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Abstract 
 
A quantum key distribution protocol(QKD), known as BB84, was developed in 1984 by Charles Bennett 
and Gilles Brassard.  The protocol works in two phases which are quantum state transmission and 
conventional post processing. In the first phase of BB84,  raw key elements are distributed between two 
legitimate users by sending encoded photons through quantum channel whilst in the second phase, a 
common secret-key is obtained from correlated raw key elements by exchanging messages through a 
public channel e.g.; network or internet. The secret-key so obtained is used for cryptography purpose. 
Reconciliation is a compulsory part of post processing and hence of quantum key distribution protocol. 
The performance of a reconciliation protocol depends on the generation rate of common secret-key, 
number of bits disclosed and the error probability in common secrete-key. These characteristics of a 
protocol can be achieved by using a less interactive reconciliation protocol which can handle a higher 
initial quantum bit error rate (QBER). In this paper, we use a simple Bose, Chaudhuri, Hocquenghem 
(BCH) error correction algorithm with simplified syndrome table to achieve an efficient reconciliation 
protocol which can handle a higher quantum bit error rate and outputs a common key with zero error 
probability. The proposed protocol efficient in removing errors such that it can remove all errors even if  
QBER is 60%.  Assuming the post processing channel is an authenticated binary symmetric channel 
(BSC).     
 
Keywords: BB84; Reconciliation protocol; common secret-key; quantum bit error rate; simplified 
syndrome table; zero error probability 
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1.0  INTRODUCTION 
 
The well-known conventional ciphers e.g.; RSA, Diffie-Hellman 
and AES are based on the computational difficulty techniques. 
Due to increase in computational power, powerful techniques 
have been developed to encrypt information/data but at the same 
time hackers can utilize this high computational power to decrypt 
it. These well-known ciphers lacks in providing secrecy proof and 
in detecting eavesdroppers. For example RSA algorithm, which is 
broadly utilized for key distribution[1], depends upon the 
unverified computational presumptions. If someone devises a 
faster technique for factoring large integers then the amount of 
computation time considerably reduces to decrypt information.  
Thus in the presence of high computational power, a key might be 
broken easily or an attacker can apply brute-force to decrypt 
short-key encrypted messages. Furthermore, Peter W. Shor 
developed an algorithm in 1994 which can be run on a quantum 
computer to reverse a one-way function[2]. Among other things, 
Kirchhoff‘s principle states that security of a cryptosystem 
depends only upon the secrecy of the key[3] but not on the 
secrecy of the algorithm. A key is an important component of 
cryptography and the major problem in conventional 

cryptography is distribution of key among legitimate users. Thus 
quantum cryptography, alternatively named as quantum key 
distribution (QKD), provides a secure way of key distribution up 
to an acceptable level. Then, quantum-distributed key is used with 
secret-key cipher or with the prefect secure cipher, also known as 
one-time pad, for secure communications. The impregnability of 
both algorithms, e.g.; key distribution and encryption, is equally 
important otherwise whole security is compromised. 
  Quantum cryptography[4,5] is an emerging form of 
encryption which uses the laws of quantum physics, e.g.; the 
principle of photon polarization and Heisenberg uncertainty 
principle, to encrypt information on physical level. The principle 
of photon polarization describes polarization of light photons in a 
particular direction whereas; the Heisenberg uncertainty principle 
states that measurement of quantum state of a system is not 
possible without disturbing that system[6,7]. Because of the 
following principles the above laws make quantum cryptography 
secure: 
 

(i) A quantum photon cannot be split to make its 
measurements secretly. 
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(ii) It is impossible to copy or clone a single photon to 
measure its state. 

(iii)  If an eavesdropper tries to measure directly the state of 
a photon, he will produce errors and can be detected. 

