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Abstract 
 

In this study, a new cubic Timmer triangular patch is constructed by extending 

the univariate cubic Timmer basis functions. The best scheme that lies towards 

the control polygon is cubic Timmer curve and surface compared to the other 

methods. From the best of our knowledge, nobody has extended the univariate 

cubic Timmer basis to the bivariate triangular patch. The construction of the 

proposed cubic Timmer triangular patch is based on the main idea of the cubic 

Ball and cubic Bezier triangular patches construction. Some properties of the 

new cubic Timmer triangular patch are investigated. Furthermore, the 

composite cubic Timmer triangular patches with parametric continuity (C1) and 

geometric continuity (G1) are discussed. Simple error analysis between the 

triangular patches and one test function is provided for each continuity type. 

Numerical and graphical results are presented by using Mathematica and 

MATLAB. Results show that cubic Timmer triangular patches produces estimated 

result with less RMSE compared to Bѐzier patches relatively by 2.01% to 7.80%. 

These results are significant in producing high accuracy for image and surface 

reconstruction. 

 

Keywords: Cubic Timmer triangular patch, parametric continuity, geometric 

continuity, cubic Timmer curve, scattered 
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Abstrak 
 

Dalam kajian ini, tampalan segi tiga kubik Timmer yang baru akan dibina 

dengan melanjutkan fungsi asas kubik univariat Timmer. Kaedah terbaik yang 

terletak pada poligon kawalan adalah lengkung kubik Timmer dan permukaan 

kubik Timmer berbanding kaedah lain. Oleh itu, tampalan segi tiga Timmer kubik 

baru ini dibina untuk menentukan sifat permukaan dalam bentuk segi tiga. 

Keselanjaran parametrik (𝐶1) dan keselanjaran geometri (𝐺1) digunakan untuk 

membina segi tiga kubik Timmer yang baru. Analisis ralat mudah di antara 

tompok segi tiga bagi setiap keselanjaran dan satu fungsi ujian disediakan. 

Keputusan berangka dan grafik dibentangkan menggunakan Mathematica 

dan MATLAB. Keputusan kajian menunjukkan tampalan segi tiga Timmer kubik 

menghasilkan keputusan anggaran dengan Ralat Punca Purata Kuasa dua 

yang secara relatif lebih rendah, iaitu 2.01% to 47.03% berbanding tampalan 
Bѐzier.Keputusan ini penting dalam menghasilkan ketepatan yang tinggi untuk 

rekonstruksi imej dan permukaan. 

 

Kata kunci: Tampalan segi tiga kubik Timmer, keselanjaran parametrik, 

keselanjaran geometri, lengkung kubik Timmer, permukaan kubik Timmer 
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1.0  INTRODUCTION 
 

In 1974, R. Barnhill and R. Riesenfeld coined the term 

of Computer Aided Geometric Design (CAGD) at one 

of the conferences in the University of Utah, U.S.A. [13]. 

CAGD was developed to bring some of the 

computers’ benefits to industries. Basically, the 

creation of surfaces and curves can be described as 

a mathematical representation with some geometric 

properties. A familiar way of modelling some 

geometry shape is to represent the curve or surface of 

an object as a patchwork of parametric polynomial 

pieces. This polynomial pieces can be represented as 

Bѐzier curves and surfaces with degree n, which it is 

convenient for the user for making interactive designs. 

One of the famous methods of constructing curves 

and surfaces is using cubic Bѐzier followed by cubic 

Ball. In 1980, the cubic Timmer curve was introduced 

by Harry Timmer. Cubic Timmer curve has one special 

advantage which is even though it does not all fulfil 

the convex hull property, the cubic Timmer curve will 

lie closer to the control polygon compared to cubic 

Bѐzier and cubic Ball, and sometimes, the curve can 

be used to mimic the control polygons. 

Some surfaces are more suitable with triangles than 

quadrilaterals surfaces because of the partition of the 

domain will be more convenient with triangular 

regions. Therefore, Timmer triangular patches are used 

to construct surfaces over arbitrary triangular meshes. 

A brief overview of the curve and surface construction 

by using quadrilaterals and triangles surfaces given in 

the Section 2.0. 

