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Abstract 
 

A conventional transit time ultrasonic flowmeter (USM) has a high accuracy 

for symmetric flow profiles but inaccurate for asymmetric flow profiles. Flow 

profile shapes can also change over time and difficult to predict. USM with 

tomographic configuration (USM-Tomo) can adapt to the flow profile 

changes but result in low temporal resolution. Meanwhile, USM with an 

adaptive weighting method can measure asymmetric flow velocity but 

limited to specific asymmetric flow profiles. An alternative scheme to 

determine adaptive weighting in various asymmetric flow profiles, we 

proposed a hybrid USM-Tomo. This scheme proposes programmable acoustic 

path configuration that could set the path mode between USM and 

tomography. Reducing computation of time of flight in each acoustic can be 

done by applying the dual-transducers technique. An adaptive weighting of 

hybrid USM-Tomo is calculated based on the mapping function between the 

set of velocity on 6 parallel paths of USM and average flow velocity from USM-

Tomo. The mapping function is determined using machine learning, i.e., 

Artificial Neural Network (ANN) and Support Vector Regression (SVR). In the 

measurement phase, the average flow velocity is determined using the 

mapping function with input 6 parallel acoustic paths.  Based on various types 

of asymmetric flow profiles used in the experiment, the 6 parallel acoustic 

paths of USM could produce average flow velocity with error below 1% 

compared to USM-Tomo. Therefore, the proposed hybrid USM-Tomo scheme 

has potential to be an alternative scheme for flow meter in industrial 

application. 

 

Keywords: Ultrasonic flowmeter, transit time method, dual-transducers, 

tomography, Hybrid USM-Tomo, Artificial Neural Network, Support Vector 

Regression 
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1.0 INTRODUCTION 
 

A transit time ultrasonic flowmeter (USM) has some 

advantages; i.e., high accuracy, no moving parts, no 

pressure drop, and suitable for gases and liquids. 

Currently, it is used in many applications such as 

mining [1], cryogenic [2], custody transfer [3], 

hydrogen flow [4] and intake turbine power plan [5]. 
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To maintain USM accuracy, AGA-9 recommended 

installation guidance for USM's practitioners [6]. A flow 

conditioner is used to convert asymmetric into 

symmetric flow with high repeatability [7], [8]. In this 

condition, the average flow velocity on the cross-

section pipe was calculated by integrating the local 

velocity along all fixed weighted acoustic paths. The 

basic scheme of conventional USM is shown in Figure 

1, where it is assumed that the flow profile is symmetric 

or fully developed flow. 
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Figure 1 Conventional USM  

 

 

However, the flow conditioner can cause pressure 

drop [8], and the problems get worse if it has a 

blockage, corrosion, surface wear, and emergence of 

the metal deposition [9]. Without flow conditioning, 

the USM needs to be installed at least 50D 

(D=diameter) from a straight run upstream flow [6]. 

Thus, it is often difficult in practice due to a lack of 

space. If AGA-9 guidance was not fully implemented, 

the flow profiles might become highly asymmetric, 

and the application of a conventional USM becomes 

inaccurate. Besides the installation condition [3], [10], 

[11], [12], [13], a combination of many factors may 

produce asymmetric profile such as irregular pump 

performance, the roughness of pipe's inner surface, 

and transducer installation [14], [15], [16]. Those 

factors are hard to eliminate. Therefore, many 

researchers have proposed several advance USM 

schemes to maintain accuracy in spite of asymmetric 

profiles presence. 

The first key to advance USM schemes development 

is an optimal configuration of the acoustic path and 

an optimal number of parallel paths. Theoretically, if 

the number of coverage paths was increased, the 

better the accuracy of the average flow velocity has 

the potential to be achieved [17]. Performance 

evaluation of different forms and the number of USM 

configuration are also analyzed and compared [12], 

[13], [18], [19]. The number of parallel paths 

configurations from 4 to 18 was investigated [5], [12], 

[20]. More complex path configurations, such as 3D 

isoscale [17], a star with 36 paths [21] are also 

reported. The second key to advance the 

development of USM schemes is the determination of 

the set of adaptive weighting in each specific path 

which is a key and a crucial step to maintaining the 

accuracy of average flow velocity on asymmetric 

flow profiles. The general scheme of advance USM is 

shown in Figure 2 for the training phase, and Figure 3 

for the measurement phase. 
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Figure 2 The general scheme of advance USM in training 

phase. (Note (I): training set is obtained from simulation and 

(II): target training is average velocity using standard 

instrumentation) 
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Figure 3 The general scheme of advance USM in 

measurement phase 
 

 