 
  In quantum key distribution (QKD) protocol, BB84, a key to 
be used for cryptography is distributed between two legitimate 
parties conventionally called Alice and Bob. The BB84 protocol 
works in two stages. In the first stage, known as quantum state 
transmission, a raw key is transmitted through a quantum channel 
using polarized/entangled photons or laser pulses as information 
carriers. The transmitted raw key may have errors due to the 
malfunctioning of the equipment used in quantum channel or due 
to an adversary who tries to discover the key. In the second stage, 
the raw key is distilled[8] by passing through processes of sifting, 
error estimation, reconciliation and privacy amplification. The key 
distillation is carried out by exchanging messages through public 
channel  between Alice and Bob to obtain a common-secret key. 
The reconciliation process removes the errors in the shared key to 
have a common key between Alice and Bob, whilst privacy 
amplification compresses the common key to produce a secret-
key. A reconciliation protocol is said to be (i) efficient in 
removing errors if it performs at high bit error rates and produces 
a common key with minimum error rate and (ii) efficient in terms 
of disclosed bits if it is less interactive[9]. A less interactive 
protocol corrects the errors with minimum iterations between 
Alice and Bob to get higher secret-key generation rate. An 
efficient reconciliation protocol, in terms of (i) and (ii) above, is 
required in QKD protocol.  
  Error correction method is an essential part of a 
reconciliation protocol. A binary BCH (Bose et al) code is one of 
the best options to correct errors in the raw key. Encoding in BCH 
code is a simple but decoding is a complex phenomenon in this 
code. A BCH code may produce wrong results when errors, 
produced in a transmitted codeword, are more than its error 
correction capability. For example, PGZ, Euclidean and 
Berlekamp-Massaey decoders[10] cannot provide solutions for 
this problem. These decoders may introduce additional errors 
when errors exceed their correction capability. The same may 
happen while using error patterns and their corresponding 
syndrome patterns (e → S) lookup table for decoding of BCH 
codes[11].     
  The remaining part of the paper is arranged as follows: 
Section 2 explains popular reconciliation protocols. Section 3 
describes the background of BCH error correction codes. Section 
4 explains the proposed key reconciliation protocol. Section 5 
describes the implementation of the protocol and Section 6 
discusses simulation and results obtained from the protocol 
simulation. In the last section 7 closing remarks are given.   
 
 

2.0  POPULAR RECONCILIATION PROTOCOLS 
 
A reconciliation protocol is an important part of quantum key 
distribution protocol.  Reconciliation protocols can process 
discrete or continuous random variables. They can work 
interactively or one way. Discrete random variables may be 
binary (0,1) or non-binary (alphabets). However, a key having 
continuous-variables is first converted into binary symbols before 
it reconciled. Generally, an error reconciliation protocol is said to 
be an ideal protocol which corrects all errors without introducing 
additional errors in the key and exhibits minimal information on 
the key to an adversary during reconciliation process. A 
reconciliation protocol permutes bits of key randomly and groups 
these bits into blocks. Then it computes parities of the blocks and 
exchanges these parities with its counterpart at the other end for 

comparison. If the parity of a block matches, the block is 
considered correct otherwise the erroneous bit is searched and 
corrected. The protocol repeats the process with different 
permutations and blocks sizes and continues until no 
disagreement is found in many subsequent comparisons of blocks 
parities. There are many types of error reconciliation protocols but 
more famous binary reconciliation protocols, working on the 
above stated principle, are BBBSS (Bennett-Bessette-Brassard-
Salvail-Smolin)[12], Cascade[13,14,15], Farkawa-Yamazaki 
(FY)[16], and Winnow[9,17,18].  
 
2.1  Bennett-Bessette-Brassard-Salvail-Smolin Protocol 
 
Bennett-Bessette-Brassard-Salvail-Smolin Protocol (BBBSS) is a 
first binary interactive error correction (IEC) protocol used for 
key reconciliation in quantum key distribution. It is designed by 
Bennett and his coworkers. This protocol can handle a long binary 
string. Alice and Bob exchange parities of their blocks and 
compare these parities. The presences of diverging parities 
(parities that are not equal) help Alice and Bob to focus on errors 
using bisection and to correct those. It uses several iterations, 
between which the bit positions are permuted in a pseudo-random 
way. 
 
2.2  Cascade Protocol 
 
This reconciliation protocol is based on BBBSS protocol but with 
an improved efficiency in term of the number of disclosed bits. It 
uses four(4) iterations. First iteration is identical to the first 
iteration of BBBSS, while the next three are different. Unlike 
BBBSS, it records the result of all previously investigated blocks 
and takes advantage of this information in next iteration.  It keeps 
two sets of blocks: (i) the blocks for which the parity is equal 
between Alice and Bob (ii) the blocks of diverging parity. Each 
block for which parity was disclosed, during the bisection, is 
listed either (i) or (ii). It optimizes the block size in turn reduces 
the number of bits disclosed. It optimizes bit interleaving between 
two iterations. 
 