Scattered data interpolation can be used to 

reconstruct the surface obtained from an experiment, 

for example, in the case of geological events such as 

rainfall distributions and geochemical compositions of 

a certain physical state. One of the earliest studies that 

addressed this problem is the paper by Shepard [20] 

who implemented a global scheme for scattered 

data. Another method is called a triangulation based 

scheme, i.e. the surface is reconstructed through a 

convex combination of Bézier triangular patches, 

which satisfies some degree of continuity along 

adjacent triangles. Research on scattered data 

interpolation can be found in [1-25].  

Most of the previous researchers have used a 

cubic Bézier and a cubic Ball equation to construct 

curves and surfaces for both rectangular and 

triangular patches. Besides, the cubic basis functions 

constructed by Timmer [22] are only for curve and 

rectangular patches. At the moment, nobody has 

extended the Timmer methodology on rectangular 

patches to the cubic Timmer triangular patches. Thus 

in this study, the extension of the univariate cubic 

Timmer to the bivariate triangular basis is discussed. 

Hence, the construction of this new Timmer triangular 

patches will be compared and analyzed with the 

previous scheme. 

Said [19] constructed the basis function called the 

cubic Bѐzier-like with two positive parameters that are 

denoted as α and 𝛽. By choosing the appropriate 

values for 𝛼 and 𝛽, the basis functions can be reduced 

to cubic Bѐzier and Ball basis functions. Ali [1] 

introduced another cubic Bѐzier-like basis function 

through a Hermite curve. 

Goodman and Said [122] constructed a suitable 𝐶1 
triangular interpolant for scattered data interpolation 

using the convex combination scheme. The data 

given determine the suitable Bezier ordinates so the 

adjacent patches meet with the 𝐶1 continuity 

requirement. Their works is different from Foley and 

Opitz [11], even though both developed a 𝐶1 cubic 

triangular convex combination scheme. Foley and 

Optiz [11] proposed cubic precision boundary 

derivatives to construct scattered data interpolation. 

Chang and Said [6] further extended this approach to 
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𝐶2 quintic triangular surface scheme that requires up 

to the second-order partial derivatives values. Brodlie 

et al. [5] have discussed the positivity preserving by 

using meshfree methods that involving some 

optimization problem. 

Said and Wirza [20] adopted the interpolant 

scheme proposed by Goodman and Said [11] to 

construct scattered data interpolation by using cubic 

Ball triangular patches since the cubic precision 

method was a bit difficult to them. The data that they 

are used enabled them to determine appropriate Ball 

triangular points such that adjacent triangular 

patches fulfill the 𝐶1 continuity.  

Zhu et al. [25] discussed a new quartic rational 

Said-Ball-like basis function and applied it to generate 

a class of 𝐶1 continuous quartic rational Hermite 

Interpolations splines with local tension shape 

parameters. Then, they extend the basis function to a 

triangular domain. Saaban et al. [18] have 

constructed 𝐶2 interpolant to preserve the positivity of 

rainfall data in Peninsular Malaysia. The quantic Bѐzier 

triangular patches is used to construct the surface.  

Chan and Ong [6] described the local scheme for 

range-restricted scattered data interpolation by using 

cubic triangular Bézier patches. The interpolating 

surface was obtained piecewise through a convex 

combination of three cubic Bézier triangular patches.  

Luo and Peng [14] described the 𝐶1 rational spline as 

a piecewise rational convex combination of three 

cubic Bézier triangular patches that sharing the same 

boundary Bézier ordinates. The sufficient conditions for 

non-negativity were derived on the boundary Bézier 

ordinates of the adjacent triangle and the normal 

derivatives at the data sites. 

Karim and Saaban [12] visualized the terrain data 

of central region of Malaysia by using cubic Ball 

triangular patches. Ramli and Ali [16] extended the 

Timmer method to higher order Timmer blending 

functions which are quartic and quantic Timmer 

methods. They designed of a few objects i.e. glass, sink 

and vase using their proposed methods. Awang et al. 

[3] reconstructed the surface of scattered data points 

by using six different of test functions. Their tested the 

effectiveness of Delaunay triangulation when the 

points are removed. Awang and Rahmat [3] 

developed a smooth surface using cubic Bѐzier 

triangular patch with the Graphical User Interface 

(GUI) function to represent the results and the 

comparison of all the surface that generated using six 

different test functions. 