A proper adaptive weighted of the acoustic path 

must be determined in the training phase. Previous 

researches have been investigated the several 

methods for supervised learning machine, such as 

support vector regression and machine [10], [25]. The 

other method is based on artificial neural networks 

(ANN), and some new processes to optimization 

weighting, such as genetic algorithm, extreme 

learning have been reported [22], [23], [24], [38]. The 

scheme of advance USM that reported on [10], [22], 

[23], [24], [25], [38], on the training phase and also on 

the measurement phase are only using data that 

generated by computational numeric of 2D flow 

profile simulation.  

Zheng [26] proposed the other approach that in 

the training phase using datasets from simulation 

data. Then the obtained weighting is used to 

determine the average flow velocity on the 

measurement phase. Disadvantage of the Zheng 

scheme is hard to cover a typical flow profile in a real 

measurement flow [3]. The other approach is 

proposed by Tang et al. [27]. In this approach, a flow 

data that measured using a conventional flow meter 

(i.e. hot wire anemometer, turbine meter) is used 

datasets in the training phase. 

Using Tang et al. approach, the weighting that 

used to build the mapping function is limited. Because 

in the real situation, the change of asymmetric profile 

shape cannot be predicted far in advance, such as 



137                                       Suprijanto et al. / Jurnal Teknologi (Sciences & Engineering) 82:1 (2020) 135–146 

 

 

due to sediments on the pipe wall and pipeline 

installation. 

This paper proposed a better approach as an 

alternative scheme for determining adaptive 

weighting in the guided training phase of USM-Tomo, 

named a hybrid USM-Tomo. Computation of time of 

flight in each acoustic path attempt to increase by 

applying the dual-transducers technique. Its 

technique applied two pairs of transmitter-receiver 

transducers that could determine a time of flight 

simultaneously. In this proposed scheme, an adaptive 

weighting was represented as a mapping function 

between flow velocity in each path and a target of 

average velocity in various possible patterns of flow 

profiles. In our preliminary research, the type of ANN 

architecture and learning methods for support 

advance USM in asymmetry flow velocity have been 

investigated [38]. The potential type of ANN 

architecture and learning methods for multipath USM 

has been evaluated. The performance of ANN to 

determine the desired adaptive weighted of acoustic 

path has been tested only on 2D flow profile 

simulation. In this work, further investigation method of 

a supervised learning method was done. The 

performance of ANN and Support Vector Machine 

(SVM) is co-evaluated and compared to determine 

the optimal mapping function of the acoustic path on 

the 2D asymmetric flow profile on simulation and the 

experiments. 

 

 

2.0  METHODOLOGY 
 

2.1 Multipath USM with Transit Time 

 

The transit time USM can be composed of single or 

multipath. Every path is formed by a pair of 

transducers, upstream (TU) and downstream (TD) 

transducer, as seen in Figure 4. During the 

measurement process, the transit time of ultrasonic 

waves from Tu to Td (tU) and reversely from Td to To (tD) 

are both recorded. The average flow velocity 

(Vpath_1) for the single path can be calculated by 

using Eq. 1 [18], [19]. D is the diameter of the pipe, and 

θ is the path angle. 

 

𝑉𝑝𝑎𝑡ℎ_1 =
𝐷

𝑠𝑖𝑛 2𝜃
(
1

𝑡𝑈
−

1

𝑡𝐷
)   (1) 

 
Figure 4 Single path USM 

 

 

The most conventional USM uses a pair of 

transducers working as both transmitter and receiver 

interchangeably, so tU and tD were obtained 

sequentially. The total time for each acoustic path 

(tcon) is 

𝑡𝑐𝑜𝑛 = 𝑡𝑈 + 𝑡𝐷   (2) 

In the preliminary experiment [30], reducing the time 

of tcon can be achieved using two pairs of transmitter-

receiver transducers on each path. Therefore, tU and 

tD can be recorded at the same time, namely dual-

transducers techniques. The example of multipath 

configurations using dual-transducers viewed in the 

cross-section pipe was shown in Figure 5. 

