table to achieve an efficient reconciliation
protocol which can handle a higher quantum bit error rate and outputs a common key with zero error
probability. The proposed protocol efficient in removing errors such that it can remove all errors even if
QBER is 60%. Assuming the post processing channel is an authenticated binary symmetric channel
(BSC).

Keywords: BB84; Reconciliation protocol; common secret-key; quantum bit error rate; simplified
syndrome table; zero error probability

© 2012 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

The well-known conventional ciphers e.g.; RSA, Diffie-Hellman
and AES are based on the computational difficulty techniques.
Due to increase in computational power, powerful techniques
have been developed to encrypt information/data but at the same
time hackers can utilize this high computational power to decrypt
it. These well-known ciphers lacks in providing secrecy proof and
in detecting eavesdroppers. For example RSA algorithm, which is
broadly utilized for key distribution[1], depends upon the
unverified computational presumptions. If someone devises a
faster technique for factoring large integers then the amount of
computation time considerably reduces to decrypt information.
Thus in the presence of high computational power, a key might be
broken easily or an attacker can apply brute-force to decrypt
short-key encrypted messages. Furthermore, Peter W. Shor
developed an algorithm in 1994 which can be run on a quantum
computer to reverse a one-way function[2]. Among other things,
Kirchhoff‘s principle states that security of a cryptosystem
depends only upon the secrecy of the key[3] but not on the
secrecy of the algorithm. A key is an important component of
cryptography and the major problem in conventional

cryptography is distribution of key among legitimate users. Thus
quantum cryptography, alternatively named as quantum key
distribution (QKD), provides a secure way of key distribution up
to an acceptable level. Then, quantum-distributed key is used with
secret-key cipher or with the prefect secure cipher, also known as
one-time pad, for secure communications. The impregnability of
both algorithms, e.g.; key distribution and encryption, is equally
important otherwise whole security is compromised.
 Quantum cryptography[4,5] is an emerging form of
encryption which uses the laws of quantum physics, e.g.; the
principle of photon polarization and Heisenberg uncertainty
principle, to encrypt information on physical level. The principle
of photon polarization describes polarization of light photons in a
particular direction whereas; the Heisenberg uncertainty principle
states that measurement of quantum state of a system is not
possible without disturbing that system[6,7]. Because of the
following principles the above laws make quantum cryptography
secure:

(i) A quantum photon cannot be split to make its
measurements secretly.

14 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59 (2012) 13–19

(ii) It is impossible to copy or clone a single photon to
measure its state.

(iii) If an eavesdropper tries to measure directly the state of
a photon, he will produce errors and can be detected.

 In quantum key distribution (QKD) protocol, BB84, a key to
be used for cryptography is distributed between two legitimate
parties conventionally called Alice and Bob. The BB84 protocol
works in two stages. In the first stage, known as quantum state
transmission, a raw key is transmitted through a quantum channel
using polarized/entangled photons or laser pulses as information
carriers. The transmitted raw key may have errors due to the
malfunctioning of the equipment used in quantum channel or due
to an adversary who tries to discover the key. In the second stage,
the raw key is distilled[8] by passing through processes of sifting,
error estimation, reconciliation and privacy amplification. The key
distillation is carried out by exchanging messages through public
channel between Alice and Bob to obtain a common-secret key.
The reconciliation process removes the errors in the shared key to
have a common key between Alice and Bob, whilst privacy
amplification compresses the common key to produce a secret-
key. A reconciliation protocol is said to be (i) efficient in
removing errors if it performs at high bit error rates and produces
a common key with minimum error rate and (ii) efficient in terms
of disclosed bits if it is less interactive[9]. A less interactive
protocol corrects the errors with minimum iterations between
Alice and Bob to get higher secret-key generation rate. An
efficient reconciliation protocol, in terms of (i) and (ii) above, is
required in QKD protocol.
 Error correction method is an essential part of a
reconciliation protocol. A binary BCH (Bose et al) code is one of
the best options to correct errors in the raw key. Encoding in BCH
code is a simple but decoding is a complex phenomenon in this
code. A BCH code may produce wrong results when errors,
produced in a transmitted codeword, are more than its error
correction capability. For example, PGZ, Euclidean and
Berlekamp-Massaey decoders[10] cannot provide solutions for
this problem. These decoders may introduce additional errors
when errors exceed their correction capability. The same may
happen while using error patterns and their corresponding
syndrome patterns (e → S) lookup table for decoding of BCH
codes[11].
 The remaining part of the paper is arranged as follows:
Section 2 explains popular reconciliation protocols. Section 3
describes the background of BCH error correction codes. Section
4 explains the proposed key reconciliation protocol. Section 5
describes the implementation of the protocol and Section 6
discusses simulation and results obtained from the protocol
simulation. In the last section 7 closing remarks are given.