2.3  Furukawa – Yamazaki Protocol  
 
This IEC protocol based on BBBSS and uses perfect code 
designed by Furukawa and Yamazaki. Like BBBSS, it uses a 
certain number of iterations with bit interleaving in between. It cuts 
the string into blocks like BBBSS and thus determines which 
block contains an odd number of errors. Instead of using 
interactive bisection, the correction of erroneous blocks is one 
way from Alice to Bob. For each block with a diverging parity, 
Alice sends Bob the syndrome of a perfect code calculated over her 
block. With this information, Bob corrects his block. This protocol 
is less efficient than cascade in terms of the number of bits 
discarded. 
 
2.4  Winnow Protocol 
 
Winnow protocol is very similar to FY protocol. It also includes a 
privacy maintenance step that discards bits during the error 
correction. It uses a certain number of iterations with bit 
interleaving in between. Like BBBSS, FY and Cascade, it also 
cuts binary key into blocks. Alice and Bob exchange parities of 
their blocks and thus determine which blocks contain an odd 
number of errors. For blocks of diverging parity, Alice sends Bob 
the syndrome of a Hamming code calculated over her block. 
Unlike BBBSSS and Cascade, which use a bisection, the 
correction of a block using the Hamming code does not necessary 
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reduce the number of errors in that block. The hamming code 
proposed in winnow allows Alice and Bob to correct one error. If 
more than one error present in the block, Bob’s attempt may 
actually increase the number of errors in that block. Thus, block 
size should be chosen in such a way that it globally reduces the 
number of errors. Unlike Cascade, the iterations of Winnow are 
independent of each other and so an exhaustive search could be 
performed at a low complexity using dynamic programming. 
Winnow protocol performs efficiently in terms of disclosed bits 
between 10% and 18% quantum bit error rate(QBER). Winnow 
can achieve about 10-3 final key bit error rate by optimizing block 
size.  While CASCADE protocol is preferred between 18% and 
25% QBER[19]. Other suggested binary reconciliation protocols, 
where authors use BCH[20] and LDPC[21] error correction 
methods, can achieve 10-5 and 10-6 final key bit error rate 
respectively. 
 
 

3.0 BACKGROUND OF BCH CODES 
 
An error correcting code consists of techniques and algorithms 
and has two fundamental operations: encoding and decoding. 
Encoding is a procedure in which redundancy (parity) is added to 
a message and transforms it into a code word. This code word is 
transmitted through a noisy channel, which changes the message. 
Decoding procedure removes the errors from erroneous code 
word and gets the message back into its original form. The block 
codes process the information block-by-block and treat each block 
independently. In linear block codes, adding two code words 
produces another code word. A linear code involves generator and 
parity-check matrices, G & H respectively. Cyclic codes are  
codes in which cyclically shifting the symbols of a code word 
produces another code word. In binary codes, data is processed as 
binary digits (0 or 1).  
  A binary BCH (Bose et al) code is a cyclic linear block code 
defined over Galois Field(2)[22]. Its error correcting capacity 
depends upon the minimum Hamming distance, dmin, between its 
code words. For example BCH code with dmin = 3 can correct any 
single error pattern, with dmin = 5 can correct double error pattern 
while with dmin = 7 can correct triple error pattern. The no-error 
case corresponds to the all-zero pattern. In general, a binary BCH 
code with code length  n = 2m-1 and minimum Hamming distance 
dmin ≥ 2t+1 can correct any error pattern of size t or less where m 
is a positive integer and m ≥ 3. In other words, this code can be 
designed to correct any error pattern of size t in a given code 
vector of length n where n = 2m-1. The designed method of BCH 
code is based on the lowest common multiple (LCM) of a 
minimal polynomial. 
  In a linear cyclic block code, C(n,k), a code word also called 
code vector c = (c0, c1 , c2,…..cn-1) is transformed into another 
code word of this code after i times cyclic right-shift rotation as 
c(i) = (cn-i, cn-i+1, ….. cn-1,c0, c1 , c2,…..cn-i-1).   The code vector 
form can be presented into a code polynomial form as c(x) = c0+ 
c1x+ c2x2+…..+cn-1xn-1. In a linear cyclic block code there is 
always a non-zero minimum-degree polynomial which is known 
as generator polynomial g(x), and any other polynomial of this 
code is a multiple of g(x). The degree of the generator polynomial 
is at most mt whereas any of other polynomials of the code has 
degree less than or equal to ‘n-1’. Thus, a message vector m(x) 
can be encoded in this code as c(x) = m(x)g(x).  A BCH(15,5,7) 
code with code length n =15, message length k = 5 and minimum 
Hamming distanc dmin = 7, has a generator polynomial g(x) = 
1+x2+x5+x6+x8+x9+x10[10].  This generator polynomial can be 
expressed into a code generator matrix G of order k × n. After 
performing some row operations (Gaussian elimination), the 
generator matrix G is transformed into systematic form such that 
G = [Pk×n-k  Ik] as under: 