 

 
 

Figure 5 Illustration of multipath with parallel configuration 

using 6 parallel paths with dual-transducers techniques. tU 

and td on each path was recorded at the same time 

 

 

In common USM, a multipath configuration is often 

used. The average of flow velocity in cross-section 

pipe (Vavr) is calculated by integrating the local 

velocity along all measurement paths (see Figure 5), 

Vavr can be determined by 

 

𝑉𝑎𝑣𝑟 = 𝐾ℎ ∑ 𝑤𝑛𝑉𝑝𝑎𝑡ℎ−𝑛
𝑖
𝑛=1   (3) 

 

where a fixed weighted acoustic path (wn) was 

defined as the contribution of nth path to the average 

velocity is the number of paths, Vpath-I denotes the 

velocity the nth path and Kh is the correction meter 

factor. As we mention above, Vavr using Eq 3, is limited 

for symmetric flow profile. 

For asymmetric flow profile, adaptive weighting 

can be viewed as a mapping function F(.) between 

{Vpath-1, Vpath-2,……., Vpath-n} into target value of Vavr, 

that performed on training phase (See Figure 2). The 

relation between Vpath-n and Vavr was modeled as 

 

𝑉𝑎𝑣𝑟 = 𝐹(𝑤𝑖𝑘,𝑉𝑝𝑎𝑡ℎ−1,𝑉𝑝𝑎𝑡ℎ−2, …… , 𝑉𝑝𝑎𝑡ℎ−𝑛,) (4) 

 

F(.) was determined by supervised learning. Therefore, 

Wik is depend on architecture machine learning that 

applied on training phase. Note, Eq. 4 is modelled for 

one type of asymmetric profile, where Vavr can be 

viewed as target value during the training phase. 

 

2.2 Scheme of Hybrid USM-Tomo 

 

It is assumed, on specific piping configurations such as 

setting of valves opening, blower speed, type of 

elbow and metering location, is related to the flow 

profile that possibly occurs. A set of flow profile 

patterns is generating using these assumptions on the 

training phase. Hybrid USM-Tomo is proposed to 
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optimally determine a mapping function on the same 

multipath USM transit time. 

The main difference between hybrid USM-Tomo 

with previous scheme that represented in Figure 2 is 

the programmable acoustic path that designed to 

work in tomography and USM configuration path 

using a specific multiplexing technique. The hybrid 

USM-Tomo scheme can be seen in Figure 6. 
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Figure 6 Scheme of hybrid USM-Tomo on training phase. 

(Note (A): path configuration for tomography and (B): path 

configuration for USM) 

 

 

2.2.1 USM Tomography 

 

Acoustic path of USM-Tomo must be configured to 

cover the entire cross-section pipe [18], [28]. In USM-

Tomo, the object is the flow profile (VTOMO(x,y)) while 

the projection data (Pθ(t)) at particular angle is 

obtained from the parallel path of USM-Tomo that 

have been grouped according to its orientation (see 

Figure 7).  
 

 
Figure 7 Scheme of acoustic path configuration on USM-

Tomo. Rotation of standard parallel path is used to cover the 

entire cross-section pipe 

 

 

In a specific angle q, set of {Vpath-1, Vpath-2,…,Vpath-

n} defined as the projection data of the object at 

angle θ (Pθ(t)). Set of Pθ(t) on the entire cross-section 

pipe can be viewed as a slice. The 2D reconstruction 

of velocity profile VTOMO(x,y) use the Fourier Slice 

Theorem (FST). The FST states that 1D Fourier transform 

of the projection data of the object at angle θ (Pθ(t)) is 

equal to 2D Fourier transform (S(w)) of the object slice 

at the same angle [31], represented as 

 

𝑆𝜃(𝑤) = ∫ 𝑃𝜃(𝑡)𝑒
−𝑗2𝜋𝑤𝑡𝑑𝑡

∞

−∞
         (5) 

where, 

𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 

 

Filtered back projection (FBP) used to reconstruct of 

VTOMO(x,y). The FBP starts with Fourier transforms on 

projection data Pθ as in Eq. (5). Sθ is then filtered before 

the inverse Fourier is used to obtain Q (Eq. (6)). The filter 

functions (w) are employed to give weight to each 

projection in the frequency domain. 

