Full paper Jurnal Teknologi

Verification of an Old Conjecture on Nonabelian 2‐generated Groups of Order *p***³**

Yasamin Barakat^{a,b}, Nor Haniza Sarmin^{c*}

^aDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia *b Islamic Azad University, Ahvaz Branch, Ahvaz, Iran* ^cDepartment of Mathematical Sciences, Faculty of Science and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 *UTM Johor Bahru, Malaysia*

*Corresponding author: nhs@utm.my

Article history

Abstract

Received :30 May 2012 Received in revised form :28 July 2012 Accepted :13 August 2012

longstanding conjecture in group theory states: "Every finite non-abelian p -group possesses at least a non-inner automorphism of order p ", where p is a prime number. Recently, an updated classification of 2-generated p-groups of nilpotency class two has been published. Using this classification, we prove the verification of this conjecture for 2-generated groups of order $p³$.

Keywords: Automorphism; non-inner; 2-generated; p-group; nilpotency class two

© 2012 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Let H and K be two arbitrary subgroups of a group G . Then $[H, K] = \langle \{h^{-1}k^{-1}hk : h \in H, k \in K\} \rangle$ is a subgroup of G, and $G' = [G, G]$ is called the *commutator subgroup* of G. A group G is *nilpotent of class two* if and only if $[G', G] = \{1\}$ or $G' \leq$ $Z(G)$. Furthermore, a group G is called a *p-group* if the order of every element of G is a power of p. If G is a finite p-group, then $|G| = p^n$. The group of isomorphisms on G to itself is called *automorphism group* of G , and denoted by $Aut(G)$. Let $g \in G$, then the map $i_g(x) = g^{-1}xg$ for all $x \in G$ is an automorphism on G. For all \tilde{g} in G, the set of i_q 's forms a normal subgroup of $Aut(G)$, called *inner group*, and denoted as $Inn(G)$.

Throughout this paper we set p to be a prime number. In 1965, Liebeck showed that if G is a finite p -group of nilpotency class two, then G has non-inner p -automorphisms [1]. A year later, Gaschütz found a similar result for all finite non-abelian p groups $[2]$. By a *p*-automorphism, it is meant an automorphism of order p^m for some positive integer m . Eventually, a conjecture appeared, which concerned with the existence of non-inner automorphisms of order exactly p for finite non-abelian p -groups as given in the following:

Conjecture 1.1 [3]

Every finite non-abelian p -group possesses at least a noninner automorphism of order exactly p .

 Since the year of appearance of the conjecture, many researchers tried to show the verification of the conjecture considering a particular subcategory of finite non-abelian p groups. For instance, refer to [4, 5, 6, 7]. In this study, we consider to show the conjecture verification for 2-generated groups of order p^3 .

2.0 PRELIMINARY RESULTS

Some useful theorems and lemmas are provided through this section. For undefined terms and notations, kindly refer to [8].

Lemma 2.1 [8]

Let G be a group of nilpotency class two. For any $x, y, z \in G$ and $n \in \mathbb{Z}$, the following equations hold in G:

i. $[x, yz] = [x, y][x, z],$ ii. $[xy, z] = [x, z][y, z],$ iii. $[x^n, y] = [x, y]^n$, iv. $(xy)^n = x^n y^n [y, x]^{n(n-1)} \overline{z}$.

 Since Lemma 2.1 is used in each sequence of operations several times, we use it without referring.

Lemma 2.2 [9]

Let $G = \langle a, b \rangle$ be a non-abelian 2-generated group of nilpotency class two, then $G' = \langle [a, b] \rangle$. If G' is a finite group of order m, then $\langle a \rangle \cap Z(G) = \langle a^m \rangle$ and $\langle b \rangle \cap Z(G) = \langle b^m \rangle$.

The following theorem classifies all finite 2-generated p -groups of nilpotency class two. We use this classification to study their automorphism groups.

Theorem 2.3 [10, 11]

Let p be a prime and $n > 2$ a positive integer. Every 2-generated p -group of class exactly two of order p^n , corresponds to an ordered 5-tuple of integers $(\alpha, \beta, \gamma; \rho, \sigma)$, such that:

i, $\alpha \ge \beta \ge \gamma \ge 1$,

- ii. $\alpha + \beta + \gamma = n$,
- iii. $0 \leq \rho \leq \gamma$ and $0 \leq \sigma \leq \gamma$;

where $(\alpha, \beta, \gamma; \rho, \sigma)$ corresponds to the group presented by

 $G = \langle a, b : [a, b]^{p^{\gamma}} = [a, b, a] = [a, b, b] = 1, a^{p^{\alpha}} = [a, b]^{p^{\beta}}$ $bp\beta = a$, $bp\sigma$.