۵ ൌ  

ۏ
ێ
ێ
ێ
ۍ

 1  0  1  0  0  1  1  0  1  1  1  0  0  0  0
 1  1  1  1  0  1  0  1  1  0  0  1  0  0  0
 0  1  1  1  1  0  1  0  1  1  0  0  1  0  0
 1  0  0  1  1  0  1  1  1  0  0  0  0  1  0

ے 1  0  0  0  0  1  1  1  0  1  1  0  0  1  0  
ۑ
ۑ
ۑ
ې
     

  To encode a message vector m(x), this matrix G of order 
(5×15) is multiplied with the message vector of order (1×5) to 
obtain a code vector i.e.;  c = m × G. The parity check matrix H, 
which is used in decoding process, can be found from G as H = 
[In-k   PT

n-k×k], where PT is the transpose of matrix P[22,23]. So 
the corresponding parity check matrix H is formed as: 
 

 ۶ ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1  0  0  0  0  0  0  0  0  0  1  1  0  1  0
0  1  0  0  0  0  0  0  0  0  0  1  1  0  1
0  0  1  0  0  0  0  0  0  0  1  1  1  0  0
0  0  0  1  0  0  0  0  0  0  0  1  1  1  0
0  0  0  0  1  0  0  0  0  0  0  0  1  1  1
0  0  0  0  0  1  0  0  0  0  1  1  0  0  1
0  0  0  0  0  0  1  0  0  0  1  0  1  1  0
0  0  0  0  0  0  0  1  0  0  0  1  0  1  1
0  0  0  0  0  0  0  0  1  0  1  1  1  1  1

ے 1  0  1  0  1  1  0  0  0  0  0  0  0  0  0 
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                   

  If  c is a transmitted vector,  r = (r0, r1, r2, …..rn-1)  is a 
received vector and e = (e0, e1, e2, …..en-1) is an error pattern 
introduced by transmission noisy-channel then r = c + e.  In the 
decoding process, first of all, a syndrome vector s = (s0, s1, s2, 
…..sn-k-1) is  calculated  with s = rHT, where HT is transpose of H. 
It means syndrome s =  (c + e )HT or s =  cHT + eHT . Now if 
transmitted code word has no error, as e = 0, then s = cHT = 0, 
otherwise s =  rHT ≠ 0.  Finally, decoding is implemented by 
using a syndrome table which is built to show the relationship 
between error patterns and their corresponding syndrome patterns 
(e → s).  
 
 

4.0 PROPOSED RECONCILIATION PROTOCOL 
 
This protocol can be used to reconcile a raw key which is 
distributed through a quantum channel obeying quantum 
mechanics principles. The raw key contains errors because of 
malfunctioning of communication devices used and possible 
eavesdropping in a quantum channel.  It is assumed that Alice and 
Bob hold a shared binary erroneous-key at the end of quantum 
state transmission process in QKD. A proposed protocol, which is 
used to reconcile a shared binary key, is shown in Figure 1 and is 
explained as follows: 
 
(i) Alice and Bob generate a syndrome table ST[] from all 

possible error patterns in 5-bit message block as in Table 
2.  

(ii) Alice divides her key into blocks of 5-bit each and 
computes parity bits of their blocks    as pa[i] = Ba[i] × G. 

(iii) Alice sends the computed parity bits pa[i] to Bob through 
an authenticated public communication channel. 