 

 

2.0  METHODOLOGY 
 

2.1  Bѐzier-Like Cubic Basis Functions 

 

The Bѐzier-like basis functions have two free 

parameters to change the shape of the curve. As 

compared to cubic Bѐzier, the way to change the 

shape of the curve is by adjusting the control points. 

By these basis functions are more convenient because 

the shape can be by altering the value of the free 

parameters. The cubic Bѐzier-like basis functions 

containing two parameters 𝛼 and 𝛽 for 𝑢 ∈ [0,1] are 

defined as follows [13]: 

𝐵0
3(𝑢) = (1 − 𝑢)2(1 + (2 − 𝛼)𝑢)  

𝐵1
3(𝑢) = 𝛼(1 − 𝑢)2𝑢 

𝐵2
3(𝑢) = 𝛽𝑢2(1 − 𝑢)

𝐵3
3(𝑢) = 𝑢2(1 + (2 − 𝛽)(1 − 𝑢))  }

 
 

 
 

                (1) 

The Bѐzier and Ball basis functions will be obtained 

when 𝛼 = 𝛽 = 3 and 𝛼 = 𝛽 = 2 respectively. If the 

parameters  𝛼 = 𝛽 = 4 then the basis functions above 

known as Timmer basis functions.  

The parametric cubic Bѐzier-like curve is defined as  

𝑃(𝑢) =∑𝑝𝑖𝐵𝑖
3(𝑢)

3

𝑖=0

, 𝑢 ∈ [0,1]                       (2) 

where 𝑝𝑖 , 𝑖 = 0,1,2,3 are the control points while 

𝐵𝑖
3(𝑢), 𝑖 = 0,1,2,3 are the basis functions. Figure 1 shows 

three different curves obtained from three different 

free parameters.  

  
Figure 1 Cubic Bezier-like curve 

 

 

Based on Figure 1, the curve for parameter 𝛼 = 𝛽 =
4 which known as cubic Timmer curve lies towards the 

control polygon better than others. The concept of 

cubic Timmer method is proposed by Harry Timmer 

(1980) to produce curve and surface [22]. The cubic 

Timmer basis functions are defined as follows. 

𝑇0
3(𝑢) = (1 − 2𝑢)(1 − 𝑢)2

𝑇1
3(𝑢) = 4𝑢(1 − 𝑢)2

𝑇2
3(𝑢) = 4𝑢2(1 − 𝑢)

𝑇3
3(𝑢) = (2𝑢 − 1)𝑢2 }

 
 

 
 

                              (3) 

The cubic Timmer curve is as follows: 

𝑇3(𝑢) =∑𝑎𝑖𝑇𝑖
3(𝑢)                                      (4)

3

𝑖=0

 

where 𝑎𝑖 denotes as the control point,  while  𝑇𝑖
3(𝑢), 𝑖 =

0,1,2,3 are the cubic Timmer basis functions [19]. In 

Figure 2, 3 and 4 show that the bi-cubic Timmer 

surface and the equation consist of control points 

denoted as 𝑎𝑖 and the basis functions 𝑇𝑖
3(𝑢), 𝑇𝑗

3(𝑣), 𝑖 =

0,1,2,3 can be represented by: 
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𝑇(𝑢, 𝑣) =∑∑𝑎𝑖𝑇𝑖
3(𝑢)𝑇𝑗

3(𝑣)

3

𝑗=0

3

𝑖=0

                     (5) 

 
Figure 2 Bi-cubic Timmer surface 

 

 
Figure 3 Bi-cubic Bѐzier surface 

 

 
Figure 4 Bi-cubic Ball surface 

 

 

Based on Figure 2 until 4, bi-cubic Timmer surface 

lies towards the control polygon better than bi-cubic 

Bѐzier and Ball surface. Some applications of Timmer 

curve can be furthered explored. Figures 5 and 6 show 

the letter “f” and letter ”t” which consists 25 and 20 

cubic segments, respectively. 

