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Graphical abstract Abstract

Cubic Bezier and Ball Curve
T T T T

P, ‘ In this study, a new cubic Timmer friangular patch is constructed by extending

the univariate cubic Timmer basis functions. The best scheme that lies tfowards
the control polygon is cubic Timmer curve and surface compared to the other
methods. From the best of our knowledge, nobody has extended the univariate
cubic Timmer basis fo the bivariate friangular patch. The consfruction of the
proposed cubic Timmer friangular patch is based on the main idea of the cubic
Ball and cubic Berzier triangular patches construction. Some properties of the
new cubic Timmer ftriangular patch are investigated. Furthermore, the
composite cubic Timmer triangular patches with parametric continuity (C') and

o Gowal pom geometric continuity (G') are discussed. Simple error analysis between the
il poet P‘Z 1 friangular patches and one test function is provided for each continuity type.
1 . ‘ s Numerical and graphical results are presented by using Mathematica and
R MATLAB. Results show that cubic Timmer triangular patches produces estimated

result with less RMSE compared to Bezier patches relatively by 2.01% to 7.80%.
These results are significant in producing high accuracy for image and surface
reconstruction.

Keywords: Cubic Timmer triangular patch, parametric continuity, geometric
continuity, cubic Timmer curve, scattered
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Cubic Bezier Triangular Patch

Abstrak

Dalam kajian ini, tampalan segi figa kubik Timmer yang baru akan dibina
dengan melanjutkan fungsi asas kubik univariat Timmer. Kaedah terbaik yang
terletak pada poligon kawalan adalah lengkung kubik Timmer dan permukaan
kubik Timmer berbanding kaedah lain. Oleh itu, tampalan segi tiga Timmer kubik
baru ini dibina untuk menentukan sifat permukaan dalam bentuk segi tiga.
Keselanjaran parametrik (€') dan keselanjaran geometri (G1) digunakan untuk
membina segi tiga kubik Timmer yang baru. Analisis ralat mudah di antara
tompok segi tiga bagi setiap keselanjaran dan satu fungsi ujian disediakan.
Keputusan berangka dan grafik dibentangkan menggunakan Mathematica
dan MATLAB. Keputusan kajian menunjukkan tampalan segi tiga Timmer kubik
menghasilkan keputusan anggaran dengan Ralat Punca Purata Kuasa dua
yang secara relatif lebih rendah, icitu 2.01% to 47.03% berbanding tampalan
Bezier.Keputusan ini penting dalam menghasilkan ketepatan yang tinggi unfuk
rekonstruksi imej dan permukaan.

Kata kunci: Tampalan segi figa kubik Timmer, keselanjaran parametrik,

keselanjaran geometri, lengkung kubik Timmer, permukaan kubik Timmer

© 2019 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

In 1974, R. Barnhill and R. Riesenfeld coined the term
of Computer Aided Geometric Design (CAGD) at one
of the conferences in the University of Utah, U.S.A. [13].
CAGD was developed to bring some of the
computers’ benefits to industries. Basically, the
creation of surfaces and curves can be described as
a mathematical representation with some geometric
properfies. A familiar way of modeling some
geometry shape is to represent the curve or surface of
an object as a patchwork of parametric polynomial
pieces. This polynomial pieces can be represented as
Bezier curves and surfaces with degree n, which it is
convenient for the user for making interactive designs.
One of the famous methods of constructing curves
and surfaces is using cubic Beézier followed by cubic
Ball. In 1980, the cubic Timmer curve was introduced
by Harry Timmer. Cubic Timmer curve has one special
advantage which is even though it does not all fulfil
the convex hull property, the cubic Timmer curve will
lie closer to the confrol polygon compared to cubic
Bezier and cubic Ball, and sometimes, the curve can
be used to mimic the control polygons.

Some surfaces are more suitable with triangles than
quadrilaterals surfaces because of the partition of the
domain will be more convenient with triangular
regions. Therefore, Timmer triangular patches are used
to construct surfaces over arbitrary triangular meshes.
A brief overview of the curve and surface construction
by using quadrilaterals and triangles surfaces given in
the Section 2.0.

Scattered data inferpolation can be used fo
reconsfruct the surface obtained from an experiment,
for example, in the case of geological events such as
rainfall distributions and geochemical compositions of
a certain physical state. One of the earliest studies that
addressed this problem is the paper by Shepard [20]

who implemented a global scheme for scattered
data. Another method is called a triangulation based
scheme, i.e. the surface is reconstructed through a
convex combination of Bézier triangular patches,
which safisfies some degree of continuity along
adjacent triangles. Research on scatftered data
interpolation can be found in [1-25].