2.0 POPULAR RECONCILIATION PROTOCOLS

A reconciliation protocol is an important part of quantum key
distribution protocol. Reconciliation protocols can process
discrete or continuous random variables. They can work
interactively or one way. Discrete random variables may be
binary (0,1) or non-binary (alphabets). However, a key having
continuous-variables is first converted into binary symbols before
it reconciled. Generally, an error reconciliation protocol is said to
be an ideal protocol which corrects all errors without introducing
additional errors in the key and exhibits minimal information on
the key to an adversary during reconciliation process. A
reconciliation protocol permutes bits of key randomly and groups
these bits into blocks. Then it computes parities of the blocks and
exchanges these parities with its counterpart at the other end for

comparison. If the parity of a block matches, the block is
considered correct otherwise the erroneous bit is searched and
corrected. The protocol repeats the process with different
permutations and blocks sizes and continues until no
disagreement is found in many subsequent comparisons of blocks
parities. There are many types of error reconciliation protocols but
more famous binary reconciliation protocols, working on the
above stated principle, are BBBSS (Bennett-Bessette-Brassard-
Salvail-Smolin)[12], Cascade[13,14,15], Farkawa-Yamazaki
(FY)[16], and Winnow[9,17,18].

2.1 Bennett-Bessette-Brassard-Salvail-Smolin Protocol

Bennett-Bessette-Brassard-Salvail-Smolin Protocol (BBBSS) is a
first binary interactive error correction (IEC) protocol used for
key reconciliation in quantum key distribution. It is designed by
Bennett and his coworkers. This protocol can handle a long binary
string. Alice and Bob exchange parities of their blocks and
compare these parities. The presences of diverging parities
(parities that are not equal) help Alice and Bob to focus on errors
using bisection and to correct those. It uses several iterations,
between which the bit positions are permuted in a pseudo-random
way.

2.2 Cascade Protocol

This reconciliation protocol is based on BBBSS protocol but with
an improved efficiency in term of the number of disclosed bits. It
uses four(4) iterations. First iteration is identical to the first
iteration of BBBSS, while the next three are different. Unlike
BBBSS, it records the result of all previously investigated blocks
and takes advantage of this information in next iteration. It keeps
two sets of blocks: (i) the blocks for which the parity is equal
between Alice and Bob (ii) the blocks of diverging parity. Each
block for which parity was disclosed, during the bisection, is
listed either (i) or (ii). It optimizes the block size in turn reduces
the number of bits disclosed. It optimizes bit interleaving between
two iterations.

2.3 Furukawa – Yamazaki Protocol

This IEC protocol based on BBBSS and uses perfect code
designed by Furukawa and Yamazaki. Like BBBSS, it uses a
certain number of iterations with bit interleaving in between. It cuts
the string into blocks like BBBSS and thus determines which
block contains an odd number of errors. Instead of using
interactive bisection, the correction of erroneous blocks is one
way from Alice to Bob. For each block with a diverging parity,
Alice sends Bob the syndrome of a perfect code calculated over her
block. With this information, Bob corrects his block. This protocol
is less efficient than cascade in terms of the number of bits
discarded.