 

𝑄𝜃(𝑤) = ∫ 𝑆𝜃(𝑤)|𝑤|𝑒
𝑗2𝜋𝑤𝑡𝑑𝑤

∞

−∞
  (6) 

 

The velocity at each data point is calculated using 

Eq. (7). k is the number of projections, Qθ is the filtered 

projection, θ denotes the projection angle, x and y 

are the coordinate respected to the velocity point. 

Finally, the average of VTOMO(x,y) is computed using 

the average method, as written in Eq. (8).  
 

𝑉𝑇𝑂𝑀𝑂(𝑥, 𝑦) =
𝜋

𝐾
∑ 𝑄𝜃𝑖(𝑥 𝑐𝑜𝑠 𝜃𝑖 +𝑦 𝑠𝑖𝑛 𝜃𝑖)
𝐾
𝑖=1        (7)  

𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅 =
1

𝑛𝑚
∑ ∑ 𝑉𝑇𝑂𝑀𝑂(𝑥, 𝑦)

𝑚
𝑦=1

𝑛
𝑥=1     (8)  

 

where n and m is row and column in the matrix of 

VTOMO(x,y).   

 

2.2.2 Supervised Learning Process on USM-Tomo 

 

On training phase, a mapping between a set of 

velocity on each acoustic path of USM configuration 

(input) and VTOMO-AVR(x,y) (target) are performed using 

supervised learning machine. 

Given m patterns of 2D asymmetric flow profile, 

then the target can be represented as {VTOMO-AVR-

1(x,y), VTOMO-AVR-2(x,y), …………, VTOMO-AVR-m(x,y)}. 

Using the scheme of hybrid USM-Tomo (see Figure 6), 

on a specific pattern of 2D asymmetric flow profile has 

a set of {V1
path-1, V1

path-2,…….,V1
path-n} in USM path 

configuration and VTOMO-AVR-1(x,y). In general, a set of 

Vm
path-n and VTOMO-AVR-m(x,y) can be represented as 

Eq. 9 

Set of data input-target is generated for each 

specific flow profile that possibly occur on 

measurement phase. In this work, machine learning 

methods based on artificial neural network (ANN) and 

Support Vector Machine (SVM) [10], [25], [22], [32] are 

evaluation to generate optimal acoustic paths 

weighting. 
 

𝑖𝑛𝑝𝑢𝑡 =

{
 
 

 
 

[
 
 
 
 
 
𝑉𝑝𝑎𝑡ℎ−1
1

𝑉𝑝𝑎𝑡ℎ−2
1

.

.
𝑉𝑝𝑎𝑡ℎ−𝑛
1

]
 
 
 
 
 

,

[
 
 
 
 
 
𝑉𝑝𝑎𝑡ℎ−1
2

𝑉𝑝𝑎𝑡ℎ−2
2

.

.
𝑉𝑝𝑎𝑡ℎ−𝑛
3

]
 
 
 
 
 

, … . . ,

[
 
 
 
 
𝑉𝑝𝑎𝑡ℎ−1
𝑚

𝑉𝑝𝑎𝑡ℎ−2
𝑚

.

.
𝑉𝑝𝑎𝑡ℎ−𝑛
𝑚

]
 
 
 
 

}
 
 

 
 

 

 
𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅−1 𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅−2 … 𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅−𝑚} 
      (9) 

Artifical Neural Network (ANN)  

 

ANN is a learning machine method consists of unit 

computation (neuron) and the configuration of the 
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connection between neurons (called architecture) 

[33]. Given a set of input and the specific of a target, 

ANN could be trained to calculate a mapping 

function in the training phase. The capability to 

calculate generalization of mapping functions 

between input and target (see Eq. 9) is essential to 

keep accuracy in the measurement phase. 

In this work, further evaluation of performance 

comparison between ANN with feedforward back-

propagation and cascade correlation performed. The 

illustration of the architecture of both customized ANN 

to support the proposed scheme of hybrid USM-Tomo 

shown in Figure 8. 

