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Abstract 
 

Maintenance is very closely related to the performance of the production 

process. An alternative method that can be used to determine the damage 

to the engine is from the analysis of the sound pattern produced. If the sound 

source is more than one, then there will be signal mixing, and it will be a 

challenge in detecting damage to the engine. In this study, mixed signals will 

be separated. Separation of mixed sound signals was done using non-negative 

matrix factorization (NMF) method. Overall this study is aimed at detecting 

unbalance, misalignment, and bearing faults at pumps with microphones as 

sensors. The pumps used in this study were three pumps, where each pump 

had different conditions (unbalance, misalignment, and bearing fault). All 

three pumps have 3000 rpm. In this study, the recording process was carried 

out for 5 s. In this study, we also compare the location of the instantaneous 

frequency in full spectrum and corresponding frequency in local spectrum, 

and the distance between the spectra via the log spectral distance from the 

baseline signal and the estimated signal. Based on the instantaneous 

frequency approach, no error was found because of the instantaneous 

frequency suitability of the unbalanced machine condition with the estimated 

signal in the mixing configuration of three sources with two sensors. From the 

log spectral instance (LSD) results, the smallest value was obtained the smallest 

value in estimation 2, which tends to approach the unbalance condition with 

the LSD value of 1.0889. The most significant relative error is the estimated 

misalignment signal with a value of 11.2. However, overall damage can still be 

identified based on the pattern formed and some statistical parameters. 

 

Keywords: Sound pattern, non-negative matrix factorization, pump faults, 

instantaneous frequency, log spectral distance 
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1.0 INTRODUCTION 
 
Maintenance is essential to ensure that a machine has 

the availability or high availability, so that it can carry 

out its functions in the production process. One of the 

methods used in industrial maintenance is a condition 

based monitoring/predictive maintenance [1]-[2]. 

Gelle et al. in 2000 stated that most of the energy of a 

vibration is passed on through the emission of sound. 

Based on the results of his research, sensors that receive 

acoustic information can become a substitute for 

sensor vibration to detect damage a machine in non-

contact [2]. However, the technique of condition 

monitoring-based acoustic emission is susceptible to 

noise emanating from the source machine to the other. 

When there is only one acoustic signal generated, then 

the signal will easily be processed to identify damage.If 

there is more than one acoustic signal generated, the 

separation of mixed signals will be necessary. 

Separation is used to extract the signal source from 

other signals [2]-[3]. 

Separation of mixed signals is a way of 

reconstructing the signal source that had been mixed. 

Blind source separation (BSS) is a form of unsupervised 

learning method,to extract hidden variables from a 

given datum. Furthermore, the hidden variable can be 

used for modeling needs. 

Many methods are used to separate the mixed 

signals, such as full rank [3], parallel factor [4], 

independent component analysis (ICA) of both the 

mixed sound signals [5]-[6], images [7], and others [8]. 

The process of linear instantaneous or convolutive 

mixing will also affect the result of the separation. 

Research regarding separation of mixed signals from 

the engine has been carried out with various methods 

of research. Gelle et al. used an algorithm to separate 

mixed signal demixing vibration and the acoustic mix of 

signals from two machines that are coupled [2]. 

Through simulation, the bilinear form by blending 

approach to the superposition was used by Ypma et al. 

to separate the signals that are mixed [9]. 

The ICA method has been used to separate mixed 

signals on the pump in an anechoic chamber by linear 

instantaneous mixing [5] and in open spaces with 

convolutive mixing [10]. The multiway array 

decomposition [11] method has also been used to 

obtain estimation signals from 4 machines in pump 

machines [12]. In 2015, the same method was used to 

separate the signal on the pump engine where the 

convolution mixing process was used [13]. Based on the 

results of his research, the source signal can be 

reconstructed, but the problem of ambiguity and 

localization of the source signal has been negligible. 

In this study, we proposed the concept of minimizing 

ambiguity by using a non-negative matrix factorization 

(NMF) approach. Separation of the mixed signal was 

carried out through BSS using NMF by decomposing the 

matrix that assumes that the source signal and the 

mixing signal are non-negative. This approach is the 

development of advanced blind signal separation in 

terms of feature extraction, clustering algorithms and 

performance evaluation based on initial knowledge 

and morphology of the data [14]-[15] Through this 

approach, each constituent component of the 

estimated data actually has meaning and does not 

produce new noise that can cause interpretation errors 

[15]. Based on the simulation results, the concept can 

properly separate the signal’s speech and music [14]-

[15]. The separation of the acoustic signal from the 

engine is a daunting task, because of its limited 

alphabet and variations in intonation compared with 

signal speech [16]. 
 