2.4 Winnow Protocol

Winnow protocol is very similar to FY protocol. It also includes a
privacy maintenance step that discards bits during the error
correction. It uses a certain number of iterations with bit
interleaving in between. Like BBBSS, FY and Cascade, it also
cuts binary key into blocks. Alice and Bob exchange parities of
their blocks and thus determine which blocks contain an odd
number of errors. For blocks of diverging parity, Alice sends Bob
the syndrome of a Hamming code calculated over her block.
Unlike BBBSSS and Cascade, which use a bisection, the
correction of a block using the Hamming code does not necessary

15 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59 (2012) 13–19

reduce the number of errors in that block. The hamming code
proposed in winnow allows Alice and Bob to correct one error. If
more than one error present in the block, Bob’s attempt may
actually increase the number of errors in that block. Thus, block
size should be chosen in such a way that it globally reduces the
number of errors. Unlike Cascade, the iterations of Winnow are
independent of each other and so an exhaustive search could be
performed at a low complexity using dynamic programming.
Winnow protocol performs efficiently in terms of disclosed bits
between 10% and 18% quantum bit error rate(QBER). Winnow
can achieve about 10-3 final key bit error rate by optimizing block
size. While CASCADE protocol is preferred between 18% and
25% QBER[19]. Other suggested binary reconciliation protocols,
where authors use BCH[20] and LDPC[21] error correction
methods, can achieve 10-5 and 10-6 final key bit error rate
respectively.

3.0 BACKGROUND OF BCH CODES

An error correcting code consists of techniques and algorithms
and has two fundamental operations: encoding and decoding.
Encoding is a procedure in which redundancy (parity) is added to
a message and transforms it into a code word. This code word is
transmitted through a noisy channel, which changes the message.
Decoding procedure removes the errors from erroneous code
word and gets the message back into its original form. The block
codes process the information block-by-block and treat each block
independently. In linear block codes, adding two code words
produces another code word. A linear code involves generator and
parity-check matrices, G & H respectively. Cyclic codes are
codes in which cyclically shifting the symbols of a code word
produces another code word. In binary codes, data is processed as
binary digits (0 or 1).
 A binary BCH (Bose et al) code is a cyclic linear block code
defined over Galois Field(2)[22]. Its error correcting capacity
depends upon the minimum Hamming distance, dmin, between its
code words. For example BCH code with dmin = 3 can correct any
single error pattern, with dmin = 5 can correct double error pattern
while with dmin = 7 can correct triple error pattern. The no-error
case corresponds to the all-zero pattern. In general, a binary BCH
code with code length n = 2m-1 and minimum Hamming distance
dmin ≥ 2t+1 can correct any error pattern of size t or less where m
is a positive integer and m ≥ 3. In other words, this code can be
designed to correct any error pattern of size t in a given code
vector of length n where n = 2m-1. The designed method of BCH
code is based on the lowest common multiple (LCM) of a
minimal polynomial.
 In a linear cyclic block code, C(n,k), a code word also called
code vector c = (c0, c1 , c2,…..cn-1) is transformed into another
code word of this code after i times cyclic right-shift rotation as
c(i) = (cn-i, cn-i+1, ….. cn-1,c0, c1 , c2,…..cn-i-1). The code vector
form can be presented into a code polynomial form as c(x) = c0+
c1x+ c2x2+…..+cn-1xn-1. In a linear cyclic block code there is
always a non-zero minimum-degree polynomial which is known
as generator polynomial g(x), and any other polynomial of this
code is a multiple of g(x). The degree of the generator polynomial
is at most mt whereas any of other polynomials of the code has
degree less than or equal to ‘n-1’. Thus, a message vector m(x)
can be encoded in this code as c(x) = m(x)g(x). A BCH(15,5,7)
code with code length n =15, message length k = 5 and minimum
Hamming distanc dmin = 7, has a generator polynomial g(x) =
1+x2+x5+x6+x8+x9+x10[10]. This generator polynomial can be
expressed into a code generator matrix G of order k × n. After
performing some row operations (Gaussian elimination), the
generator matrix G is transformed into systematic form such that
G = [Pk×n-k Ik] as under:

۵ ൌ

ۏ
ێ
ێ
ێ
ۍ

 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0

ے 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0
ۑ
ۑ
ۑ
ې

 To encode a message vector m(x), this matrix G of order
(5×15) is multiplied with the message vector of order (1×5) to
obtain a code vector i.e.; c = m × G. The parity check matrix H,
which is used in decoding process, can be found from G as H =
[In-k PT

n-k×k], where PT is the transpose of matrix P[22,23]. So
the corresponding parity check matrix H is formed as:

 ۶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

ے 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 If c is a transmitted vector, r = (r0, r1, r2, …..rn-1) is a
received vector and e = (e0, e1, e2, …..en-1) is an error pattern
introduced by transmission noisy-channel then r = c + e. In the
decoding process, first of all, a syndrome vector s = (s0, s1, s2,
…..sn-k-1) is calculated with s = rHT, where HT is transpose of H.
It means syndrome s = (c + e)HT or s = cHT + eHT . Now if
transmitted code word has no error, as e = 0, then s = cHT = 0,
otherwise s = rHT ≠ 0. Finally, decoding is implemented by
using a syndrome table which is built to show the relationship
between error patterns and their corresponding syndrome patterns
(e → s).

4.0 PROPOSED RECONCILIATION PROTOCOL

This protocol can be used to reconcile a raw key which is
distributed through a quantum channel obeying quantum
mechanics principles. The raw key contains errors because of
malfunctioning of communication devices used and possible
eavesdropping in a quantum channel. It is assumed that Alice and
Bob hold a shared binary erroneous-key at the end of quantum
state transmission process in QKD. A proposed protocol, which is
used to reconcile a shared binary key, is shown in Figure 1 and is
explained as follows:

(i) Alice and Bob generate a syndrome table ST[] from all

possible error patterns in 5-bit message block as in Table
2.

(ii) Alice divides her key into blocks of 5-bit each and
computes parity bits of their blocks as pa[i] = Ba[i] × G.

(iii) Alice sends the computed parity bits pa[i] to Bob through
an authenticated public communication channel.

(iv) Bob divides his key into 5-bit blocks and combines parity
bits, received from Alice, with these blocks at lower order
positions respectively to form received vectors rb[i] such
as rb[i] = (pa0, pa1……. pa9, mb0, mb1, … mb4)

(v) Bob then calculates syndromes of vectors rb[i] as s[i] =
rb[i] * Ht. Here there may be one of the two possibilities,
either (a) calculated syndrome is equal to all-zero or (b) it
is not all-zero vector. If syndrome is not equal to all-zero
vector, then it may present in the syndrome table ST[] or
not present in ST[].

16 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59 (2012) 13–19

(vi) Bob checks that if s[i] is all-zero then he leaves the block
as it has no error. If s[i] is not all-zero and is present in the
syndrome table then he adds error pattern taken from table
ST[], corresponding to the computed syndrome pattern, to
his block Bb[i] to get corrected the block as CBb[i] = Bb[i]
+ e. Now If s[i] is neither all-zero nor present in
syndrome table then it means more than 3-errors exist in
the block, it is beyond the capability of the BCH(15,5,7)
code and Bob leaves it uncorrected and records the
position of this uncorrected block as UBp[j] = i.

(vii) After processing all bocks, Bob see if there is any
uncorrected block. If no uncorrected block left (i.e.; j = 0)
it means all of errors in the key are corrected
otherwise Bob swaps first two bits of uncorrected blocks
with corrected or errorless blocks and records the
positions of swapped blocks.

(viii) Bob calculates the parity bits of swapped blocks (swapped
blocks = 2 * uncorrected blocks) as pb[] = SBb[] × G and
sends these parity bits of each swapped block to Alice
with positions of the swapped blocks SBp[] in the key.