 

 
(a) Control polygon 

 

 
(b) Cubic Timmer Curve 

 
(c) Font together with its control polygon 

Figure 5 Letter “f” 

 

 
(a) Control polygon 
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(a) Cubic Timmer Curve 

 
(a) Font together with its control polygon 

Figure 6 Letter “t” 

 

 

2.2  Cubic Triangular Basis Functions 

 

Geometric surfaces usually can be better tiled and 

constructed with triangles meshes than quadrilaterals 

meshes because triangular regions can be more 

natural in partition of the domain [8]. Therefore, 

arbitrarily shaped surfaces can be constructed. Given 

three vertices 𝑉1, 𝑉2, 𝑉3 correspond to the barycentric 

coordinates (1,0,0), (0,1,0) and (0,0,1) respectively. The 

barycentric coordinates are denote as 𝑢, 𝑣 and 𝑤 such 

that any point of the triangle can be written as [6] 

𝑉 = 𝑢𝑉1 + 𝑣𝑉2 + 𝑤𝑉3 , 𝑢 + 𝑣 + 𝑤 = 1          (6) 
A degree 𝑛 triangular Bѐzier patch denoted over a 

triangular domain is defined as [8]. 

   𝑃(𝑢, 𝑣, 𝑤) = ∑ 𝑏𝑖,𝑗,𝑘𝐵𝑖𝑗𝑘
𝑛 (𝑢, 𝑣, 𝑤)

𝑖+𝑗+𝑘=𝑛

            (7) 

where 𝑏𝑖,𝑗,𝑘 is the control point of the cubic Bѐzier 

triangular patch that constructed by using de 

Casteljau algorithm. Meanwhile 𝐵𝑖𝑗𝑘
𝑛 (𝑢, 𝑣, 𝑤) is 

Bernstein polynomials defined by: 

𝐵𝑖𝑗𝑘
𝑛 (𝑢) =

𝑛! 𝑢𝑖𝑣𝑗𝑤𝑘

𝑖! 𝑗! 𝑘!
, 𝑖 + 𝑗 + 𝑘 = 𝑛, 𝑖, 𝑗, 𝑘 ≥ 0    (8) 

This equation is called bivariate because one variable 

is dependent to the other two variables, i.e. 𝑤 = 1 −
𝑢 − 𝑣. The de Casteljau algorithm for a triangular 

patches is analogous to the algorithm for curves, i.e. 

repeated linear interpolation [6]. In the cubic form, the 

control net consists of a few vertices shown in Figure 6; 

 
Figure 6 Control net with vertices 

 

The sum of all subscripts in each of the vertices is 3 

since it is a cubic case. The control net consists of 
1

2
(𝑛 + 1)(𝑛 + 2) vertices. The de Casteljau algorithm 

can be represented by: 

 

Given: A triangular array of points 𝑏𝑖,𝑗,𝑘 ∈ 𝔼
3; 𝑖 + 𝑗 + 𝑘 =

𝑛 and a point in 𝔼2 with barycentric coordinate u. 

Set:  

𝑏𝑖
𝑟(u) = 𝑢𝑏𝑖,𝑗,𝑘+𝑒1

𝑟−1 (u) + 𝑣𝑏𝑖,𝑗,𝑘+𝑒2
𝑟−1 (u) + 𝑤𝑏𝑖,𝑗,𝑘+𝑒3

𝑟−1 (u)   (9)  

where 𝑟 = 1,… , 𝑛 and 𝑖 + 𝑗 + 𝑘 = 𝑛 − 𝑟 [7]. 

Based on the de Casteljau algorithm, the properties of 

Bѐzier triangles are as follows: 

a) Affine invariance: Since linear interpolation is 

an affine map, the de Casteljau algorithm 

uses the linear interpolation only. 

b) Invariance under affine parameter 

transformations: A point u in the de Casteljau 

algorithm will have the same barycentric 

coordinates u after an affine transformation. 

c) Convex hull: This property is satisfied since 

for 0 ≤ 𝑢, 𝑣, 𝑤 ≤ 1, each of the 𝑏𝑖,𝑗,𝑘
𝑟  is a convex 

combination of the previous 𝑏𝑖,𝑗,𝑘
𝑟−1. 

 
2.3  New Cubic Timmer Triangular Patches 

 

The bi-cubic Timmer surface or bivariate cubic Timmer 

is actually an extension from cubic Timmer curve. It is 

designed by using tensor product of two or more 

curves. As mentioned in previous section, the previous 

method such as cubic Bѐzier and Ball triangular 

patches are formed by using the de Casteljau 

algorithm. In this study, a new cubic Timmer triangular 

patch is constructed based on the concept of the 

previous methods. As a further explanation, Figure 7 

shows the control points of cubic Timmer triangular 

patch and Figure 8 shows the cubic Timmer triangular 

basis functions.  