Most of the previous researchers have used a
cubic Bézier and a cubic Ball equation to construct
curves and surfaces for both rectangular and
friangular patches. Besides, the cubic basis functions
constructed by Timmer [22] are only for curve and
rectangular patches. At the moment, nobody has
extended the Timmer methodology on rectangular
patches to the cubic Timmer friangular patches. Thus
in this study, the extension of the univariate cubic
Timmer to the bivariate triangular basis is discussed.
Hence, the construction of this new Timmer triangular
patches will be compared and analyzed with the
previous scheme.

Said [19] constructed the basis function called the
cubic Bezier-like with two positive parameters that are
denoted as a and . By choosing the appropriate
values for ¢ and B, the basis functions can be reduced
fo cubic Bezier and Ball basis functions. Ali [1]
infroduced another cubic Beézier-ike basis function
through a Hermite curve.

Goodman and Said [122] constructed a suitable ¢!
friangular interpolant for scattered data interpolation
using the convex combinatfion scheme. The data
given determine the suitable Bezier ordinates so the
adjacent patches meet with the ¢! confinuity
requirement. Their works is different from Foley and
Opitz [11], even though both developed a ¢! cubic
friangular convex combination scheme. Foley and
Optiz [11] proposed cubic precision boundary
derivatives to construct scattered data interpolation.
Chang and Said [6] further extended this approach to
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C? quintic triangular surface scheme that requires up
to the second-order partial derivatives values. Brodlie
et al. [5] have discussed the positivity preserving by
using meshfree methods that involving some
optimization problem.

Said and Wirza [20] adopted the inferpolant
scheme proposed by Goodman and Said [11] to
construct scattered data interpolation by using cubic
Ball triangular patches since the cubic precision
method was a bit difficult to them. The data that they
are used enabled them fo determine appropriate Ball
friangular points such that adjacent friangular
patches fulfill the €t continuity.

Zhu et al. [25] discussed a new quartic ratfional
Said-Ball-like basis function and applied it fo generate
a class of €' continuous quartic rafional Hermite
Interpolations splines with local tension shape
parameters. Then, they extend the basis function to a
friangular domain. Saaban et al. [18] have
constructed €2 interpolant to preserve the positivity of
rainfall data in Peninsular Malaysia. The quantic Bezier
friangular patches is used to construct the surface.

Chan and Ong [6] described the local scheme for
range-restricted scattered data interpolation by using
cubic triangular Bézier patches. The interpolating
surface was obtained piecewise through a convex
combination of three cubic Bézier triangular patches.
Luo and Peng [14] described the €? rational spline as
a piecewise rational convex combination of three
cubic Bézier triangular patches that sharing the same
boundary Bézier ordinates. The sufficient conditions for
non-negativity were derived on the boundary Bézier
ordinates of the adjacent triangle and the normal
derivatives atf the data sites.

Karim and Saaban [12] visualized the terrain data
of cenfral region of Malaysia by using cubic Ball
friangular patches. Ramli and Ali [16] extended the
Timmer method to higher order Timmer blending
functions which are quartic and quantic Timmer
methods. They designed of a few objectsi.e. glass, sink
and vase using their proposed methods. Awang et al.
[3] reconstructed the surface of scatftered data points
by using six different of test functions. Their tested the
effectiveness of Delaunay triangulation when the
points are removed. Awang and Rahmat [3]
developed a smooth surface using cubic Bezier
friangular patch with the Graphical User Interface
(GUI) function to represent the results and the
comparison of all the surface that generated using six
different test functions.

2.0 METHODOLOGY

2.1 Beézier-like Cubic Basis Functions

The Bezier-ike basis functions have two free
parameters to change the shape of the curve. As

compared fto cubic Bezier, the way to change the
shape of the curve is by adjusting the conftrol poinfs.

By these basis functions are more convenient because
the shape can be by altering the value of the free
parameters. The cubic Beézier-like basis functions
containing two parameters a and g for u € [0,1] are
defined as follows [13]:
Biw)=(1-w?*(1+Q2-au) )
B3(u) = a(1 —u)?u L
B3 (w) = pu*(1 —u)
Bi(w) = w21+ (2 - (1 —w) J
The Beézier and Ball basis functions will be obtained
whena=8=3 anda=p8 =2 respectively. If the
parameters a = B = 4 then the basis functions above
known as Timmer basis functions.
The parametric cubic Bezier-like curve is defined as

1

3
P@) = ) piBiw),ue 0] @)
i=0

where p;,i=0,1,2,3 are the contfrol points while
B3(w),i = 0,1,2,3 are the basis functions. Figure 1 shows
three different curves obtained from three different
free parameters.