 

2.0 METHODOLOGY 
 

A mixed Z signal can be produced through 

superposition and convolution mixing of source signals 

Y1, Y2 and Yi with X mixing matrix [17]. Equations 1 and 2 

are the modeling of linear instantaneous mixing. 

𝑍(𝑡) = ∑ 𝑋.

𝐵

𝑏=1

𝑌(𝑡) + 𝑛(𝑡) 
 

(1) 

  

where 

X = mixing coefficient matrix size A  B (number of 

sensors x number of sources) 

Y=  [Y1, Y2, ….Yl]T , B  1 matrix column vector (collection 

of sources) 

n  = noise  

Z= [Z1, Z2, …. Zl]T represents a mixed signal size A  1 

matrix as shown in Figure 1. 

 

In BSS, mixed signals are important information that 

will be used to reconstruct the sound sources. The mixed 

signals can be represented by a set of random value as 

shown in Figure 1. Several processes will be used to 

cluster the mixture.  

 

 
Figure 1 Example of mixed-signal representation 

 

 

Matrix W as the basis matrix and matrix V as an 

activation matrix will be estimated by maximizing the 

likelihood to be able to estimate the source signal Y. The 

Y(n,f) matrix is the matrix that will be broken down into 

Wb and Vb matrices in which each component has a 
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non-negative value, expressed by the following 

equation: 
 

|𝑌(𝑛, 𝑓)|2 ≈  𝑊𝑏𝑉𝑏 
 

(2) 
  

To be able to obtain the source signal, generally, the 

mixing matrix and separator matrix must be obtained 

first. Underdetermined conditions (the number of 

sensors is less than the number of sources), usually 

requires a more complex procedure to estimate the 

initial information from the source signal. Permutation 

approach will be used to assist in estimating source 

signals that can trigger uncertainty. In general, the 

data/signal obtained is partially non-negative or non-

negative, and the signal has a sparse representation. 

For such data, it would be better to establish a 

constraint to extract non-negative and sparse 

components to avoid ambiguity and unpredictable 

results. Classical approaches cannot guarantee the 

optimization of non-negativity. NMF helps to solve 

problems through data representation of each 

component with non-negativity and spatial constraint 

functions [14]-[15]. A zero number in the NMF means 

absence, whereas a positive number indicates the 

presence of a component. In the NMF model, factors W 

and V are assumed to be non-negative components. 

Unlike the ICA approach, the assumption of 

independence in signals does not need to be used on 

NMF. In this research, Itakura-Saito divergence was 

used to estimate the likelihood of W and V, which is 

equivalent to the NMF of the Y spectra function. [18]. 

 
 

− log 𝑝 (𝑌𝑏|𝑊𝑏𝑉𝑏)

=  ∑ 𝑑𝐼𝑆(|𝑦(𝑛, 𝑓)|2| 𝑊𝑏(𝑛, 𝑓)𝑉𝑏(𝑛, 𝑓))

𝑛,𝑓

 

 

 

(3) 

  

where, 𝑑𝐼𝑆(𝑔|ℎ) =
𝑔

ℎ
− log (

𝑔

ℎ
) − 1, 𝑑𝐼𝑆 is Itakura-Saito 

divergence. In addition to the Itakura Saito divergence 

criteria, Kullback-Leibler criteria and Euclidean distance 

can also be used. 

Ensemble data can be modeled and interpreted in 

a non-negative way and sparse representation. This 

approach is the development of BSS based on the initial 

knowledge of the data and the function of 

morphological data criteria. Given the sparsity and 

non-negativity limitations, a variance can decrease. In 

this study, noise is assumed by the equation: ∑ =𝑛,𝑛𝑓

𝜎𝑛
2. I, where I is the identity matrix and 𝜎𝑛

2is the small 

noise variance. The maximum likelihood estimate is 

done by minimizing: 

 

𝐶(𝜃) = ∑ 𝑡𝑟𝑎𝑐𝑒 ( [𝑍𝑛𝑓.𝑍𝑛𝑓
𝐻 ] ∑ 𝜃

−1

𝑍,𝑛𝑓
) +

𝑛𝑓

log det ∑ 𝜃

𝑧,𝑛𝑓

 
 

(4) 

 

The above criteria are still full of uncertainty of scale, 

phase, and permutation. In phase and scale, θ which is 

a combination of components X, W and V can be 

stated as: 

 

𝜃 = {(𝑋𝑓𝐷𝑓
−1)

𝑓
(𝑑𝑖𝑎𝑔 ([|𝑑𝑏𝑏,𝑓|

2
]