(ix) Alice swaps her key blocks at positions indicated by
Bob and then combines parity bits sent by Bob with her
swapped blocks to get ra[j].

(x) Alice calculates syndromes of the swapped blocks as s1 =
ra[j] × Ht and compare these syndromes with the
syndromes in table ST[] and adds corresponding error
patterns to the swapped blocks to correct errors.

(xi) Finally, Alice and Bob retain a common key i.e.; Alice’s
key is same as the key of Bob.

5.0 IMPLEMENTING THE PROTOCOL

The proposed protocol is implemented in C-sharp (C#) computer
language using two separate programs one for each player Alice
and Bob. In addition, a third program is written which (i)
generates a random key for Alice say KeyA, (ii) adds errors to
KeyA to generate another key for Bob say KeyB. Errors are added
to each block of KeyA to form KeyB as specified in Table 1. Each
key consists of one million binary bits (0 or 1) and the size of
each block is taken as five binary bits. Table 1 indicates that
different sets of KeyA and KeyB are taken for simulation
purpose. For example in data set #1, every block of KeyA and
KeyB differs at most three numbers of binary positions. In data
set #2, half of blocks of both keys differ at 4 or more positions
and remaining 50% blocks may have less or equal to 3 errors.
 Each of the two programs ProgramA and ProgramB
computes a generator matrix G and parity check matrix H of
BCH(15,5,7) code which are already mentioned in section 3.0.
The remaining part of each program works as instructed in
proposed protocol in section 4.0 for each player. Decoding Table
2 shows the relationship between error patterns and their
syndromes which is constructed by multiplying possible error
patterns of code BCH(15,5,7) with transpose of the parity check
matrix H such as s = eHT. The total number of error patterns of
code BCH(n,k ,dmin), with error correcting capability equal to t

(t = ୢ೘೔೙ ିଵ
ଶ

) , are calculated by ∑ C୧
୬୲

୧ୀ଴

where C୧
୬ means ୬!

ሺ୬ି୧ሻ! ൈ ୧!
 .

Hence total number of error patterns for BCH (15,5,7) code are 25.

Figure 1 Flowchart of protocol for the reconciliation of key

Table 1 Error distribution in raw key

Data
Set #

of errors in
each block, t

of blocks in
error (%)

 1 ≤ 3 100
 2 ≥ 4 50
 3 ≥ 4 55

 4 ≥ 4 60

Y

Start

 Pa[]

Ka, G & H, e

ST = e * Ht

n = Ka / 5

i=0 , j=0

Ba[0….n -1]

 Pa[i] = Ba[i]*G

Alice

N

Y

Alice swaps her Blocks at

the positions indicated by

Bob (SBa[])

ra[j] = Pb[]+SBa[]

Alice and Bob get a

common Key, Ka =Kb

s1 = ra[j] * Ht

?

s1=0

CB1[i] = ra[j] + e

?

i < n1

?

 i < n1

Y

N

N

Stop

n1 = number of SBp[]

N

N

N

Y N Y

Y

Y

Y

N

Pb[] , SBp[]

j=j+1

UBp[j] = i

CB[i] = rb[i] + e

?

s = 0

?

s = ST[]

?

i=n

?

i < n
?

j = 0

Bob Swaps first 2-bits of

Uncorrected Blocks with Corrected

Blocks and records positions of

swapped Blocks (SBp[])

Pb[i] = SBb[]*G

Start

Kb, G & H, e

ST = e * Ht

n = Kb / 5

i=0 , j=0

Bb[0….n -1]

 rb[i] = Pa[]+Bb[i]

s = rb[i] * Ht

Bob

17 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59 (2012) 13–19

Table 2 A simplified Syndrome Table ST[]

