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Abstract 
 
A longstanding conjecture in group theory states: “Every finite non-abelian  
 is a prime number. Recently, an  where ,” group possesses at least a non-inner automorphism of order-
updated classification of 2-generated -groups of nilpotency class two has been published. Using this 
classification, we prove the verification of this conjecture for 2-generated groups of order ଷ. 
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1.0  INTRODUCTION 
 
Let ܪ  and ܭ be two arbitrary subgroups of a group ܩ. 
Then ሾܪ, ሿܭ ൌ ሼ݄ିଵ݇ିଵ݄݇ۃ   ,ܪ ߳ ݄      ,ܩ is a subgroup of ۄሽܭ ߳ ݇
and ܩ′ ൌ ሾܩ,  A group .ܩ ሿ is called the commutator subgroup ofܩ
ܩൣ is nilpotent of class two if and only if ܩ ′, ൧ܩ ൌ ሼ1ሽ or ܩ′ 
ܼሺܩሻ. Furthermore, a group ܩ is called a -group if the order of 
every element of ܩ is a power of . If ܩ is a finite -group, then 
|ܩ| ൌ  to itself is called ܩ . The group of isomorphisms on
automorphism group of ܩ, and denoted by ݐݑܣሺܩሻ. Let ݃ ߳ ܩ,  
then the map ݅ሺݔሻ  ൌ  ݃ିଵ݃ݔ  for all  ܩ ߳ ݔ is an automorphism 
on ܩ. For all ݃ in ܩ, the set of ݅’s forms a normal subgroup of 
 .ሻܩሺ݊݊ܫ ሻ, called inner group, and denoted asܩሺݐݑܣ
  Throughout this paper we set  to be a prime number. In 
1965, Liebeck showed that if ܩ is a finite -group of nilpotency 
class two, then ܩ has non-inner -automorphisms [1]. A year 
later, Gaschütz found a similar result for all finite non-abelian -
groups [2]. By a -automorphism, it is meant an automorphism of 
order  for some positive integer ݉. Eventually, a conjecture 
appeared, which concerned with the existence of non-inner 
automorphisms of order exactly  for finite non-abelian -groups 
as given in the following:  
 
Conjecture 1.1 [3] 
Every finite non-abelian -group possesses at least a noninner 
automorphism of order exactly . 
  Since the year of appearance of the conjecture, many 
researchers tried to show the verification of the conjecture 
considering a particular subcategory of finite non-abelian -
groups. For instance, refer to [4, 5, 6, 7]. In this study, we 

consider to show the conjecture verification for 2-generated 
groups of order ଷ. 
 
 

2.0  PRELIMINARY RESULTS 
 
Some useful theorems and lemmas are provided through this 
section. For undefined terms and notations, kindly refer to [8]. 
 
Lemma  2.1 [8] 
Let ܩ be a group of nilpotency class two. For any ݔ, ,ݕ א ݖ  and ܩ 
א ݊  Ժ, the  following equations hold in ܩ: 

i. ሾݔ, ሿݖݕ ൌ  ሾݔ, ,ݔሿሾݕ  ,ሿݖ
ii. ሾݕݔ, ሿݖ ൌ  ሾݔ, ,ݕሿሾݖ  ,ሿݖ

iii. ሾݔ, ሿݕ ൌ  ሾݔ,  ,ሿݕ
iv. ሺݕݔሻ  ൌ ,ݕሾݕݔ  ሿݔ

ሺషభሻ
మ . 

 
  Since Lemma 2.1 is used in each sequence of operations 
several times, we use it without referring. 