6                              Samsul Ariffin Abdul Karim et al. / Jurnal Teknologi (Sciences & Engineering) 81:6 (2019) 1–11 

 

 

 
Figure 7 Control points of Timmer triangular patch 

 

 
Figure 8 Cubic Timmer basis functions (except inner points) 

 

 

Based on Goodman and Said [8], the value of 

each control point for Bѐzier and Ball triangular patch 

is based on the equation of cubic Bѐzier and Ball 

curve. However, for 𝑇111
3 (𝑢, 𝑣, 𝑤) which lies in the 

triangular, is determined by using the property of Bѐzier 

triangular patches which is a partition of unity or 

mathematically can be denoted as ∑ 𝐵𝑖𝑗𝑘
3 (𝑢, 𝑣, 𝑤)3

𝑖=0 =

1. As compared to cubic Timmer triangular patch, the 

value of 𝑇111
3 (𝑢, 𝑣, 𝑤) can be obtained by using the 

same concept as cubic Bѐzier triangular patches i.e. 

by using partition of unity described below:  

∑𝑇𝑖𝑗𝑘
3 (𝑢, 𝑣, 𝑤)

3

𝑖=0

 = 1 

1 = 𝑢2(2𝑢 − 1) + 4𝑢2𝑣 + 4𝑢2𝑤 +
𝑣2(2𝑣 − 1) + 4𝑣2𝑢 + 4𝑣2𝑤 

+𝑤2(2𝑤 − 1) + 4𝑤2𝑢 + 4𝑤2𝑣 +
𝑇1,1,1
3 (𝑢, 𝑣, 𝑤) 

𝑇111
3 (𝑢, 𝑣,𝑤) = 1 − 𝑢2(2𝑢 − 1) + 4𝑢2𝑣 + 4𝑢2𝑤 +

𝑣2(2𝑣 − 1) + 4𝑣2𝑢 + 4𝑣2𝑤 +
𝑤2(2𝑤 − 1) + 4𝑤2𝑢 + 4𝑤2𝑣  

When substituting the barycentric coordinates 𝑢 + 𝑣 +
𝑤 = 1, the value of 𝑇1,1,1

3 (𝑢, 𝑣,𝑤) will be the same as 

𝐵1,1,1
3 (𝑢, 𝑣, 𝑤) in the cubic Bѐzier triangular patch, which 

fulfilled the partition of unity property. 

𝑇111
3 (𝑢, 𝑣, 𝑤) = (𝑢 + 𝑣 + 𝑤)3 − 𝑢2(2𝑢 − 𝑢 − 𝑣 −

𝑤) + 4𝑢2𝑣 + 4𝑢2𝑤 + 𝑣2(2𝑣 − 𝑢 −
𝑣 − 𝑤) + 4𝑣2𝑢 + 4𝑣2𝑤 + 𝑤2(2𝑤 −
𝑢 − 𝑣 − 𝑤) + 4𝑤2𝑢 + 4𝑤2𝑣 

 = 6𝑢𝑣𝑤  

 
Figure 9 Cubic Timmer basis functions 

 

 

Figure 9 shows the complete cubic Timmer basis 

functions. The following theorem is stated the 

definition of the new cubic Timmer triangular patch:  

 

Theorem 1: A cubic Timmer triangular patch is defined 

by, 

𝑇(𝑢, 𝑣, 𝑤) = ∑ 𝑎𝑖,𝑗,𝑘𝑇𝑖𝑗𝑘
3

𝑖+𝑗+𝑘=𝑛

                      (10) 