(iv) Bob divides his key into 5-bit blocks and combines parity 
bits, received from Alice, with these blocks at lower order 
positions respectively to form received vectors rb[i] such 
as rb[i]  = (pa0, pa1……. pa9, mb0, mb1, … mb4) 

(v) Bob then calculates syndromes of vectors rb[i] as s[i]  = 
rb[i] * Ht. Here there may be one of the two possibilities, 
either (a) calculated syndrome is equal to all-zero or (b) it 
is not all-zero vector. If syndrome is not equal to all-zero 
vector, then it may present in the syndrome table ST[] or 
not present in ST[]. 
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(vi) Bob checks that if s[i] is all-zero then he leaves the block 
as it has no error. If s[i] is not all-zero and is present in the 
syndrome table then he adds error pattern taken from table 
ST[], corresponding to the computed syndrome pattern, to  
his block Bb[i] to get corrected the block as CBb[i] = Bb[i] 
+ e. Now If  s[i] is neither all-zero nor present in 
syndrome table then it means more than 3-errors exist in 
the block, it is beyond the capability of the BCH(15,5,7) 
code and Bob leaves it uncorrected and records the 
position of this uncorrected block as UBp[j] = i.  

(vii) After processing all bocks, Bob see if there is any 
uncorrected block. If no uncorrected block left (i.e.; j = 0) 
it means all of errors in the key are corrected 
otherwise Bob swaps first two bits of uncorrected blocks 
with corrected or errorless blocks and records the 
positions of swapped blocks.   

(viii) Bob calculates the parity bits of swapped blocks (swapped 
blocks = 2 * uncorrected blocks) as pb[] = SBb[] × G and 
sends these parity bits of each swapped block to Alice 
with positions of the swapped blocks SBp[] in the key. 

(ix) Alice swaps her key blocks at positions indicated by 
Bob and then combines parity bits sent by Bob with her 
swapped blocks to get ra[j]. 

(x) Alice calculates syndromes of the swapped blocks as s1 = 
ra[j] × Ht and compare these syndromes with the 
syndromes in table ST[] and adds corresponding error 
patterns to the swapped blocks to correct errors. 

(xi) Finally, Alice and Bob retain a common key i.e.; Alice’s 
key is same as the key of Bob. 

 
 

5.0 IMPLEMENTING THE PROTOCOL 
 
The proposed protocol is implemented in C-sharp (C#) computer 
language using two separate programs one for each player Alice 
and Bob. In addition, a third program is written which (i) 
generates a random key for Alice say KeyA, (ii) adds errors to 
KeyA to generate another key for Bob say KeyB. Errors are added 
to each block of KeyA to form KeyB as specified in Table 1. Each 
key consists of one million binary bits (0 or 1) and the size of 
each block is taken as five binary bits. Table 1 indicates that 
different sets of KeyA  and KeyB are taken for simulation 
purpose. For example in data set #1, every block of KeyA and 
KeyB differs at most three numbers of binary positions. In data 
set #2, half of blocks of both keys differ at 4 or more positions 
and remaining 50% blocks may have less or equal to 3 errors. 
  Each of the two programs ProgramA and ProgramB 
computes a generator matrix G  and parity check matrix H of 
BCH(15,5,7) code which are already mentioned in section 3.0. 
The remaining part of each program works as instructed in 
proposed protocol in section 4.0 for each player. Decoding Table 
2 shows the relationship between error patterns and their 
syndromes which  is constructed by multiplying possible error 
patterns of code BCH(15,5,7) with transpose of  the parity check 
matrix H such as s = eHT.  The total number of error patterns of 
code BCH(n,k ,dmin), with error correcting capability equal to  t 

( t =  ୢ೘೔೙ ିଵ
ଶ

 ) , are calculated by ∑ C୧
୬୲

୧ୀ଴    

where C୧
୬ means ୬!

ሺ୬ି୧ሻ! ൈ ୧!
 . 

Hence total number of error patterns for BCH (15,5,7)  code are 25.