 
Lemma 2.2 [9] 
Let ܩ ൌ ,ܽۃ  be a non-abelian 2-generated group of nilpotency ۄܾ
class two, then ܩ′ ൌ ,ሾܽۃ ܾሿۄ . If ܩ′ is a finite group of order ݉, 
then ۄܽۃ ת  ܼሺܩሻ  ൌ ۄܾۃ and  ۄܽۃ ת  ܼሺܩሻ  ൌ  .ۄܾۃ
 
The following theorem classifies all finite 2-generated -groups 
of nilpotency class two. We use this classification to study their 
automorphism groups. 
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Theorem 2.3 [10, 11] 
Let  be a prime and ݊  2 a positive integer. Every 2-generated 
 , corresponds to an group of class exactly two of order-
ordered 5-tuple of integers ሺߙ, ,ߚ ;ߛ ,ߩ   :ሻ, such thatߪ

i. ߙ   ߚ  ߛ 1, 
ii. ߙ  ߚ  ߛ ൌ ݊ , 

iii. 0   ߩ and 0  ߛ ߪ    ; ߛ
where ሺߙ, ,ߚ ;ߛ ,ߩ   ሻ corresponds to the group presented byߪ
ܩ ൌ ,ܽۃ ܾ:  ሾܽ, ܾሿം ൌ ሾܽ, ܾ, ܽሿ ൌ ሾܽ, ܾ, ܾሿ ൌ 1, ܽഀ ൌ ሾܽ, ܾሿഐ,
 .ߪܾ,ൌܽߚܾ  
Moreover, 
(1)  If  ߙ   :is isomorphic to ܩ then , ߚ

a) ሺߙ, ,ߚ ;ߛ ,ߩ  ߩ  ሻ whenߛ  ,ߪ
b) ሺߙ, ,ߚ ;ߛ ,ߛ ሻ when 0 ߪ ൏ ߪ ߪ  ߙ െ  ߚ   or  ߩ

൏ ߪ ߩ ൌ  ,ߛ
c) ሺߙ, ,ߚ ;ߛ ,ߩ ሻ when 0 ߪ ൏ ߪ ൏ ߩ ݉݅݊ ሺߛ, ߪ  ߙ െ

 .ሻߚ
(2)  If ߙ ൌ  ߚ ߙ  or ,ߛ ൌ ߚ ൌ  and ߛ  2, then ܩ is 

isomorphic to ሺߙ, ,ߚ ;ߛ ݉݅݊ ሺߩ, ,ሻߪ  .ሻߛ
(3)  If  ߙ ൌ ߚ ൌ   and ߛ ൌ 2, then ܩ is isomorphic to: 

a)  ሺߙ, ,ߚ ;ߛ ݉݅݊ ሺߩ, ,ሻߪ ሻ when  0 ߛ ݉݅݊ሺߩ, ሻߪ ൏ ߛ െ 1, 
b)  ሺߙ, ,ߚ ;ߛ ߛ െ 1, ߛ െ 1ሻ when  ߩ ൌ ߪ ൌ ߛ െ 1, 
c)  ሺߙ, ,ߚ ;ߛ ,ߛ ,ߩሻ when  ݉݅݊ሺߛ ሻߪ  ߛ െ 1 and  

,ߩሺݔܽ݉ ሻߪ ൌ  .ߛ
The groups listed in (1)(a) – (3)(c) are pairwise non-

isomorphic. 
 

Lemma 2.4 [8] 
Let ܩ be a non-abelian group of order ଷ. Then ܩ ′ ൌ ܼሺܩሻ. 
 
Lemma 2.4 shows that every non-abelian group of order ଷ is a 
nilpotent group of class two. Thus, in this study we have ݊ ൌ 3. 
Applying Theorem 2.3[(i)-(iii)] we found that ߙ ൌ ߚ ൌ ߛ ൌ 1 and 
0  ,ߩ ߪ  1. 
 
Proposition 2.5  Let ܩ ൌ ,ܽۃ  be a 2-generated group of class ۄܾ
exactly two. If ܩ ′ is a finite subgroup of order ݉, then 
ሻܩሺ݊݊ܫ ൌ ሼ ߮  ՜ ܩ  ሺܽሻ߮ | ܩ  ൌ ܽሾܽ, ܾሿ , ߮ሺܾሻ ൌ
ܾሾܽ, ܾሿ , 0   ݅, ݆ ൏  ݉ ሽ.   
 