𝑇(𝑢, 𝑣, 𝑤) = 𝑢2(2𝑢 − 1)𝑎3,0,0 + 4𝑢
2𝑣𝑎2,1,0 + 4𝑢

2𝑤𝑎2,0,1 +

𝑣2(2𝑣 − 1)𝑎0,3,0 + 4𝑣
2𝑢𝑎1,2,0 +  4𝑣

2𝑤𝑎0,2,1 + 𝑤
2(2𝑤 −

1)𝑎0,0,3 + 4𝑤
2𝑢𝑎1,0,2 + 4𝑤

2𝑣𝑎0,1,2 + 6𝑢𝑣𝑤𝑎1,1,1                (11)               
 

where 𝑎𝑟,𝑠,𝑡 denoted as the Timmer ordinates of patch 

T. The derivative of 𝑇 with respect to the direction 𝑧 =
(𝑧1, 𝑧2, 𝑧3) = 𝑧1𝑉1 + 𝑧2𝑉2 + 𝑧3𝑉3, 𝑧1 + 𝑧2 + 𝑧3 = 0 is given 

by 
𝜕𝑇

𝜕𝑧
=
𝜕𝑇

𝜕𝑢
𝑧1 +

𝜕𝑇

𝜕𝑣
𝑧2 +

𝜕𝑇

𝜕𝑤
𝑧3                    (12) 

From (7), it can be shown that 
𝜕𝑇

𝜕𝑢
= 4𝑣2𝑏120 + 4𝑤

2𝑏102 + 6𝑣𝑤𝑏111
1               

𝜕𝑇

𝜕𝑣
= (6𝑣2 − 2𝑣)𝑏030 + 8𝑣𝑤𝑏021 + 4𝑤

2𝑏012

𝜕𝑇

𝜕𝑤
= (6𝑤2 − 2𝑤)𝑏003 + 4𝑣

2𝑏021 + 8𝑣𝑤𝑏012}
 
 

 
 

     (13) 

Figure 10 shows some plots of cubic Timmer triangular 

basis functions. 
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Figure 10 Cubic Timmer triangular basis functions 

 

 

Theorem 2: These new Timmer triangular patches have 

the following properties. 

(a) Partition of unity: The property means the sum 

of the Timmer triangular basis function is 1 or in 

mathematically can define as below 

∑𝑇𝑖𝑗𝑘
3 (𝑢, 𝑣, 𝑤) = 1

3

𝑖=0

                          (14) 

(b) Symmetry: The surfaces that formed from two 

different ordering of its control points will 

remain the same look.  

(c) Positivity: Each of the cubic Timmer triangular 

basis functions is fulfilled the positivity or 

nonnegativity behavior  𝑇𝑖𝑗𝑘
3 (𝑢, 𝑣, 𝑤) ≥ 0, 

except for certain condition. 𝑇300
3 (𝑢, 𝑣,𝑤) ≤ 0 

when 
1

2
≤ 𝑢 ≤ 1and both of 𝑇201

3 (𝑢, 𝑣, 𝑤) ≤ 0 

and 𝑇210
3 (𝑢, 𝑣, 𝑤) ≤ 0 when 0 ≤ 𝑢 ≤

1

2
. 

According to the Timmer triangular basis 

functions stated above, it will not fulfilled the 

nonnegativity behavior on some interval. 

(d) Convex hull: The Timmer triangular patches 

do not all lie within the convex hull of the 

control polygon. If the positivity property is 

fulfilled for the Timmer triangular patches so it 

will ensure the convex hull property.  

 

Figure 11(a) shows the control polygon of the cubic 

Timmer triangular patch, Figure 11(b) shows the cubic 

Timmer triangular patch and Figure 11(c) shows the 

cubic Timmer triangular patch together with its control 

polygon. 

 

  
(a) Control polygon 

 

 
(b) Cubic Timmer triangular patch 

 

 
(c) Cubic Timmer triangular patch with its control polygon 

 

Figure 11 Cubic Timmer triangular patch  

 

 

2.4 𝑪𝟏 and 𝑮𝟏 Continuity between Adjacent Cubic 

Timmer Triangular Patches 

 

Let ∆𝑈1𝑈2𝑈3, ∆𝑉1𝑉2𝑉3 be two adjacent triangles on the 

𝑥𝑦 plane with 𝑈2 = 𝑉3 and 𝑈3 = 𝑉2 in triangle M and N 

(Figure 12). In this cubic Timmer triangular patches 

contain Timmer coordinates 𝑏𝑖,𝑗,𝑘 and 𝑐𝑖,𝑗,𝑘. These two 

cubic Timmer triangles have the same boundary 

curve along the common boundary 𝑈2 = 𝑈3, 
thus 𝑏0,3,0 = 𝑐0,0,3, 𝑏0,2,1 = 𝑐0,1,2, 𝑏0,1,2 = 𝑐0,2,1 and 𝑏0,0,3 =
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𝑐0,3,0. The necessary and sufficient conditions for 𝐶1 

continuity between the two triangles are 

𝑐1,0,2 = 𝛼𝑏1,2,0 + 𝛽𝑏0,3,0 + 𝛾𝑏0,2,1                (15)                                                 