‘ Cubic: Bezie‘r-like F:urve .

Py

Py /

—&— Control point
a=3 & =3
a=2 & f=2 po
a=4 & =4 3
. L

. | \ .
1 2 3 4 5 6 7 8 9 10 11
x-axis

Figure 1 Cubic Bezier-like curve

Based on Figure 1, the curve for parametera = g =
4 which known as cubic Timmer curve lies towards the
control polygon better than others. The concept of
cubic Timmer method is proposed by Harry Timmer
(1980) to produce curve and surface [22]. The cubic
Timmer basis functions are defined as follows.
Té(w) = (1 — 2u)(1 — u)?
T2 (w) = 4u(l — u)?
T3 (w) = 4u?(1 —u) }
T3w) = Qu-1Duz )

The cubic Timmer curve is as follows:
3

Ty(u) = Z a;TE(w) ©))
i=0

where a; denotes as the control point, while T2(w),i =
0,1,2,3 are the cubic Timmer basis functions [19]. In
Figure 2, 3 and 4 show that the bi-cubic Timmer
surface and the equation consist of control points
denoted as a; and the basis functions T3 (), T3 (v),i =
0,1,2,3 can be represented by:

(3)
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3 3
Twv) =Y ) aTP I ) (5)

i=0 j=0

Bi-cubic Timmer Surface

4

0 ° ontrdl points
Y ] “Timmer surzces

5 S~ 4
5
Y 6 X

Figure 2 Bi-cubic Timmer surface

Bi-cubic Bezier Suface

£ 4
5
Y r X

Figure 3 Bi-cubic Bezier surface

Bi-Cubic Ball Surface

== 4
R Fod s
o | Ball surfaces |

Y 6 X

Figure 4 Bi-cubic Ball surface

Based on Figure 2 until 4, bi-cubic Timmer surface
lies tfowards the control polygon better than bi-cubic
Beézier and Ball surface. Some applications of Timmer
curve can be furthered explored. Figures 5 and 6 show
the lefter “f” and letter "t" which consists 25 and 20
cubic segments, respectively.

of Cubic Timmer curve

Saf
3k
2k
s
o L . .
0 1 2 3 4 5 6
x-axis
(a) Control polygon
of Cubic Timmer curve
8
7L 1
6 1
5l ]
Sar ]
3l ]
2| 1
1k ]
0 L . L . .
0 1 2 3 4 5 ]
x-axis
(b) Cubic Timmer Curve
Application of Cubic Timmer curve
£ 1
Fas ]
6 1
5k ]
s4r ]
3l 1
2F 1
1F i
0 L . .
0 1 2 3 4 5 6

x-axis

(c) Font together with its control polygon

Figure 5 Letfter “f”

of cubic Timmer curve

0 05 1 1.5 2 2.5 3 3.5 4 45 5
*%-axs

(a) Control polygon
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Application of cubic Timmer curve
T T T

o 05 1 15 2 25 3 35 4 45 5
x-axis

(a) Cubic Timmer Curve

Application of cubic Timmer curve

0 05 1 15 2 25 3 35 4 4.5 5
x-axis

(a) Font together with its control polygon
Figure 6 Letter “t”

2.2 Cubic Triangular Basis Functions

Geometric surfaces usually can be better filed and
constructed with triangles meshes than quadrilaterals
meshes because friangular regions can be more
natural in partitfion of the domain [8]. Therefore,
arbitrarily shaped surfaces can be constructed. Given
three vertices V3, V,, V5 correspond fo the barycentric
coordinates (1,0,0), (0,1,0) and (0,0,1) respectively. The
barycentric coordinates are denote as u, v and w such
that any point of the triangle can be written as [6]

V=uV; +vV, +wly, ut+v+w=1 6)
A degree n triangular Beézier patch denoted over a
friangular domain is defined as [8].