 Alice (ProgramA) divides the keyA into 5-bit message
blocks say Ba’s and computes their parity bits as BaG. The
number of parity bits of each block is n-k=10 which are stored in
a file say EncodedA. The file EncodedA is sent to Bob
(ProgramB). Bob divides the KeyB into 5-bit blocks and attaches
these blocks with respective parity bits taken from EncodedA file
to make received words rb. Now each received word having 15
binary bits is multiplied by transpose of the parity check matrix H
to calculate syndrome as s = raH. If s is a zero vector then no
error exists in the Bob’s block otherwise either error(s) exists in
block or errors exceed the error correcting limit that is 3 of the
BCH(15,5,7) code. When calculated syndrome s is a non-zero
vector then it is searched in the decoding Table 2. If s is found in

the table, the corresponding error pattern is XORed with Bob’s
block to correct error(s) in the block otherwise block marked as
uncorrected block. This uncorrected block has more than 3 errors
which are beyond the error correcting limit of the code. At this
stage one pass is completed. Now if error distribution in the
Bob’s key is such that each block contains errors less or equal to 3
then all the errors in the key are corrected in one pass. On the
other hand, if uncorrected blocks are found in the key then Bob
swaps first three bits of each uncorrected block with no error or
corrected blocks to scatter errors with in blocks. In this way,
swapped blocks, which are double in number of the uncorrected
blocks, has at most three(3) errors as compared to Alice’s key
blocks at the corresponding positions. In case of uncorrected
blocks found, Bob encode all of the swapped blocks and sends
parity bits to Alice with the swapped block positions. Then Alice
(ProgramA) decodes her corresponding blocks by using the
information provided by Bob. This is the second pass and all the
errors are removed in the key and thus a common-key is obtained
at both ends.

6.0 RESULTS AND DISCUSSIONS

This protocol is implemented in C-sharp (C#) computer language
as explained in section 5.0. A binary key, as KeyA, is generated
randomly and errors are introduced in the generated key to form
another key, as KeyB. Four sets of these keys, having different
number of blocks in error, are prepared as shown in Table 1. Each
key consists of one million binary bits (0 or 1). After processing
these two keys for error correction, both keys are found to be
equal. The experiment is repeated 100 times.
 Table 3 reveals the working comparison between four
popular protocols and the proposed protocol. The working
information is taken from the literature as referred in section 2.0.
All the four protocols correct single error in a block at a time
while our protocol corrects upto three errors per block. Winnow
protocol introduces an additional error instead of correcting when
errors per block are more than 1 and parity of the block is odd. In
proposed protocol 1 or 2 iterations (passes) are required to correct
the key while Cascade protocol required 4 iterations and other
three protocols required several iterations. Block size and bit-
interleaving optimization is used in Cascade, winnow and prosed
protocol whilst BBBSS and Yamazaki protocols do not require
these optimizations. Also, syndrome decoding Table 2 is used to
correct upto three errors and to detect more than three errors. The
comparison discussion above indicates that the suggested protocol
is efficient in removing errors.

Table 3 A working comparison of existing binary interactive reconciliation protocols with proposed protocol

Syndromes Error Patterns

0100110111 000000000000001
1001101110 000000000000010
1101011001 000000000000011
0111101011 000000000000100
0011011100 000000000000101
1110000101 000000000000110
1010110010 000000000000111
1111010110 000000000001000
1011100001 000000000001001
0110111000 000000000001010
0010001111 000000000001011
1000111101 000000000001100
1100001010 000000000001101
0001010011 000000000001110
1010011011 000000000010000
1110101100 000000000010001
0011110101 000000000010010
0111000010 000000000010011
1101110000 000000000010100
1001000111 000000000010101
0100011110 000000000010110
0101001101 000000000011000
0001111010 000000000011001
1100100011 000000000011010

Working-steps BBBSS Cascade Furkawa-Yamazaki(FY) Winnow Proposed protocol

Divides the key into
blocks
 √

 √
 √ √ √

Both parties
interchange their
blocks parities

 √ √
 √

 √
 x

Uses binary-search for
correcting errors √ √

Uses perfect code to correct
errors. Blocks syndromes are
sent one-way, from Alice to
Bob