(a)

1

2
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input HD1 HDn
Target

…

…
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Vm
path_1
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input HD1 HDn
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Target

…

…
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Vm
path_1

Vm
path_2

Vm
path_n

VTOMO-AVR-mΣ 

 
 

HDx   = Hidden layer xth with activation function 

 
Figure 8 Architecture of (a) cascade correlation and (b) 

back-propagation 

 

 

Support Vector Regression (SVR) 

 

Another machine learning could also be used to 

determine the adaptive weighting in USM is SVR [10], 

[25]. Basically, in SVR mapping between input and 

output can be viewed as a linear regression data. For 

multipath USM, the data set of {Vm
path-1,Vm

path-

2,…….,Vm
path-n} transformed into a new set value 

{X1,X2,…….Xs}, that denoted by K(Xs, Vm
path-n) using 

Kernel function (K), in order to optimize the learning 

process in SVR [34]. The illustration of SVR architecture 

used for hybrid USM-Tomo shown in Figure 9. 

On learning process, a new set value Xs is given a 

specific set of weight (wN) as an effort to be mapped 

into the target. In SVR, the range of generalization of 

functions can be set up using the proper value of error 

loss function (ε). To guarantee the learning process 

using SVR can obtain a solution on global optimal, 

regularization parameter C has to be set to get the 

optimization algorithm. 

 

1
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n

input
Target

Σ 
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vm
path_1

K(x1,Vm
path_n)
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w1

w2

wN

vm
path_2
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VTOMO-AVR-m

K(x2,Vm
path_n)

K(xs,Vm
path_n)

 
 

Figure 9 SVR Architecture 
 

 

2.3. Numerical Model for Generating Asymmetric 

Flow Profile 

 

Salami’s model is one of mathematic model that can 

be used to generate asymmetric flow profiles. Previous 

work also used Salami’s model for researches in 

related to asymmetric flow profile and measurement 

[18], [19], [21], [26], [28], [38]. Based on Salami [36], the 

mathematic model of velocity at each point in cross-

section pipe V(r,,k1,k2) can be a generalization with 

 

𝑉(𝑟, 𝜃, 𝑘1, 𝑘2) = (1 − 𝑟)
𝑘1 + 𝐺(1 − 𝑟)𝑘2𝐹(𝜃)  [10] 

 

Where r,  is a pipe radius and angle in polar 

coordinate. The pattern of the velocity profile is 

determined parameter k1,k2, G as a constant value 

and F() as a specific function. In [36], the 23 sets 

parameters of Eq–10 is defined, resulting different 23 

profile of V(r,q,k1,k2). In each set parameters that 

defined in Eq 10, the profile is namely profile P1, P2,…. 

and P23. Two examples of parameter that used to 

generated asymmetry flow profile, i.e. 

 

 parameters of profile P2:  k1=1/9, k2=2, G=6,7501r 

and F( )=e-0.5sin, and 

 parameter of profile P12:  k1=1/7, k2=1/9, G=r and 

F( )= e(0.05-0.2) sin.  

 

In this work, a numerical model of asymmetry flow 

profile used for determining the optimal number of 

transducers of USM-Tomo, optimal acoustic parallel 

path USM, and data sets for evaluating performance 

of ANN and Support Vector Machine (SVM) in USM-

Tomo. 

 

2.4. Simulation for Optimal Number of Transducers in 

USM-Tomo 

 

To determine an optimal number of transducers in 

USM-Tomo, two asymmetry flow profile based on Eq-

10 generated by parameter in [36]. P12 represents an 

asymmetric velocity profile with 1 peak at each point 

in the cross-section pipe. Then, some points in the 

boundary of the pipe are used to determine Vpath-n, 
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where the number of n is related to some points. Using 

n points configuration, the distance between the 

point on the boundary of pipe is 2 dan pipe radius/n. 

Figure 10 shown the example of the configuration 

using 12 points, that represented as transducers 

model. 

T1

T2 T3

T4

T5

T6

T7

T8T9

T10

T11

T12

 
 

Figure 10 USM-TOMO path configuration using 12 points that 

represented transducers model 

 

 

In the simulation, the point numbers are variation 

between 10, 12, 14 and 20.  