𝑓
) 𝑊𝑏ʎ𝑏

−1)
𝑏

(ʎ𝑏 . 𝑉𝑏)𝑏} 
 

(5) 

 

where (𝐷𝑓)𝑓 and (ʎ𝑏)𝑏  are complex and non-negative 

sets of diagonal matrices. Scale and phase ambiguity 

can be eliminated by changing ∑ |𝑥𝑎𝑏,𝑓|2 = 1𝑎  (scaling 

rows of Wb) and ∑ 𝑊𝑓𝑘 = 1𝑓  (scaling rows of Vb) [18]. The 

above criteria were then continuously titrated to 

maximize the likelihood. The likelihood maximization 

algorithm for all data can use expectation 

maximization algorithms. 

 
Figure 2 Results of the likelihood maximization 

 

 

Figure 2 shows the representation of the signal after 

the estimation and likelihood maximization steps. The 

signals are grouped into three, according to the sound 

source used. Based on the results of the likelihood 

maximization, the equation Y ≈ W V must be met to 

reconstruct the signal. Using Wiener filtering criteria, the 

reconstruction signal will be obtained. Wiener filtering 

was used in this study because the engine sound signal 

is a stochastic (random) signal. The Wiener filter involves 

a linear estimate of the desired signal sequence from 

other related signals by using the minimum mean 

square error criterion. The presence of a Wiener filter 

can affect how close the resemblance or relationship 

of the original signal to the estimated signal [18]. 

Furthermore, the reconstruction signal in the time-

frequency domain will be returned to the time domain 

with the inverse short time Fourier transform. In order to 

determine the condition of the machine, the signal in 

the time domain is transformed to the frequency 

domain. Representations in the frequency spectrum are 

made to make it easier in identifying the engine 

damage. 

Machine sound data retrieval in this research was 

carried out in two phases, i.e., baseline signal retrieval 

(one source and one sensor) and signal retrieval from a 

mixed sound source (multichannel) using 

omnidirectional microphone type. The baseline signal 

was used as a comparison with the signal resulting from 

the separation. The recording process was carried out 

in a semi-anechoic room.  
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The object to be studied was a pumping plant. The 

pumps used in this study were three pumps, where each 

pump had different conditions (unbalance, 

misalignment, and bearing fault). Unbalance is a 

condition where the center of mass of the shaft is not 

located at the center of mass of the rotation. 

Unbalance damage is created by adding a weight of 

8 g of mixed iron to the impeller, misalignment is 

created by adding coupling and shaft weighing 129 g 

at the pump. Coupling and shaft are mutually mounted 

not straight. Bearing damage is created by hitting on 

the outer bearing with a hammer. All three pumps have 

3000 rpm and have similar specifications: 

 

Maximum capacity  : 30 L/m 

Capacity at 12 m  : 18 L/m 

Power suction   : 9 m 

Maximum total head  : 30 m 

Motor power   : 125 W 

Suction pipe   : 1 inch (25 mm) 

Push pipe   : 1 inch (25 mm) 

Weight   : 5.4 kg 

 

The pump has ball bearings, with the following 

specifications: 

Outside diameter : 26 mm 

Inside diameter   : 9 mm 

Pitch diameter   : 19.6 mm 

Roller diameter   : 4.2 mm 

Outer ring width  : 8 mm 

Number of balls  : 7 

 

In this study the sensor used is dbx RTA-condenser 

microphone with an omni-directional type polar 

pattern. Frequency range of microphone is 20-20.000 Hz 

and sensor sensitivity is -63 dB ± 3 dB. The USB audio 

interface used is Focusrite 18i20 with a sampling 

frequency of 48 kHz. The software used in recording is 

Adobe Audition 2015. In this study, the recording 

process was carried out for 5 s and saved with the .wav 

format. In data retrieval, the baseline record between 

the source of the sound and the source was 5 cm 

(Figure 3). The recording data were collected at each 

pump. 

 
 

Figure 3 The configuration of baseline data collection 

 

 
Figure 4 The configuration of mixed data collection  

 

 

In mixed configuration settings, two sensors are used 

to record three sources. The configuration used in 

recording mixed signals can be seen in Figure 4, where 

pump 1 is a pump with unbalance condition, pump 2 is 

a pump with misalignment condition, and pump 3 is a 

pump with bearing fault. The number of estimated 

signals produced is parallel to the number of sources 

used.  