Moreover*,*

(1) If $\alpha > \beta$, then G is isomorphic to:

- **a**) $(\alpha, \beta, \gamma; \rho, \gamma)$ when $\rho \leq \sigma$,
- *b*) $(\alpha, \beta, \gamma; \gamma, \sigma)$ when $0 \leq \sigma < \sigma + \alpha \beta \leq \rho$ or $\sigma < \rho = \gamma$,
- c) $(\alpha, \beta, \gamma; \rho, \sigma)$ when $0 \leq \sigma < \rho < \min(\gamma, \sigma + \alpha \sigma)$ β).

(2) If $\alpha = \beta > \gamma$, or $\alpha = \beta = \gamma$ and $p > 2$, then G is *isomorphic to* $(\alpha, \beta, \gamma; m$ *in* $(\rho, \sigma), \gamma)$.

- (3) If $\alpha = \beta = \gamma$ and $p = 2$, then G is isomorphic to:
	- a) $(\alpha, \beta, \gamma; \min(\rho, \sigma), \gamma)$ when $0 \leq \min(\rho, \sigma) < \gamma 1$,
	- b) $(\alpha, \beta, \gamma; \gamma 1, \gamma 1)$ when $\rho = \sigma = \gamma 1$, *c*) $(\alpha, \beta, \gamma; \gamma, \gamma)$ when $min(\rho, \sigma) \ge \gamma - 1$ and
- $max(\rho, \sigma) = \gamma$. The groups listed in $(1)(a) - (3)(c)$ are pairwise non-

isomorphic.

Lemma 2.4 [8]

Let G be a non-abelian group of order p^3 . Then $G' = Z(G)$.

Lemma 2.4 shows that every non-abelian group of order $p³$ is a nilpotent group of class two. Thus, in this study we have $n = 3$. Applying Theorem 2.3[(i)-(iii)] we found that $\alpha = \beta = \gamma = 1$ and $0 \leq \rho, \sigma \leq 1$.

Proposition 2.5 Let $G = \langle a, b \rangle$ be a 2-generated group of class exactly two. If G' is a finite subgroup of order m , then $Inn(G) = \{ \varphi : G \to G \mid \varphi(a) = a[a, b]^i, \varphi(b) = a^i \}$ $b[a, b]^j$, $0 \le i, j < m$ }.

Proof. Suppose that the right hand side in the given equivalency is denoted as A. Consider $\varphi \in A$, we have to show that φ can be written of the form i_g for some $g \in G$. Let $g = a^{-j}b^i$. Then, since $G' \leq Z(G)$,

$$
i_g(a) = g^{-1}ag = b^{-i}a^ja a^{-j}b^i = b^{-i}ab^i = a[a, b]^i
$$

= $\varphi(a)$

and

$$
i_g(b) = b^{-i}a^{j}ba^{-j}b^{i} = b^{-i}(a^{j}ba^{-j}b^{-1})b^{i+1} = b[a^{-j}, b^{-1}] = b[a, b]^{j} = \varphi(b).
$$

However, *a* and *b* are the generators of *G*, thus we have φ = $i_g \in Inn(G)$.

Also, for every i_g we have $i_g(a) = g^{-1}ag = a[a, g]$ and $i_a(b) = g^{-1}bg = b[b, g]$. By Lemma 2.2, $[a, g]$, $[b, g] \in G'$ $\langle [a, b] \rangle$. Thus $[a, g] = [a, b]^{i}$ and $[b, g] = [a, b]^{j}$ for some $0 \le i, j < m$. This shows that $i_a \in A$.

The following theorem will help us to show that a particular map is an automorphism.

Theorem 2.6 (Von Dyck's Theorem) [12]

Let G be a group with presentation $\langle X | R \rangle$. Suppose that H is a group generated by a subset Y and there is a bijection map

 $f: X \longrightarrow Y$ such that if $r(x_1,...,x_n) \in R$, then $(f(x_1),..., f(x_n)) = 1 \in H$. Then there exists a group epimorphism $\bar{f}: G \longrightarrow H$ such that $\bar{f}(x) = f(x)$, for any $x \in X$.

Remark 2.7 Let G be one of those groups listed in Theorem 2.3. According to Von Dyck's Theorem, every map $\varphi : \{a, b\} \longrightarrow G$ which satisfies the following conditions, extends to an automorphism on G .

- 1) $G = \langle \varphi(a), \varphi(b) \rangle$.
- 2) $[\varphi(a), \varphi(b)]^{p^{\gamma}} = [\varphi(a), \varphi(b), \varphi(a)] =$ $[\varphi(a), \varphi(b), \varphi(b)] = 1.$
- 3) $[\varphi(a)]^{p^{\alpha}} = [\varphi(a), \varphi(b)]^{p^{\beta}}$.
- 4) $[\varphi(b)]^{p^{\beta}} = [\varphi(a), \varphi(b)]^{p^{\sigma}}$.