Plu,v,w) = b,-,j'kB,-"jk(u, v, W) @)
i+j+k=n

where b;;, is the control point of the cubic Bezier
friangular patch that constructed by using de
Casteljau  algorithm.  Meanwhile Bl (w,v,w) s

Bernstein polynomials defined by:
nlulv/wk
Bl = =
This equation is called bivariate because one variable
is dependent to the other two variables, i.e. w=1—
u—v. The de Casteljau algorithm for a triangular
patches is analogous fo the algorithm for curves, i.e.
repeated linearinterpolation [6]. In the cubic form, the
control net consists of a few vertices shown in Figure 6;

i+j+k=n ij,k=0 (8)

b300

b030 bﬂZl b012 bUOB

Figure 6 Confrol net with vertices

The sum of all subscripts in each of the vertices is 3
since it is a cubic case. The control net consists of

%(n+ 1)(n+ 2) vertices. The de Casteljau algorithm
can be represented by:

Given: A friangular array of points b; j, € E%i+j + k =
n and a point in E? with barycentric coordinate u.
Set:

b (W) = ub]j o1 (W) + D]y er (W) + Wh k103 (W) (9)
wherer=1,..,nandi+j+k=n—r[7].
Based on the de Casteljau algorithm, the properties of
Bezier triangles are as follows:

a) Affine invariance: Since linear interpolation is
an affine map, the de Casteljau algorithm
uses the linear interpolation only.

b) Invariance under affine parameter
fransformations: A point u in the de Casteljau
algorithm will have the same barycentric
coordinates u after an affine transformation.

c) Convex hull: This property is satisfied since
for0 <u,v,w <1, each of the b{,j‘k is a convex

combination of the previous b{ .

2.3 New Cubic Timmer Triangular Patches

The bi-cubic Timmer surface or bivariate cubic Timmer
is actually an extension from cubic Timmer curve. It is
designed by using tensor product of two or more
curves. As mentioned in previous section, the previous
method such as cubic Bezier and Ball friangular
paftches are formed by using the de Casteljau
algorithm. In this study, a new cubic Timmer triangular
patch is constructed based on the concept of the
previous methods. As a further explanation, Figure 7
shows the control points of cubic Timmer triangular
patch and Figure 8 shows the cubic Timmer triangular
basis functions.
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Figure 7 Control points of Timmer triangular patch

w?(2u—1)

a
4w duiw
3
Ty, vow)
o

n
dw=u

. 3
Lr

v?(2v — 1) 4viw 4wy w? (2w — 1)
Figure 8 Cubic Timmer basis functions (except inner points)

Based on Goodman and Said [8], the value of
each control point for Bezier and Ball friangular patch
is based on the equation of cubic Bezier and Ball
curve. However, for T3;(u,v,w) which lies in the
friangular, is determined by using the property of Bezier
friangular patches which is a partition of unity or
mathematically can be denoted as ¥, B (u, v,w) =
1. As compared to cubic Timmer triangular patch, the
value of T&,(u,v,w) can be obtained by using the
same concept as cubic Bezier friangular patches i.e.
by using partition of unity described below:

3

Z Thwv,w) = 1
i=0
1 = u?Qu-—1)+4uv + 4w+
v2(2v — 1) + 4v?u + 4v*w
+w?(2w — 1) + 4w?u + 4w?v +
T13,1,1(u' v, W)
1—u?Qu —1) + 4uv + 4u’w +
v2(2v — 1) + 4v%u + 4v’w +
w2(2w — 1) + 4w?u + 4w?v
When substituting the barycentric coordinatesu + v +
w =1, the value of T3, (u,v,w) will be the same as
B3, ,(u,v,w) in the cubic Bezier tfriangular patch, which
fulfilled the partition of unity property.
Tai(wv,w) = (@W+v+w)d - uwQu—-u-v-
w) + 4u?v + 4uPw + 2 Qv —u —
v —w) + 4v2u + 4v°w + w?Qw —
u—v—w)+4w?u + 4w?v

T (u, v, w)
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= 6uvw

u?(2u — 1)

vi(2v — 1) 4viw 4wie

Figure 9 Cubic Timmer basis functions

Figure 9 shows the complete cubic Timmer basis
functions. The following theorem is stated the
definitfion of the new cubic Timmer triangular patch:

Theorem 1: A cubic Timmer friangular patch is defined
by,

T(u,v,w) = Z i j T (10)
i+j+k=n
T(u,v,w) = u?Qu — 1)azgo + 4u?va, o + 4u?waygq +
v2(2v — Dagzo + 4v2uay 0 + 4v?wag, 1 + w? (2w —
Dagoz + 4w?uay o, + 4w?vag, 5 + 6uvway ;4 (11)

where a, ;, denoted as the Timmer ordinates of patch
T. The derivative of T with respect to the direction z =
(21,22,23) = 24V + 2,Vo + 23Va,2, + 2, + 23 = 0 is given
b
g oT 0T aT aT
E = ﬁzl + %ZZ + %
From (7), it can be shown that