𝑐1,1,1 = 𝛼𝑏1,1,1 + 𝛽𝑏0,2,1 + 𝛾𝑏0,1,2               (16) 

𝑐1,2,0 = 𝛼𝑏1,0,2 + 𝛽𝑏0,1,2 + 𝛾𝑏0,0,3               (17) 

where 𝑉1 = 𝛼𝑈1 + 𝛽𝑈2 + 𝛾𝑈3, and 𝛼 + 𝛽 + 𝛾 = 1. 

 

In Farin [4] stated that the concept of geometric 

continuity is not restricted to curves compared to the 

parametric continuity. This 𝐺1 conditions is more 

relaxed because the requirement is not as strict as 

𝐶1 conditions to construct the surface.  

A 𝐺1 continuity surface on two triangular patches 

are obtained by obtaining the first order derivatives 

and the interpolant on each triangle is represented by 

a single cubic triangular patch. Figure 12 shows an 

example of Timmer ordinates of adjacent cubic 

Timmer triangular patches with the common edges 

𝑈2 = 𝑉3 and 𝑈3 = 𝑉2  by triangles M and N respectively 

where 𝑏0,3,0 = 𝑐0,0,3 and 𝑏0,0,3 = 𝑐0,3,0 are the vertices 

ordinates, 𝑏1,2,0, 𝑐1,2,0 ,𝑏1,0,2 and 𝑐1,0,2 are already 

obtained from the data points and its gradients while 

𝑏0,1,2 = 𝑐0,2,1, 𝑏0,2,1 = 𝑐0,1,2, 𝑏1,1,1 and 𝑐1,1,1 are the cubic 

Timmer ordinates to be determined. If the two patches 

continuously varying tangent plane along the 

common boundary edge so both patches will satisfy 

𝐺1 continuity. The sufficient conditions for 𝐺1 continuity 

along the common boundary curve and a set of 

equations can be expressed as follows: 

 

𝑈2 = 𝑉3 and 𝑈3 = 𝑉2                        (18) 

𝛼𝑏1,0,2 + (1 − 𝛼)𝑐1,0,2 = 𝛽𝑐0,0,3 + (1 − 𝛽)𝑐0,1,2      (19) 

𝛼𝑏1,1,1 + (1 − 𝛼)𝑐1,1,1 = 𝛽𝑐0,1,2 + (1 − 𝛽)𝑐0,2,1      (20)                       

𝛼𝑏1,2,0 + (1 − 𝛼)𝑐1,2,0 = 𝛽𝑐0,2,1 + (1 − 𝛽)𝑐0,3,0     (21) 

                   

where 𝛼 and 𝛽 are arbitrary constants. The values of 𝛼 

and 𝛽 in the equation can be determined using 

equations of (19) and (20). 

 

Figure 12 Two adjacent Timmer triangular patches 

 

 

3.0  RESULTS AND DISCUSSION 
 

The data points are being sampled from the given true 

function. From Figure 12, there are only three control 

points need to be calculated from Equations (15) until 

(17) i.e. 𝑐1,0,2,  𝑐1,1,1 and 𝑐1,2,0.  

The main objective, we want to reconstruct the 

true surfaces but by using two composite triangular 

patches and comparing the performance against 

cubic Bѐzier triangular patch based on Root mean 

square error (RMSE) and maximum error (Max). The test 

functions used are listed below: 

1. Franke’s exponential function 

𝐹1 = √
(64 − 81((𝑥 − 0.5)2 + (𝑦 − 0.5)2)

9 − 0.5
         (22) 

2. Steep function 

𝐹2(𝑥, 𝑦) =

𝑒𝑥𝑝 (−(
81
4
) ((𝑥 − 0.5)2 + (𝑦 − 0.5)2))

3
   (23) 

Table 1 shows the control points that are used in 

triangle M and N. 