3.0 MAIN RESULTS

In this study we consider to find at least one non-inner automorphism of order p on 2-generated groups of order p^3 , to show that Conjecture 1.1 verifies for these kind of groups. As it is discussed earlier, for 2-generated non-abelian groups of order $p³$ we have $\alpha = \beta = \gamma = 1$. If $p > 2$, then based on Theorem 2.3-(2), these groups are classified as follows:

- 1) $(\alpha, \beta, \gamma; \rho, \gamma) = (1, 1, 1; 0, 1)$ if $min(\rho, \sigma) = 0$.
- 2) $(\alpha, \beta, \gamma; \rho, \gamma) = (1, 1, 1, 1, 1)$ if $min(\rho, \sigma) = 1$.

If $p = 2$, then these groups are isomorphic to either dihedral group, D_4 ; or Quaternion, Q [8]. It can be shown that in this case $[p = 2, n = 3]$, groups listed in Theorem 2.3-(3b) are of the form $(1, 1, 1; 0, 0)$ and are isomorphic to Q. Also, groups listed in Theorem $2.3-[3a),(3c)]$ are of forms $(1, 1, 1; 0, 1)$ and $(1, 1, 1; 1, 1)$, which are both isomorphic to D_4 [13].

We separate our main theorem in two parts, namely for $p > 2$ and $p=2$.

Theorem 3.1 Let G be a nonabelian 2-generated group of order $p³$. Then G has at least one non-inner automorphism of order p, where p is an odd prime number.

Proof. According to Theorem 2.3-(2) and our earlier discussion, these groups are isomorphic to either

 $\langle a, b : a^p = [a, b], b^p = [a, b]^p = [a, b, a] = [a, b, b] = 1 \rangle$ or $(a, b : a^p = b^p = [a, b]^p = [a, b, a] = [a, b, b] = 1$.

Anyway, in both cases we have $b^p = [a, b]^p = 1$. Hence, $\langle b \rangle \cap Z(G) = \langle b \rangle \cap G' = \{1\}$. Now, we are ready to define our desired automorphism. Consider

$$
\begin{cases} \varphi: \{a, b\} \longrightarrow G \\ \varphi(a) = ab^{p-1} \\ \varphi(b) = b. \end{cases}
$$

We use Remark 2.7 to show that φ extends to an automorphism on G , which is exactly of order p . Since G is generated by $\{a, b\}$ it is enough to show that $\{\varphi(a), \varphi(b)\}$ produces $\{a, b\}$. However, $\varphi(b) = b$ and $\varphi(a)\varphi(b) = ab^{p-1}b$ a. Also, $[\varphi(a), \varphi(b)] = [ab^{p-1}, b] = [a, b] \in Z(G)$. Thus $[\varphi(a), \varphi(b)]^p = [\varphi(a), \varphi(b), \varphi(a)] = [\varphi(a), \varphi(b), \varphi(b)] =$ 1. In addition,

$$
[\varphi(a)]^p = (ab^{p-1})^p = a^p b^{p(p-1)} [b, a]^{p(p-1)} \left[\frac{p-1}{2}\right]
$$

= $a^p = [a, b]^p{}^p = [\varphi(a), \varphi(b)]^{p^p}$.

Since $\varphi(b) = b$, Remark 2.7-(4) obviously holds. Therefore, φ is extendable to an automorphism on G , which is non-inner by Proposition 2.5, for $b^{p-1} \notin G'$. It remains to show that φ is of order p. Since, $\varphi(b) = b$, it is enough to study $\varphi(a)$. We use induction on m to show that $\varphi^{m}(a) = ab^{m(p-1)}$. If $m = 1$, then obviously it holds. Let it be true for m . To show it is true for $m + 1$, we have $\varphi^{m+1}(a) = \varphi(ab^{m(p-1)}) = ab^{p-1}b^{m(p-1)} =$ $ab^{[(m+1)(p-1)]}$.

However, the order of b is p, this implies that $\varphi^p(a) = a$ and $\varphi^{m}(a) \neq 1$, if $m < p$; or $|\varphi| = p$. \Box

Theorem 3.2 Both the Quaternion and Dihedral groups of order eight have at least one non-inner automorphism of order two.