Error corrected by
Hamming code
interactively

Error corrected by
BCH code

18 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59(2012) 13–19

 Second column of Table 4 shows number of errors
introduced per block of size 5-bit in Alice’s key (KeyA) to
generate Bob’s key (KeyB) and the third column indicates total
number of blocks which have errors mentioned in column two
while comparing keyA and KeyB. After implementing the
proposed protocol using these keys as input, a common key is
achieved with Alice and Bob. The number of blocks corrected
and the size of common key retained is shown in column four
and five respectively.
 Table 4 shows remaining key-size when different number
of errors is present in different number of blocks. All blocks are
corrected if every block has errors less or equal to 3 (data set 1)
or at least half of the blocks contain less that 4 errors per block.
But when per block error-limit exceeds than 3 (≥ 4) then
retained key-size depends upon the number of blocks in error.
As the number of erroneous blocks having errors greater than 3
increases the retained key-size decreases. Thus, if more than
50% blocks having errors greater or equal to 4 per block then
extra erroneous blocks (>50%) are discarded during the first
pass of protocol to obtain zero-error common key and hence the
size of the achieved common key is reduced. The last two rows
of the Table 4 predict this type of situation. However, the
suggested reconciliation protocol can handle a key with 60%
(ଷ

ହ
×100, data set # 1) initial bit error rate and can produce full-

size common key with zero-error probability whereas winnow
protocol performs efficiently at upto 18% initial bit error rate
and Cascade at up to 25% and the common key obtained in
Winnow, BCH and LDPC protocols with 10-3, 10-5 and 10-6
final key bit error rate respectively

Table 4 Key correction with proposed reconciliation protocol using 5-
bit block size

7.0 CONCLUSION

The protocol, mentioned in this paper, is a fast and efficient
protocol to correct errors in a key which is generated in
quantum key distribution (QKD) scheme. This protocol has the

capability to correct errors even if all blocks of a raw key are in
error provided that each block contains errors equal to or less
than 3. Blocks containing errors more than three can also be
detected by the use of decoding table. It can work successfully
for long keys. It is able to correct all the errors in the key with
maximum of two passes (iterations between Alice and Bob)
which supports key secrecy. Thus error probability in the
retained key is zero. The suggested protocol only sets the limits
on errors per block and number of blocks in error. Alice and
Bob exchange more parity bits as compare to other famous
protocols e.g.; BBBSS, Cascade and Winnow.

References

[1] Elboukhari M., A. Azizi, M. Azizi. 2009. Implementation of Secure

Key Distribution Based on Quantum Cryptography. International
Conference on Multimedia Computing and Systems. 361–365.

[2] Shor P. 1994. Algorithms for Quantum Computation: Discrete
Logarithms and Factoring. Proceedings of the 35th Annual
Symposium on Foundations of Computer Science. Santa Fe, NM,
IEEE Computer Society Press. 124–134.

[3] Assche G. 2006. Quantum Cryptography and Secret-Key
Distillation. 6th. ed. New York: Cambridge University Press.

[4] Alléaume R. 2007. SECOQC White Paper on Quantum Key
Distribution and Cryptography. Secoqc-WP-v5, White Paper, Ver.
5.1.

[5] Teja1 V., P. Banerjee, N. N. Sharma, R. K. Mittal. 2007. Quantum
Cryptography: State-of-Art, Challenges and Future Perspectives.
Proceedings of the 7th IEEE International Conference on
Nanotechnology, Hong Kong. 1296–1301.

[6] Hrg D., L. Budin, M. Golub. 2004. Quantum Cryptography and
Security of Information Systems. Proceedings of the 15th
Conference on Information and Intelligent System, IEEE. 63–70.

[7] Papanikolaou N. 2005. An Introduction to Quantum Cryptography.
ACM Crossroads Magazine. 11(3): 1–16.

[8] Van D., V. Tilborg. 1998. The Art of Distilling [Secret Key
Generation]. Information Theory Workshop, IEEE. 158–159.