 

2.5. Simulation for Optimal Number of Parallel 

Acoustic Paths in USM 

 

The number of the acoustic path in USM could 

influence temporal resolution and measurement 

accuracy. In order to get the optimal number of path, 

numerical simulation is performed by selecting a 

specific acoustic path illustrated in Figure 11. Black 

lines indicate the used path while the red lines 

indicate the un-used path line. 

 

                   
(a) 6 path        (b) 4 path         (c) 2 path 

 

           - - - - - = unused path      -------  = used path 

 
Figure 11 Different number and position of parallel paths 

2.5.1. Data Simulation for Training and Measurement 

Phase  

 
The set of data input represents a simulation of velocity 

in each path of USM and target as the average 

velocity of the cross-section flow profile was 

managed. Data sets of velocity on n path of USM 

(input) and Vavr (target) which were generated from 

models of asymmetric flow profile [36]. 

The data sets split into three groups, where the ratio 

of the data set is 

 Group I = 73% training phase and 27% 

measurement phase 

 Group II = 63% training phase and 37% 

measurement phase 

 Group III = 53% training phase and 47% 

measurement phase 

 

Three groups of data sets used as data set for 

evaluation of ANN and SVR in order the determine 

mapping function F(.). The performance of both 

machine learning methods was done using an 

objective criterion that defined as 

 

𝑅𝑀𝑆𝐸 =
1

𝑁
√∑ (𝑉𝑎𝑣𝑟 − �̅�𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐)

2𝑁
1      (10) 

 

Where v ̅theoretic is the average velocity of Salami’s 

profile, N denotes the number of testing data. 

According to AGA-9, the value of RMSE is less than 1%. 

Its RMSE value is the maximum allowable total error for 

an 8-inch pipe is choose for performance evaluation.  

 

2.6. Experiment Setup for Generating Asymmetric 

Flow Profile 

 

USM-Tomo with 12 transducers are made using the 

principle of dual-transducers (see Figure 12). All 

transducers are installed using the protrusion 

technique [15], [16] and form 450 angle relative to the 

pipe wall, to optimize wave propagation to all 

receivers. Ultrasonic air transducers with 40 kHz are 

used in the experiment setup [29]. 

 

 

 

 

 
 

Figure 12 Experiment set-up 

 

FMU- Tomo with dual-transduser

2D

Blowerinverter

 20D
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TU= Transduser Upstream
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TU TD

0,5D

1,5D 1,5D



141                                       Suprijanto et al. / Jurnal Teknologi (Sciences & Engineering) 82:1 (2020) 135–146 

 

 

In order to generate asymmetric flow profiles with 

variable air velocity, air blower (maximum speed 11.3 

m/s in outlet) with variable speed driver and butterfly 

damper are used. The damper blade angle can be 

altered manually so that the shape of the asymmetric 

profiles. The expander serves to connect 4-inch blower 

outlet to 8-inch damper. The meter run pipe of USM-

Tomo is 20D upstream and 2D downstream. The 

experiment begins by setting the angle of the damper 

position. The blade angle varies from 00 to 64.30 in 

steps of 12.90. Visualization of the blade position for 

different blade angles are shown in Figure 13 a-b. The 

pattern of asymmetric flow profiles is also confirmation 

using hot-wire anemometer. The hot-wire probes are 

placed in 25 points in pipe’s cross-section, as shown in 

Figure 13-c. 

 

 
 

Figure 13 Visualization of damper opening angle (a) α = 00 

and (b) α = 25,70. (c) twenty-five point of velocity 

measurement using hot wire 

 

 

An inverter is used to control the speed of blower 

by varying the frequency of supply from 25-50 Hz. Thus, 

there are 26 variations of air-speed for each damper 

position angle and 156 experimental data.  

  

 
 

Figure 14 The frequency inverter in relation to average air 

velocity when the damper blade angle is 38.60 

 

 

The example of the relationship between the 

frequency inverter and average air velocity (blade 

angle 38.60) shown in Figure 14. The experimental data 

show that the lowest air-speed is 0.8 m/s when the 

frequency of the supply is 25 Hz and damper opening 

angle is 64.30, the highest is 3.9 m/s with 50 Hz and 

without damper. 