We use the log spectral distance (LSD) to test the 

performance of the proposed approach in separating 

mixed signals when superposition mixing was carried 

out. The mixed signal that had been obtained from the 

recording results were separated by decomposing a 

matrix into several matrices in which components are 

non-negative values with the NMF. The sampling 

frequency is reduced to 16.000 Hz to speed up the data 

processing. To be able to determine the condition of 

the engine, the reconstruction signal in the time domain 

was transformed to the frequency domain with Fast 

Fourier transform [12]. Representations in the frequency 

spectrum were carried out to make it easier in 

detecting pump faults.  

There are several parameters that can be used to 

detect machine conditions through signals in the time 

domain [24]. Some of them are kurtosis (K), crest factor 

(CF), and shape factor(SF). 

 

𝐾 =

1
𝑁

∑ (𝑌𝑖 − 𝜇)4𝑁
𝑖=1

𝜎4  

 

(6) 

𝐶𝐹 =
𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

2. 𝑌𝑟𝑚𝑠
 

 

(7) 

𝑆𝐹 =
𝑌𝑟𝑚𝑠

1
𝑁

∑ |𝑌𝑖|𝑁
𝑖=1

 

 

 

 

(8) 
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where N is the number of samples, µ is the average 

value, σ is the standard deviation, 𝑌𝑚𝑎𝑥 is the maximum 

value of data (𝑌), 𝑌𝑚𝑖𝑛 is the minimum value of data, 

𝑌𝑟𝑚𝑠 is the root mean square of data.  
 

 

3.0 RESULTS AND DISCUSSION 
 

Figure 5 shows that the baseline signal between engine 

conditions is not the same. Meaning, each engine 

condition has different characteristics. The frequency of 

the machine could not be seen because it was still in 

the time domain. In order to get the frequency 

spectrum of the baseline signal, it transformed data 

from the time domain into the frequency domain. 

 

 
Figure 5 Baseline signal from pumps in time domain 

 

 
(a) 

 
(b) 

 
(c)  

 
Figure 6 Baseline signal from pumps in frequency domain: (a) 

misalignment, (b) unbalance, and (c) bearing fault 

In Figures 6a and 6b, the instantaneous frequencies of 

the pump with misalignment condition and unbalance 

condition were 49.68 Hz. The instantaneous frequency 

can be seen from the highest peak value. In this study, 

the pump used is a 3000 rpm rotation pump. Hence, the 

value of 1 the fundamental frequency at this pump is 

50 Hz. In Figures 6a and 6b, the instantaneous frequency 

is almost the same as 1 the fundamental frequency. 

Misalignment is indicated by a high amplitude that 

appears on 1 of the fundamental frequency, 2 the 

fundamental frequency and so on, whereas in 

unbalance, high amplitude only appears in 1x the 

fundamental frequency. [19]- [20] The instantaneous 

frequency value of the pump with a bearing fault 

condition is 946.5 Hz. In such condition, there were some 

high amplitudes and ripple at high frequency (Figure 

5c). This is because damaged bearings or bearings can 

cause the shaft to rotate with the buffer, not in the 

correct position, which results in much vibration at the 

pump. [21]- [22] Spectrum differences from each 

machine will be more easily analyzed in the local 

spectrum as shown in Figure 7. The frequency range 

used is 0 to 500 Hz. The conditions of misalignment and 

unbalance are seen more clearly in local spectrum 

representations. Misalignment is indicated by high 

amplitude at 1 rpm, 2 rpm, and 3 rpm. The 

frequencies of 49.68 Hz, 99.3 Hz, 149.2 Hz approach 1 

rpm, 2 rpm, and 3 rpm. The high amplitude at 1 rpm 

indicates unbalance conditions. Misalignment, 

unbalance, and bearing fault indications are as stated 

previously. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7 Baseline signals in the local spectrum: (a) 

misalignment, (b) unbalance, and (c) bearing fault 
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Mixed signals that had been obtained according to the 

experimental setup in Figure 4 were separated. The 

mixed signals were separated by using the NMF 

algorithm with the mixing process used an 

instantaneous linear mixture. After advancing through 

several stages of the NMF algorithm, estimated signals 

were generated. The estimated signals were then 

plotted in the full spectrum and the local spectrum as 

shown in Figure 8 and Figure 9, respectively. 

 

 

 

 
 

Figure 8 Estimated signals in the full spectrum 

 

 

In the local spectrum representation, estimation 1 

approaches the misalignment condition marked by the 

appearance of amplitude at 1 rpm and 2 rpm. 

Estimation 2 is similar to the unbalance condition both 

in full spectrum and local spectrum representation. 

Based on the sound pattern formed, estimation 3 

indicates bearing damage in the presence of harmonic 

frequencies. Corresponding frequency location of the 

baseline signal and estimation in the local spectrum are 

shown in Table 1. 