[9] Buttler W. T., S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel, C.
H. Donahue, and C. G. Peterson. 2003. Fast, Efficient Error
Reconciliation for Quantum Cryptography.

[10] Robert H. Morelos-Zaragoza. The Art of Error Correcting Coding,
2nd. Ed. 2006. England. John Wiley & Sons.

[11] Lee H. P., H. C. Chang, T. C. Lin, and T. K. Truong. 2008. A
Weight Method of Decoding the Binary BCH Code. IEEE Eighth
International Conference on Intelligent Systems Design and
Applications.

[12] Bennett C.H., F. Bessette, G. Brassard, L. Salvail, and J. Smolin.
1992. Experimental Quantum Cryptography. Journal Cryptology.
5(1): 3–28.

[13] Brassard G., and L. Salvail. 1993. Secret-key Reconciliation by
Public Discussion. Advance in Cryptology–Eurocrypt ’93. Lecture
Notes in Computer Science. 410–423.

[14] Koichi Y., Ranjith N., and Horace P. Y. 2008. Problems of the
CASCADE Protocol and Renyi Entropy Reduction in Classical and
Quantum Key Generation. Available from e-print archive arXiv.org
, record: quant-ph/0703012v1.

Uses several iterations √ Uses 4
iterations √
 √
 Uses 1 or 2 iterations

Uses bit permutations
between two iterations √ √ √ √ Swapping bits of

blocks

Keeps record of
investigated blocks x √ x x Only uncorrected

blocks

Optimizes block size
between two iterations x √ x √ x

Optimizes bit
interleaving between
two iterations

 x √ x √ x

Data
Set #

of errors
in each
block, t

of
blocks in
error
(%)

of blocks
corrected
(%)

Key-size
retained
(%)

 1 ≤ 3 100 100 100

 2 ≥ 4 50 100 100

 3 ≥ 4 55 90 90

 4 ≥ 4 60 80 80

19 Riaz Ahmad Qamar et al. / Jurnal Teknologi (Sciences & Engineering) 59 (2012) 13–19

[15] Bellot P., Minh-Dung D. 2009. BB84 Implementation and
Computer Reality. International Conference on Computing and
Communication Technologies, 2009, IEEE.1–8.

[16] Furukawa E., and K. Yamazaki. 2001. Application of Existing
Perfect Code to Secret Key Reconciliation. Conf. Proc. Int. Symp.
Commun. Inform. Tech. 397–400.

[17] Feng Zhao, Mingxing Fu, Faqiang Wang, Yiqun Lu, Changjun
Liao, Songhao Liu. 2007. Error Reconciliation for Practical
Quantum Cryptography. International Journal for Light and
Electron Optics. 118(10): 502–506.

[18] Hao Yan, Xiang Peng, Xiaxiang Lin, Wei Jiang, Tian Liu, Hong
Guo. 2009. Efficiency of Winnow Protocol in Secret Key
Reconciliation. World Congress on Computer Science and
Information Engineering, IEEE. 3: 238–242.

[19] Gilles Van Assche. 2006. Quantum Cryptography and Secret-key
Distillation. New York: Cambridge University Press.

[20] Wuthigorn Traisilanun, Keattisak Sripimanwat, and Ornlarp
Sangaroon. 2007. Secret Key Reconciliation Using BCH Code in
Quantum Key Distribution. International Symposium on
Communications and Information Technologies.

[21] David Elkouss, Anthony Leverrier, Romain All´eaume, and Joseph
J. Boutros. 2009. Efficient Reconciliation Protocol for Discrete-
variable Quantum Key Distribution. ISIT 2009, Seoul Korea, June
28 - July 3, 2009.

[22] Moreira, J. C., and Farrell, P. G. 2006. Essentials of Error-Control
Coding. England: John Wiley & Sons.

[23] Neubauer A., Freudenberger J., and Kuhn V. Coding Theory:
Algorithms, Architectures and Applications. 2007. England: John
Wiley & Sons.