T )
— = 4v2by50 + 4w?byg, + 6VWHL

Z3 12)

Ju

aT ) 2

3= (6v% — 2v)bgzg + 8vWhgy1 + 4W?by15 (13)
aT

pl (6w, — 2w)bgos + 4v2bgy, + 8vwhyy,
Figure 10 shows some plots of cubic Timmer triangular
basis functions.

Triangular Basis Function: Ten

WZ(ZW - 1)
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Triangular Basis Function: ﬁun

Figure 10 Cubic Timmer triangular basis functions

Theorem 2: These new Timmer friangular patches have
the following properties.

(a) Partition of unity: The property means the sum
of the Timmer friangular basis functionis 1 orin
mathematically can define as below

3

ZTgk(u, v,w) =1 (14)
=0

(b) Symmetry: The surfaces that formed from two
different ordering of its control points will
remain the same look.

(c) Positivity: Each of the cubic Timmer triangular
basis functions is fulfiled the positivity or
nonnegativity behavior T, (u,v,w) 20,
except for certain condition. T3,(w,v,w) <0
when %s u < 1land both of T3, (w,v,w) <0

and  T3o(w,v,w)<0  when

According to the Timmer triangular basis
functions stated above, it will not fulfiled the
nonnegativity behavior on some interval.

(d) Convex hull: The Timmer friangular patches
do not all lie within the convex hull of the
control polygon. If the positivity property is
fulfilled for the Timmer triangular patches so it
will ensure the convex hull property.

OSusi

Figure 11(a) shows the control polygon of the cubic
Timmer friangular patch, Figure 11(b) shows the cubic
Timmer triangular patch and Figure 11(c) shows the
cubic Timmer friangular patch together with its control
polygon.

10
Y
(a) Control polygon

Cubic Timmer Triangular Patch

(b) Cubic Timmer triangular patch

Cubic Timmer Triangular Patch

I ! 14
e ¥
AVA Ay,
SaxCecll
=

<
\\v’ //‘h 10
78

(c) Cubic Timmer triangular patch with its control polygon

Figure 11 Cubic Timmer triangular patch

2.4 c' and G! Continuvity between Adjacent Cubic
Timmer Triangular Patches

Let AU,U,U;, AV, V,V; be two adjacent friangles on the
xy plane with U, = Vs and U; =V, in friangle M and N
(Figure 12). In this cubic Timmer friangular patches
contain Timmer coordinates b; ;, and ¢; . These two
cubic Timmer triangles have the same boundary
curve along the common boundary U, = Us,
thus by 30 = o,03: boz21 = Co1,2:b0,1,2 = Coz1 ANA bgg3 =
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coz3,0- The necessary and sufficient conditions for C*
continuity between the two triangles are

€102 = b0 + Bboszo + Vboa1 (15)
€111 = @by 11 + Bbo21 + Vboz (16)
€120 = @by o2 + Bbo12 + Vboo3 (17)

where V; = aU; + BU, +yUz, oanda+ B +y = 1.

In Farin [4] stated that the concept of geometric
continuity is not restricted to curves compared to the
parametric continuity. This G! conditions is more
relaxed because the requirement is not as strict as
C! conditions to construct the surface.

A G confinuity surface on two triangular patches
are obtained by obtaining the first order derivatives
and the interpolant on each triangle is represented by
a single cubic triangular patch. Figure 12 shows an
example of Timmer ordinates of adjacent cubic
Timmer friangular patches with the common edges
U, =Vs;and U; =V, by triangles M and N respectively
where byzo = coo3 ANd b3 = co3o are the vertices
ordinates, biz0,¢120 b1z ANdcig, are already
obtained from the data points and its gradients while
bo12 = Co21,bP021 = Co1.2, b111 ONd ¢11, are the cubic
Timmer ordinates to be determined. If the two patches
contfinuously varying tangent plane along the
common boundary edge so both patches will safisfy
G! confinuity. The sufficient conditions for G continuity
along the common boundary curve and a set of
equations can be expressed as follows:

U,=Vsand U; =V, (18)
abyg, + (1 —a)cyoz = Bz + (1 — B (19)
abygq + (1 —a)eg1,1 = Beoz + (1= Bcgzn (20)
abygo+ (1 —a)cyz0 = Pcozs + (1 —Plcoze  (21)

where a and g are arbifrary constants. The values of a
and B in the equation can be determined using
equations of (19) and (20).