 
 
 

 
 

Figure 1  Flowchart of protocol for the reconciliation of key 
 
 

Table 1  Error distribution in raw key 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data 
Set # 

# of errors in 
each block, t 

# of blocks in 
error (%) 

    1    ≤ 3 100 
    2    ≥ 4   50 
    3    ≥ 4   55 

    4    ≥ 4   60 

 

Y 

Start 

 Pa[] 

Ka, G & H, e 

ST = e * Ht 

n = Ka / 5 

i=0 , j=0 

Ba[0….n -1] 

 Pa[i] = Ba[i]*G 

Alice 

N 

Y 

Alice swaps her Blocks at 

the positions indicated by 

Bob (SBa[]) 

ra[j] = Pb[]+SBa[] 

Alice and Bob get a 

common Key,   Ka =Kb 

s1 = ra[j] * Ht  

?                                

s1=0 

CB1[i] = ra[j] + e 

? 

i < n1 

?       

  i < n1                          

Y 

N 

N 

Stop 

n1 = number of SBp[] 

N 

N 

N 

Y N Y 

Y 

Y 

Y 

N 

Pb[] , SBp[] 

j=j+1 

UBp[ j] = i 

CB[i] = rb[i] + e 

?                           

s = 0 

?                           

s = ST[ ] 

?      

i=n                           

?        

i < n               
?                              

j = 0 

Bob Swaps first 2-bits of 

Uncorrected Blocks with Corrected 

Blocks and records positions of 

swapped Blocks ( SBp[] ) 

Pb[i] = SBb[]*G 

Start 

Kb, G & H, e 

ST = e * Ht 

n = Kb / 5 

i=0 , j=0 

Bb[0….n -1] 

 rb[i] = Pa[]+Bb[i] 

s = rb[i] * Ht  

Bob 
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Table 2  A simplified Syndrome Table ST[] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  Alice (ProgramA) divides the keyA into 5-bit message 
blocks say Ba’s and computes their parity bits as BaG. The 
number of parity bits of each block is n-k=10  which are stored in 
a file say EncodedA. The file EncodedA is sent to Bob 
(ProgramB). Bob divides the KeyB into 5-bit blocks and attaches 
these blocks with respective parity bits taken from EncodedA file 
to make received words rb. Now each received word having 15 
binary bits is multiplied by transpose of the parity check matrix H 
to calculate syndrome as s = raH. If s is a zero vector then no 
error exists in the Bob’s block otherwise either error(s) exists in 
block or errors exceed the error correcting limit that is 3 of the 
BCH(15,5,7) code. When calculated syndrome s is a non-zero 
vector then it is searched in the decoding Table 2. If s is found in 

the table, the corresponding error pattern is XORed with Bob’s 
block to correct error(s) in the block otherwise block marked as 
uncorrected block.  This uncorrected block has more than 3 errors 
which are beyond the error correcting limit of the code. At this 
stage one pass is completed. Now if error distribution in the 
Bob’s key is such that each block contains errors less or equal to 3 
then all the errors in the key are corrected in one pass. On the 
other hand, if uncorrected blocks are found in the key then Bob 
swaps first three bits of each uncorrected block with no error or 
corrected blocks to scatter errors with in blocks. In this way, 
swapped blocks, which are double in number of the uncorrected 
blocks, has at most three(3) errors as compared to Alice’s key 
blocks at the corresponding positions. In case of uncorrected 
blocks found, Bob encode all of the swapped  blocks and sends 
parity bits to Alice with the swapped block positions. Then Alice 
(ProgramA) decodes her corresponding blocks by using the 
information provided by Bob. This is the second pass and all the 
errors are removed in the key and thus a common-key is obtained 
at both ends. 
 
 

6.0 RESULTS AND DISCUSSIONS 
 
This protocol is implemented in C-sharp (C#) computer language 
as explained in section 5.0. A binary key, as KeyA, is generated 
randomly and errors are introduced in the generated key to form 
another key, as KeyB. Four sets of these keys, having different 
number of blocks in error, are prepared as shown in Table 1. Each 
key consists of one million binary bits (0 or 1). After processing 
these two keys for error correction, both keys are found to be 
equal. The experiment is repeated 100 times. 
  Table 3 reveals the working comparison between four 
popular protocols and the proposed protocol. The working 
information is taken from the literature as referred in section 2.0.  
All the four protocols correct single error in a block at a time 
while our protocol corrects upto three errors per block. Winnow 
protocol introduces an additional error instead of correcting when 
errors per block are more than 1 and parity of the block is odd. In 
proposed protocol 1 or 2 iterations (passes) are required to correct 
the key while Cascade protocol required 4 iterations and other 
three protocols required several iterations. Block size and bit-
interleaving optimization is used in Cascade, winnow and prosed 
protocol whilst BBBSS and Yamazaki protocols do not require 
these optimizations. Also, syndrome decoding Table 2 is used to 
correct upto three errors and to detect more than three errors. The 
comparison discussion above indicates that the suggested protocol 
is efficient in removing errors.  