 

3.0 RESULTS AND DISCUSSION 
 

3.1. Optimal Number of Transducers in USM-Tomo 

 

Asymmetric Flow Profile based on Model P2 and P12 

generated, then an average of flow velocity model P2 

and P12 are represented in Uavr. Then, USM-TOMO 

with number of transducer model 10, 12, 14 and 20 are 

used to reconstructed flow profile both models. Then 

an average of flow velocity resulting from USM-TOMO 

represented in VTOMO-AVR, and performance of 

reconstructed results based on error (err) that 

formulated in Eq. 11. 

 

𝑒𝑟𝑟 = |
𝑈𝑎𝑣𝑟  −  𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅

𝑉𝑇𝑂𝑀𝑂−𝐴𝑉𝑅
|    (11) 

 

The results are summarized in Table 1. By increasing the 

number of transducers up to 20, the minimum error 

can be obtained on the use of 12 transducers. Based 

on simulation results, we choose the configuration of 

12 transducers in USM-TOMO, as the parameter used 

in the experiment. 

 
Table 1 Reconstruction of asymmetric flow profile of P2 and 

P12 with number of transducer models 10, 12, 14 and 20 
 

Theoretical 

profile 

the number of transducers 
10 12 14 20 

 
P12 

Uavr =0,858 m/s 

 
VTOMO-AVR = 

0,868 m/s,  

err= 0,012 

 
VTOMO-AVR = 

0,853 m/s 

err=0,006 

 
VTOMO-AVR = 

0,865 m/s 

err=0,008 

 
VTOMO-AVR = 

 0,866 m/s 

err=0,009 

 
P2 

Uavr =1,302 m/s 

 
VTOMO-AVR = 

1,253 m/s 

err=0,039 

 
VTOMO-AVR = 

1,281 m/s 

err=0,016 

 
VTOMO-AVR = 

1,271 m/s 

err=0,024 

 
VTOMO-AVR = 

 1,275 m/s 

err=0,021 

y = 0.0392x + 0.1445
R² = 0.9883

1
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3.2. Evaluation Performances ANN and SVM for 

Support Parallel Acoustic Paths in USM 

 

3.2.1. ANN Performance 

 

The performance of ANN-based on back-

propagation (BP) and cascade correlation (CC) are 

evaluated. Eight combinations of architectures of BP 

and CC tested with variations on the number of 

hidden layers (from 1 to 3), activation functions and 

learning rate (LR) (See Table 2). 

 

 
(a) 

 
(b) 

 

Figure 11(a) Performance of four ANN structures with 6 

parallel path and (b) ANN-233 performance with training and 

testing ratio of 73:27  

 
 

The architectures of BP and CC has 25 neurons in 

each hidden layer. Each combination of BP and CC 

used to predict Vavr using 6 parallel paths. The RMSE 

(see Eq. 10) of each ANN architectures shown in Table 

3 and Figure 11a.  

The results shown that the minimum RMSE in 233-CC 

architecture. Next, the performance of 233-CC 

architecture was tested using 4, and 6 parallel paths 

and data sets that label as Group I, II and III. The 

minimum RMSE could be achieved for data sets that 

label as Group I and 6 parallel paths (see Figure 11b). 

 

3.2.2. SVR Performance 

 

In order to obtain the best SVR architecture, a 

combination of SVR parameters, i.e. kernel functions 

(K), error loss function (ε) and regularization parameter 

(C) are attempted. The parameters that used to 

optimize SVR architecture represents in Table 4. The 

RMSE of each SVR architecture was tested using 6 

parallel paths. Based on the evaluation, SVR with a 

kernel with a cubic polynomial function produce RMSE 

satisfy AGA-9 (see Figure 12a). 
 