 

 

 

 
Figure 9 Estimated signals in the local spectrum 

 

 

These different spectrum patterns illustrate the 

characteristics of the machine. The next step was to 

compare the estimated signal of the result of 

separation with the baseline signal. Comparison of the 

estimated signal spectrum and the baseline signal is 

shown in Figures 10. In Figure 10, one of the estimation 

signals is plotted with the baseline signal, so that the 

differences between the estimation signal and the 

baseline signal can be easily identified. 

Table 1 Frequency related to pump faults in local spectrum 

 

Signals 
Corresponding Frequency (Hz) 

1 2 3 4 5 6 7 8 

Baseline 

Misalignment 49.68 99.3 149.2           

Unbalance 49.68             

Bearing fault  49.8 100.3 149.5     300.9 350.6   

Separation result 

Estimation 1 49.56 99.9 149.5 200         

Estimation 2 49.56               

Estimation 3 49.56 99.9   200   299.9 349.5 399.2 
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Figure 10 Comparison of estimated signal 3 with bearing fault signal 

 

Based on Figure 10, the instantaneous frequency of 

the baseline signal is higher than the estimated signal 

frequency. The instantaneous frequency baseline signal 

is 946.5 Hz and appears at an amplitude of 2.9710-3 V, 

while the estimated instantaneous frequency signal is 

943.8 Hz and appears at an amplitude of 2.47610-4 V. 

The instantaneous frequency can be seen in Table 2. 

The relative error of the instantaneous frequency of the 

estimated signal comparison with the baseline 

misalignment condition, which has the highest value 

compared with the others, is 11.2. Having compared 

the estimated signal 3 with the baseline unbalance 

condition, no error was found due to the suitability of 

the instantaneous frequency.  
 

Table 2 The instantaneous frequency of baseline and 

estimation signal 

 

 

 

To discover the size of the performance in the 

frequency domain, LSD can be applied. LSD is the 

squared difference of the logarithm of the spectral 

envelop the original signal Y(n,f) and the estimated 

signal Y(n,f) [23]. From the LSD results listed in Table 3, 

the smallest value was obtained in estimation 2, which 

tends to approach the unbalance condition with the 

LSD value of 1.0889, and the largest value, in estimation 

3, which tends to approach bearing fault with LSD value 

of 2.4989. However, overall damage can still be 

identified based on the pattern formed.  
 

Table 3 LSD value 

 
No Estimation LSD 

1 Estimation 1-misalignment 1.8219 

2 Estimation 2-unbalance 1.0889 

3 Estimation 3-bearing fault 2.4989 

 

 

Different conditions of each pump will also be 

analyzed through signals in the time domain. Each 

baseline signal and the estimated signal has different 

statistical characteristics. These characteristics are seen 

in kurtosis (K), crest factor (CF) and shape factor (SF) 

values in Table 4. The unbalance signals, both baseline 

and estimation, have the lowest K, CF, and SF values 

than others. The highest K, CF and SF values are found 

in the bearing fault signal that appears in the baseline 

signal and the estimated signal.

 

Table 4 Kurtosis, crest factor and shape factor values

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signals Instantaneous frequency 

 
Misalignment Bearing 

fault 

Unbalance 

Baseline 49.68 Hz 946.5 Hz 49. 68 Hz 

Estimation 610.5 Hz 943.8 Hz 49.68 Hz 

Relative 

error 

11.2 0.0028 0 

Signal 
K CF SF 

Baseline Estimation Baseline Estimation Baseline Estimation 

Misalignment 2.55 2.95 3.24 4.24 1.21 1.24 

Unbalance 2.42 1.65 2.88 2.00 1.19 1.12 

Bearing Fault 3.01 3.01 4.14 4.31 1.25 1.25 
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4.0 CONCLUSION 
 

Based on the research that has been done, it can be 

concluded that the separation of sound signals using 

NMF method was successfully carried out. The 

instantaneous frequency of the estimation signals 

(estimation 2 and estimation 3) resulting from the 

separation process has approached the instantaneous 

frequency of the unbalance signal and bearing fault 

signal. Based on the instantaneous frequency 

approach, the most significant relative error is the 

estimated misalignment signal with a value of 11.2. The 

performance test results, using LSD, obtained the 

smallest value in the estimation 2 and the largest value 

in the estimation 3, where the estimation 2 tends to 

approach the pump machine with an unbalance 

condition with LSD 1.0889, and the estimation 3 tends to 

approach the pump with a bearing fault condition with 

LSD 2.4989. Different conditions of each pump will also 

be analyzed in the time domain through the value of 

kurtosis, crest factor and shape factor. 
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