Proof. It is known that $Q = \{a, b: a^4 = 1, a^2 = b^2 = a\}$ [a, b], $b^{-1}ab = a^3$ [8]. We show that the following map is as desired.

$$
\begin{cases}\n\varphi: \{a, b\} \to Q \\
\varphi(a) = ab \\
\varphi(b) = b^{-1}.\n\end{cases}
$$

We have $\varphi(a)\varphi(b) = a$, so then $\{\varphi(a), \varphi(b)\}$ generates G. Also, $b^{-1} = b^3$ implies that $[\varphi(a), \varphi(b)] = [a, b^3] = [a, b]^3 =$ [a, b], which makes φ satisfying Remark 2.7-(2). Additionally, $(\varphi(a))^2 = (ab)^2 = a^2 b^2 [b, a] = [a, b] = [\varphi(a), \varphi(b)].$ Note that in a group, every element is of the same order of its inverse. Thus, φ extends to a noninner automorphism, for $b \notin G'$. Finally, φ is of order two since

 $\varphi^2(a) = \varphi(\varphi(a)) = \varphi(ab) = (ab)b^{-1} = a$; and $\varphi^2(b) = \varphi(\varphi(b)) = \varphi(b^{-1}) = b.$

Now, consider $D_4 = \{a, b: a^4 = b^2 = 1, a^2 = [a, b],$ $b^{-1}ab = a^3$ [8]. To show that Conjecture 1.1 is verified for dihedral group, we define θ as follows:

$$
\begin{cases}\n\theta: \{a, b\} \to D_4 \\
\theta(a) = a^{-1} \\
\theta(b) = ba.\n\end{cases}
$$

By using similar arguments, we have $\theta(b)\theta(a) = b$ and $[\theta(a), \theta(b)] = [a^3, b] = [a, b]^3 = [a, b]$. Thus, our defined θ satisfies in Remark $2.7-(1),(2)$. For the last part, we have $(\theta(b))^2 = (ba)^2 = b^2a^2 [a, b] = 1 = [\theta(a), \theta(b)]^2$. The fact that $a \notin G'$ implies that θ is a non-inner automorphism on G. The following equivalences show that θ is of order two :

 $\theta^2(a) = \theta(\theta(a)) = \theta(a^{-1}) = a$;

 $\theta^2(b) = \theta(\theta(b)) = \theta(ba) = (ba)a^{-1} = b$. This ends our proof. □

\blacksquare **4.0 RESULTS AND DISCUSSION**

In this study, the verification of an old conjecture in group theory has been shown for every non-abelian 2-generated group of order $p³$. In other words, it is proved that each one of these groups possesses at least one non-inner automorphism of order p , where p is a prime number.

Acknowledgement

The first author would like to thank Universiti Teknologi Malaysia for its financial support via allocating Institutional Doctoral Fellowship (IDF).

References

- [1] Liebeck, H. 1965. Outer Automorphisms in Nilpotent p -Groups of Class 2. *J. London Math. Soc.* 40: 268–275.
- [2] Gaschütz, W. 1966. Nichtabelsche p -Gruppen Besitzen Aussere p automorphismen. *J. Algebra.* 4: 1–4.
- [3] Mazurov, V. D. and E. I. Khukhro (Eds.). 2006. *Unsolved Problems in Group Theory*. Novosibirsk: The Kourovka Notebook, Russian Academy of Sciences, Siberian Division, Institute of Mathematics.
- [4] Abdollahi, A. 2007. Finite p-Groups of Class 2 Have Noninner Automorphisms of Order p. J. Algebra. 312: 876-879.
- [5] Curran, M. J., and D. J. McCaughan. 2001. Central Automorphisms that Are Almost Inner. *Comm. Algebra.* 29(5): 2081–2087.
- [6] Deaconescu, M., and G. Silberberg. 2002. Noninner Automorphisms of Order *p* of Finite *p* -Groups. *J. Algebra.* 250: 283-287.
- [7] Attar, M. S. 2007. On Central Automorphisms that Fix the Centre Elementwise. *Arch. Math.* 89: 296–297.
- [8] Rotman, J. J. 1994. *The Theory of Groups: An Introduction.* Fourth Ed. New York: Springer-Verlag, Inc.
- [9] Kappe, L. C., M. P. Visscher, and N. H. Sarmin. 1999. Two-generator Two-groups of Class Two and Their Nonabelian Tensor Squares. *Glasgow Math. J.* 41: 417–430.
- [10] Ahmad, A., A. Magidin, and R. F. Morse. Two Generator p-Groups of Nilpotency Class 2 and Their Conjugacy Classes. Retrieved on February 20, 2011 from *http://www.ucs.louisiana.edu/avm1260/preprints/ãmmpaper.pdf.*
- [11] Ahmad, A., A. Magidin, and R. F. Morse. Two Generator p-Groups of Nilpotency Class 2 and Their Conjugacy Classes. To be appear in *Publicationes Mathematicae Debrecen.*
- [12] Robinson, J. S. 1993. *A Course in the Theory of Groups.* New York: Springer-Verlag, Inc.
- [13] Barakat, Y. and N. H. Sarmin. 2011. *Noninner -Automorphisms of Nonabelian* 2*-Generated Groups of order* ଷ*.* Technical Report. Universiti Teknologi Malaysia. LT/M BIL.3.