Proof. Suppose that the right hand side in the given equivalency 
is denoted as ܣ. Consider ߮ א  we have to show that ߮ can be ,ܣ
written of the form ݅ for some ݃ א ݃ Let .ܩ ൌ ܽିܾ. Then, 
since ܩ ′  ܼሺܩሻ, 

݅ሺܽሻ ൌ  ݃ିଵܽ݃ ൌ  ܾିܽܽܽିܾ  ൌ  ܾିܾܽ  ൌ  ܽሾܽ, ܾሿ  
ൌ  ߮ሺܽሻ 

and  
݅ሺܾሻ ൌ ܾିܾܽܽିܾ  ൌ  ܾି൫ܾܽܽିܾିଵ൯ܾାଵ ൌ 

ܾሾܽି, ܾିଵሿ  ൌ  ܾሾܽ, ܾሿ ൌ ߮ሺܾሻ. 
However, ܽ and ܾ are the generators of ܩ, thus we have ߮ ൌ
 ݅ א          .ሻܩሺ݊݊ܫ 
    Also, for every ݅ we have ݅ሺܽሻ ൌ  ݃ିଵܽ݃ ൌ  ܽሾܽ, ݃ሿ and 
݅ሺܾሻ ൌ  ݃ିଵܾ݃ ൌ  ܾሾܾ, ݃ሿ.  By Lemma 2.2, ሾܽ, ݃ሿ , ሾܾ, ݃ሿ א ܩ ′ ൌ
,ሾܽۃ  ܾሿۄ. Thus ሾܽ, ݃ሿ ൌ  ሾܽ, ܾሿ and  ሾܾ, ݃ሿ ൌ  ሾܽ, ܾሿ for some 
0  ݅, ݆ ൏ ݉. This shows that ݅ א    .ܣ 

 
The following theorem will help us to show that a particular 

map is an automorphism. 
 

Theorem 2.6 (Von Dyck's Theorem) [12] 
Let ܩ be a group with presentation ۄܴ | ܺۃ. Suppose that ܪ is a 
group generated by a subset ܻ and there is a bijection map 

݂: ܺ ื ܻ such that if ݎሺݔଵ, . . . , ሻݔ א  ܴ , then 
ሺ݂ሺݔଵሻ, . . . , ݂ሺݔሻሻ ൌ 1 א  Then there exists a group .ܪ
epimorphism ݂ҧ: ื ܩ ሻݔsuch that  ݂ҧሺ ܪ ൌ  ݂ሺݔሻ, for any ݔ א ܺ. 
 
Remark 2.7  Let ܩ be one of those groups listed in Theorem 2.3. 
According to Von Dyck's Theorem, every map ߮  ሼܽ, ܾሽ  ื  ܩ 
which satisfies the following conditions, extends to an 
automorphism on ܩ. 

ܩ (1 ൌ ,ሺܽሻ߮ۃ ߮ሺܾሻۄ. 
2) ሾ߮ሺܽሻ, ߮ሺܾሻሿം ൌ ሾ߮ሺܽሻ, ߮ሺܾሻ, ߮ሺܽሻሿ ൌ

ሾ߮ሺܽሻ, ߮ሺܾሻ, ߮ሺܾሻሿ ൌ 1. 
3) ሾ߮ሺܽሻሿഀ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻሿഐ.   
4) ሾ߮ሺܾሻሿഁ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻሿ. 

 
 

3.0  MAIN RESULTS 
 
In this study we consider to find at least one non-inner 
automorphism of order  on 2-generated groups of order ଷ, to 
show that Conjecture 1.1 verifies for these kind of groups. As it is 
discussed earlier, for 2-generated non-abelian groups of order ଷ 
we have ߙ ൌ ߚ ൌ ߛ ൌ 1. If   2, then based on Theorem 2.3-
(2), these groups are classified as follows: 

1ሻ ሺߙ, ,ߚ ;ߛ ,ߩ ሻߛ ൌ ሺ1, 1, 1;  0, 1ሻ   if    ݉݅݊ሺߩ, ሻߪ ൌ 0. 
2ሻ ሺߙ, ,ߚ ;ߛ ,ߩ ሻߛ ൌ ሺ1, 1, 1; 1, 1ሻ   if     ݉݅݊ሺߩ, ሻߪ ൌ 1. 