 
Table 3  A  working  comparison  of existing  binary  interactive  reconciliation protocols with proposed protocol 

 

Syndromes Error Patterns 

0100110111 000000000000001 
1001101110 000000000000010 
1101011001 000000000000011 
0111101011 000000000000100 
0011011100 000000000000101 
1110000101 000000000000110 
1010110010 000000000000111 
1111010110 000000000001000 
1011100001 000000000001001 
0110111000 000000000001010 
0010001111 000000000001011 
1000111101 000000000001100 
1100001010 000000000001101 
0001010011 000000000001110 
1010011011 000000000010000 
1110101100 000000000010001 
0011110101 000000000010010 
0111000010 000000000010011 
1101110000 000000000010100 
1001000111 000000000010101 
0100011110 000000000010110 
0101001101 000000000011000 
0001111010 000000000011001 
1100100011 000000000011010 

Working-steps BBBSS Cascade Furkawa-Yamazaki(FY) Winnow Proposed protocol 

Divides the key into 
blocks
    √

         √ 
    √                      √                   √ 

Both parties 
interchange  their 
blocks parities  

   √          √
                  √

                 

          √ 
                  x
 

Uses binary-search for 
correcting errors     √ √ 

Uses perfect code to correct 
errors. Blocks syndromes  are 
sent  one-way, from Alice to 
Bob 

Error corrected by
Hamming code
interactively 

Error corrected by
BCH code 
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  Second column of Table 4 shows number of errors 
introduced per block of size 5-bit in Alice’s key (KeyA) to 
generate Bob’s key (KeyB) and the third column indicates total 
number of  blocks which have errors mentioned in column two 
while comparing keyA and KeyB. After implementing the 
proposed protocol using these keys as input, a common key is 
achieved with Alice and Bob. The number of blocks corrected 
and the size of common key retained is shown in column four 
and five respectively.     
  Table 4 shows remaining key-size when different number 
of errors is present in different number of blocks. All blocks are 
corrected if every block has errors less or equal to 3 (data set 1) 
or at least half of the blocks contain less that 4 errors per block. 
But when per block error-limit exceeds than 3 ( ≥ 4) then 
retained key-size depends upon the number of blocks in error. 
As the number of erroneous blocks having errors greater than 3 
increases the retained key-size decreases. Thus, if more than 
50% blocks having errors greater or equal to 4 per block then 
extra erroneous blocks (>50%) are discarded during the first 
pass of protocol to obtain zero-error common key and hence the 
size of the achieved common key is reduced. The last two rows 
of the Table 4 predict this type of situation. However, the 
suggested reconciliation protocol can handle a key with 60% 
(ଷ

ହ
×100, data set # 1) initial bit error rate and can produce full-

size common key with zero-error probability whereas winnow 
protocol performs efficiently at upto 18%  initial bit error rate 
and Cascade at up to 25% and the common key obtained in 
Winnow, BCH and LDPC protocols with 10-3, 10-5 and 10-6 
final key bit error rate respectively 
 
Table 4  Key correction with proposed reconciliation protocol using 5-
bit block size 
 

 
 

7.0 CONCLUSION 
 
The protocol, mentioned in this paper, is a fast and efficient 
protocol to correct errors in a key which is generated in
quantum key distribution (QKD) scheme. This protocol has the 

capability to correct errors even if all blocks of a raw key are in 
error provided that each block contains errors equal to or less 
than 3. Blocks containing errors more than three can also be 
detected by the use of decoding table. It can work successfully 
for long keys. It is able to correct all the errors in the key with 
maximum of two passes (iterations between Alice and Bob) 
which supports key secrecy. Thus error probability in the 
retained key is zero. The suggested protocol only sets the limits 
on errors per block and number of blocks in error. Alice and 
Bob exchange more parity bits as compare to other famous 
protocols e.g.; BBBSS, Cascade and Winnow. 
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