U=V,

Ul bJ.U.U

boz0 = Caoa

U, =V

Figure 12 Two adjacent Timmer triangular patches

3.0 RESULTS AND DISCUSSION

The data points are being sampled from the given true
function. From Figure 12, there are only three control

poinfs need to be calculated from Equations (15) until
(17)i.e.c102 €111 AN €120.

The main objective, we want to reconstruct the
frue surfaces but by using two composite friangular
patches and comparing the performance against
cubic Bezier triangular patch based on Root mean
square error (RMSE) and maximum error (Max). The test
functions used are listed below:

1. Franke's exponential function

64 — 81((x — 0.5)? —0.5)2
F1=j( G0+ 005y,

2. Steep function

exp (— EhH-052+ - 0.5)2)>
3 (23)

Table 1 shows the control points that are used in
friangle M and N.

F(x,y) =

Table 1 Control points

X Yy F, F,
Triangle M
0 1 3.86E-02 1.34E-05
0 0.67 2.15E-01 1.18E-03
0 0.33 2.15E-01 1.18E-03
0 0 3.86E-02 1.34E-05
0.33 0.33 3.56E-01 1.03E-01
0.67 0.67 3.56E-01 1.03E-01
1 1 3.86E-02 1.34E-05
0.67 1 1.79E-01 1.02E-01
0.33 1 1.79E-01 1.02E-01
0.33 0.67 3.56E-01 1.03E-01
Triangle N
0 0 3.86E-02 1.34E-05
€102
0.67 0 1.79E-01 1.18E-03
1 1 3.86E-02 1.34E-05
1 0.67 1.79E-01 1.02E-01
C1,2,0
1 0 3.86E-02 1.34E-05
0.67 0.33 3.56E-01 1.03E-01
0.33 0.67 3.56E-01 1.03E-01
€111

The surface interpolation of cubic Bézier and cubic
Timmer triangular patches for € and G continuity for
test function, F; illustrates in Figure 13 while for test
function, F, in Figure 14.
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(c) G* surface by using cubic Bézier friangular patches

(d) G*surface by using cubic Timmer triangular patches
Figure 13 Test Function Fy

012

0.1+

008 —

0.06 —

004 —

002+

0.4 06 08 P

(a) ¢*surface by using cubic Beézier friangular patches

0.12 5

0.4 06 08 120

(b) c*surface by using cubic Timmer triangular patches

(c) G*surface by using cubic Bezier friangular patches

016 —
014
012

0.1
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Then, the errors for root mean square error (RMSE) and
maximum error (Max) is calculated in Table 2. The root
mean square error is defined by

(24)

where F; is the value from the scheme, f(F;) is the test
function values and m is the number of the samples.

Table 2 Errors of the test function

Test

Surface Function Error RMSE Max

Bezier | 00891 | 0.1157

Fi Timmer | 00472 | 00727

G Bezier 00786 | 0.2307
F Timmer | 00710 | 0.2287

Bezier | 00929 | 0.1565

i Timmer | 00563 | 0.1434

G . Bezier 00796 | 0.2347

2

Timmer 0.0780 0.2287

Based on Table 2, cubic Timmer tfriangular patches
is the best method since it has less error than cubic
Bezier triangular patches. Then, the values of RMSE and
maximum error for cubic Timmer friangular patches
formed by using the €' continuity less than the G*
confinuity.

4.0 CONCLUSION

In this paper, a new cubic Timmer triangular patch is
proposed to construct a better surface. The surface
formed by cubic Timmer triangular patches are more
approaching to the control polygon compared to
cubic Bezier and Ball friangular patch. This method is
based on the concept of Beézier and Ball method.
Then, two patches of cubic Timmer and cubic Bezier
triangular patches that fulfiled ¢! and ¢! continuity
are constructed. To compare the effectiveness of
these methods, RMSE and maximum error are
calculated. Based on the results, cubic Timmer
friangular patches are betfter than cubic Bezier
triangular patches. The surface that fulfiled ¢*
continuity is better than G!' continuity. This new
constructed cubic Timmer friangular patch also can
be used for surface interpolation in which the data are
scattered and non-uniform as discussed in Ali et al. [2].
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