  If  ൌ 2, then these groups are isomorphic to either dihedral 
group, ܦସ; or Quaternion, ܳ [8]. It can be shown that in this case 
ሾ ൌ 2, ݊ ൌ 3ሿ, groups listed in Theorem 2.3-(3b) are of the form 
ሺ1, 1, 1;  0, 0ሻ and are isomorphic to ܳ. Also, groups listed in 
Theorem 2.3-[(3a),(3c)] are of forms ሺ1, 1, 1;  0, 1ሻ and 
ሺ1, 1, 1;  1, 1ሻ, which are both isomorphic to ܦସ [13].  
 
We separate our main theorem in two parts, namely for   2 and 
 ൌ 2.  
 
Theorem 3.1  Let ܩ be a nonabelian 2-generated group of order 
 , has at least one non-inner automorphism of order ܩ ଷ. Then
where  is an odd prime number. 
 
Proof.  According to Theorem 2.3-(2) and our earlier discussion, 
these groups are isomorphic to either  
,ܽۃ ܾ   ܽ ൌ  ሾܽ, ܾሿ , ܾ  ൌ  ሾܽ, ܾሿ ൌ  ሾܽ, ܾ, ܽሿ  ൌ  ሾܽ, ܾ, ܾሿ  ൌ  ,ۄ1 
or 
,ܽۃ ܾ   ܽ ൌ ܾ  ൌ  ሾܽ, ܾሿ ൌ  ሾܽ, ܾ, ܽሿ ൌ  ሾܽ, ܾ, ܾሿ ൌ  .ۄ1 
 
Anyway, in both cases we have ܾ  ൌ  ሾܽ, ܾሿ ൌ 1. Hence, 
ۄܾۃ ת ܼሺܩሻ ൌ ۄܾۃ ת ܩ ′ ൌ ሼ1ሽ. Now, we are ready to define our 
desired automorphism. Consider 

ቐ
߮: ሼܽ, ܾሽ ื ܩ
߮ሺܽሻ ൌ ܾܽିଵ

߮ሺܾሻ ൌ ܾ.
 

  We use Remark 2.7 to show that ߮ extends to an 
automorphism on ܩ, which is exactly of order . Since ܩ is 
generated by ሼܽ, ܾሽ it is enough to show that ሼ߮ሺܽሻ, ߮ሺܾሻሽ 
produces ሼܽ, ܾሽ. However, ߮ሺܾሻ ൌ ܾ and ߮ሺܽሻ߮ሺܾሻ ൌ ܾܽିଵܾ ൌ
ܽ. Also, ሾ߮ሺܽሻ, ߮ሺܾሻሿ ൌ ሾܾܽିଵ, ܾሿ ൌ  ሾܽ, ܾሿ א ܼሺܩሻ. Thus 
ሾ߮ሺܽሻ, ߮ሺܾሻሿ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻ, ߮ሺܽሻሿ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻ, ߮ሺܾሻሿ ൌ
 1.  In addition, 

ሾ߮ሺܽሻሿ ൌ  ሺܾܽିଵሻ ൌ  ܾܽሺିଵሻሾܾ, ܽሿሺିଵሻቀିଵ
ଶ ቁ 

ൌ ܽ ൌ ሾܽ, ܾሿഐ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻሿഐ. 
  Since ߮ሺܾሻ ൌ ܾ, Remark 2.7-(4) obviously holds. Therefore, 
߮ is extendable to an automorphism on ܩ, which is non-inner by 
Proposition 2.5, for ܾିଵ ב ܩ ′. It remains to show that ߮ is of 
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order . Since, ߮ሺܾሻ  ൌ ܾ, it is enough to study ߮ሺܽሻ. We use 
induction on ݉ to show that ߮ሺܽሻ ൌ  ܾܽሺିଵሻ. If ݉ ൌ 1, then 
obviously it holds. Let it be true for ݉. To show it is true for 
݉  1, we have ߮ାଵሺܽሻ ൌ  ߮ሺܾܽሺିଵሻሻ  ൌ  ܾܽିଵܾሺିଵሻ ൌ
 ܾܽሾሺାଵሻሺିଵሻሿ.  
However, the order of ܾ is , this implies that ߮ሺܽሻ ൌ ܽ and 
߮ሺܽሻ  ് 1, if ݉ ൏ |߮| or ;   ൌ  □ . 
 