 
Table 1 Control points 

 

x y 𝑭𝟏 𝑭𝟐 

Triangle M 

0 1 3.86E-02 1.34E-05 

0 0.67 2.15E-01 1.18E-03 

0 0.33 2.15E-01 1.18E-03 

0 0 3.86E-02 1.34E-05 

0.33 0.33 3.56E-01 1.03E-01 

0.67 0.67 3.56E-01 1.03E-01 

1 1 3.86E-02 1.34E-05 

0.67 1 1.79E-01 1.02E-01 

0.33 1 1.79E-01 1.02E-01 

0.33 0.67 3.56E-01 1.03E-01 

Triangle N 

0 0 3.86E-02 1.34E-05 

𝑐1,0,2 

0.67 0 1.79E-01 1.18E-03 

1 1 3.86E-02 1.34E-05 

1 0.67 1.79E-01 1.02E-01 

𝑐1,2,0 

1 0 3.86E-02 1.34E-05 

0.67 0.33 3.56E-01 1.03E-01 

0.33 0.67 3.56E-01 1.03E-01 

 𝑐1,1,1 

 

 

The surface interpolation of cubic Bѐzier and cubic 

Timmer triangular patches for 𝐶1 and 𝐺1 continuity for 

test function, 𝐹1 illustrates in Figure 13 while for test 

function, 𝐹2 in Figure 14. 
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(a) 𝐶1 surface by using cubic Bѐzier triangular patches 

 
(b) 𝐶1 surface by using cubic Timmer triangular patches 

 
(c) 𝐺1 surface by using cubic Bѐzier triangular patches 

 
(d) 𝐺1 surface by using cubic Timmer triangular patches 

Figure 13 Test Function 𝐹1 

 
(a) 𝐶1 surface by using cubic Bѐzier triangular patches 

 

 
(b) 𝐶1 surface by using cubic Timmer triangular patches 

 

 
(c) 𝐺1 surface by using cubic Bѐzier triangular patches 

 
(d) 𝐺1 surface by using cubic Timmer triangular patches 

Figure 14 Test Function 𝐹2 
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Then, the errors for root mean square error (RMSE) and 

maximum error (Max) is calculated in Table 2. The root 

mean square error is defined by 

𝑅𝑀𝑆𝐸 = √∑
(𝐹𝑖 − 𝑓(𝐹𝑖))

2

𝑚

𝑚

𝑖

                        (24) 

where 𝐹𝑖 is the value from the scheme, 𝑓(𝐹𝑖) is the test 

function values and m is the number of the samples.  

 
Table 2 Errors of the test function 

 

Surface 
Test 

Function 
Error RMSE Max 

𝑪𝟏 

𝑭𝟏 
Bѐzier 0.0891 0.1157 

Timmer 0.0472 0.0727 

𝑭𝟐 
Bѐzier 0.0786 0.2307 

Timmer 0.0710 0.2287 

𝑮𝟏 

𝑭𝟏 
Bѐzier 0.0929 0.1565 

Timmer 0.0563 0.1434 

𝑭𝟐 
Bѐzier 0.0796 0.2347 

Timmer 0.0780 0.2287 

 

 

Based on Table 2, cubic Timmer triangular patches 

is the best method since it has less error than cubic 

Bѐzier triangular patches. Then, the values of RMSE and 

maximum error for cubic Timmer triangular patches 

formed by using the 𝐶1 continuity less than the 𝐺1 
continuity. 

 

 

4.0  CONCLUSION 
 

In this paper, a new cubic Timmer triangular patch is 

proposed to construct a better surface. The surface 

formed by cubic Timmer triangular patches are more 

approaching to the control polygon compared to 

cubic Bѐzier and Ball triangular patch. This method is 

based on the concept of Bѐzier and Ball method. 

Then, two patches of cubic Timmer and cubic Bѐzier 

triangular patches that fulfilled 𝐶1 and 𝐺1 continuity 

are constructed. To compare the effectiveness of 

these methods, RMSE and maximum error are 

calculated. Based on the results, cubic Timmer 

triangular patches are better than cubic Bѐzier 

triangular patches. The surface that fulfilled 𝐶1 
continuity is better than 𝐺1 continuity. This new 

constructed cubic Timmer triangular patch also can 

be used for surface interpolation in which the data are 

scattered and non-uniform as discussed in Ali et al. [2]. 
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