Theorem 3.2  Both the Quaternion and Dihedral groups of order 
eight have at least one non-inner automorphism of order two. 
 
Proof.  It is known that ܳ ൌ  ሼܽ, ܾ:  ܽସ ൌ 1 , ܽଶ ൌ  ܾଶ ൌ
 ሾܽ, ܾሿ ,  ܾିଵܾܽ ൌ  ܽଷሽ [8]. We show that the following map is as 
desired. 

ቐ
߮: ሼܽ, ܾሽ ื ܳ

߮ሺܽሻ ൌ ܾܽ
߮ሺܾሻ ൌ ܾିଵ.

 

  We have ߮ሺܽሻ߮ሺܾሻ ൌ  ܽ, so then ሼ߮ሺܽሻ, ߮ሺܾሻሽ generates ܩ. 
Also, ܾିଵ  ൌ  ܾଷ implies that ሾ߮ሺܽሻ, ߮ሺܾሻሿ ൌ ሾܽ, ܾଷሿ ൌ ሾܽ, ܾሿଷ ൌ
ሾܽ, ܾሿ, which makes ߮ satisfying  Remark 2.7-(2). Additionally, 
ሺ߮ሺܽሻሻଶ  ൌ ሺܾܽሻଶ  ൌ ܽଶ ܾଶ ሾܾ, ܽሿ ൌ ሾܽ, ܾሿ ൌ ሾ߮ሺܽሻ, ߮ሺܾሻሿ. Note 
that in a group, every element is of the same order of its inverse. 
Thus, ߮ extends to a noninner automorphism, for ܾ ב ܩ ′. Finally, 
߮ is of order two since  
߮ଶሺܽሻ ൌ  ߮ሺ߮ሺܽሻሻ ൌ  ߮ሺܾܽሻ  ൌ  ሺܾܽሻܾିଵ ൌ ܽ; and 
߮ଶሺܾሻ ൌ  ߮ሺ߮ሺܾሻሻ ൌ  ߮ሺܾିଵሻ  ൌ  ܾ. 
    Now, consider ܦସ ൌ  ሼܽ, ܾ:  ܽସ  ൌ  ܾଶ ൌ 1, ܽଶ ൌ ሾܽ, ܾሿ,
ܾିଵܾܽ ൌ  ܽଷሽ [8]. To show that Conjecture 1.1 is verified for 
dihedral group, we define ߠ as follows: 

ቐ
:ߠ ሼܽ, ܾሽ ื ସܦ

ሺܽሻߠ ൌ ܽିଵ

ሺܾሻߠ ൌ ܾܽ.
 

  By using similar arguments, we have ߠሺܾሻߠሺܽሻ ൌ  ܾ and 
ሾߠሺܽሻ, ሺܾሻሿߠ ൌ ሾܽଷ, ܾሿ ൌ ሾܽ, ܾሿଷ ൌ ሾܽ, ܾሿ. Thus, our defined ߠ 
satisfies in Remark 2.7-(1),(2). For the last part, we have 
ሺߠሺܾሻሻଶ ൌ ሺܾܽሻଶ ൌ ܾଶܽଶ ሾܽ, ܾሿ ൌ 1 ൌ ሾߠሺܽሻ,  ሺܾሻሿଶ. The factߠ
that ܽ ב ܩ ′ implies that ߠ is a non-inner automorphism on ܩ. The 
following equivalences show that ߠ is of order two : 
ଶሺܽሻߠ ൌ ሺܽሻሻߠሺߠ  ൌ ሺܽିଵሻߠ   ൌ  ܽ ; 
ଶሺܾሻߠ ൌ ሺܾሻሻߠሺߠ  ൌ ሺܾܽሻߠ   ൌ  ሺܾܽሻܽିଵ ൌ ܾ. 
This ends our proof. □ 
 
 
 
 

4.0  RESULTS AND DISCUSSION 
 
In this study, the verification of an old conjecture in group theory 
has been shown for every non-abelian 2-generated group of order 
 ଷ. In other words, it is proved that each one of these groups
possesses at least one non-inner automorphism of order , where 
 .is a prime number 
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