Table 4 SVR proposed architectures 
 

Name SVR-Linr SVR-Poly SVR-RBF 

Kernel 

Function 
- Cubic Poly.  RBF 

Epsilon (ε) 0.1,…,1.10-5 

 

 

Next, the performance of SVR -Poly was tested 

using 4, and 6 parallel paths and data sets that label 

as Group I. The minimum RMSE satisfy AGA-9 could be 

achieved for ε is 1.10-3 and 6 parallel paths (see Figure 

12b). 
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Table 2 proposed architectures of back-propagation and cascade correlation 

 
Network back-propagation 

Name 111* 112 121 122 123 131 131 133 

Hidden layer  

 neuron 

1[25] 1[25] 2[25 25] 2[25 25] 2[25 25] 3[25 25 25] 3[25 25 25] 3[25 25 25] 

activation 

function 

Tansig Logsig 1.  Tansig 

2.  Tansig 

1.  Logsig 

2.  Logsig 

1.  Tansig 

2.  Logsig 

1. Tansig 

2. Tansig 

3. Tansig 

1. Logsig 

2. Logsig 

3. Logsig 

1. Tansig 

2. Logsig 

3. Purelin 

Learning rate 1.10-5; . . . ; 0.1 

 
Network cascade correlations 

Name 211* 212 221 222 223 231 231 233 

Hidden layer  

 neuron 

1[25] 1[25] 2[25 25] 2[25 25] 2[25 25] 3[25 25 25] 3[25 25 25] 3[25 25 25] 

activation 

function 

Tansig Logsig 1. Tansig 

2. Tansig 

1.  Logsig 

2.  Logsig 

1.  Tansig 

2.  Logsig 

1. Tansig 

2. Tansig 

3. Tansig 

1. Logsig 

2. Logsig 

3. Logsig 

1. Tansig 

2. Logsig 

3. Purelin 

Learning rate 1.10-5; . . . ; 0.1 

 

Table 3 RMSE of 16 ANN architectures when using 6 parallel path 

 
Structure back-propagation cascade correlations 

AGA-9 
Name 111 112 121 122 123 131 132 133 211 212 221 222 223 231 232 233 

RMSE 0.055 0.099 0.063 0.117 0.044 0.067 0.093 0.050 0.026 0.033 0.034 0.135 0.022 0.078 0.060 0.007 0.009 
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(a) 

 

 
 (b) 

 

Figure 12 (a)Performance of the 3 proposed architectures of 

SVR when using 6 parallel paths (b) SVR-Poly performance 

with data sets that label as Group I 

 
 

3.2.3. Noise Effect on ANN and SVR 

 

Further evaluation of performance ANN-233 and SVR-

Poly tested using Salami's model of flow profile with 

injecting Gaussian noise. A noisy flow profile sets with 

4 different signal to noise ratio (SNR): 25, 30, 35, 40 dB. 

Example of noisy flow profile are shown in Table 5.  

 
Table 5 Salami’s profile with Gaussian noise 

 

Salami’s 

profiles 

SNR 

25 dB 30 dB 35 dB 40 dB 

     

 

 
(a) 

 
(b) 

 
Figure 13 Effect of A noisy flow profile sets with 4 different SNR 

on (a) ANN-233 and (b) SVR-Poly with 6 paths 

On the previous evaluation, ANN-233 and SVR-Poly 

produce the RMSE less than maximum allowable 

percentage error of AGA-9, for data sets that label as 

Group-I and using 6 parallel paths. In this step, A noisy 

flow profile sets with 4 different SNR was used as input 

data for ANN-233 and SVR-Poly. The ANN-233 could be 

maintained acceptable RMSE if SNR of the data sets 

bigger than 40 dB. The robustness due to noisy data of 

SVR-Poly was slightly better than ANN-233 because 

SVR-Poly can produce acceptable RMSE, although 

the SNR of the data sets more than 35 dB. The 

summary of these evaluation step shown in Figure 13. 

 

3.3. USM-TOMO Performances in Experiment 

 

3.3.1. Initial Test of US transducer for USM-TOMO 

experiment 

 

Initial test procedure was done to ensure that the USM-

TOMO operates correctly in the experiment. In the first 

test, measurement the value of ultrasonic travelling 

time of upstream (tU) and downstream (tR) for each 

acoustic path are performed without airflow in the 

pipe. In this test, the deviation map of tU and tR from 

ideal condition was determined to compensation tU 

and tR in the airflow experiment [6]. 

 

 
(a) 

 
(b) 

 

Figure 14 Direct ultrasonic traveling time to (a) tU and (b) tD 

with no damper and 1200 orientation angle 

 

 

Second test, the airflow in the pipe is controlled 

with a variable speed blower (f=32Hz and f=48Hz), and 

the value of tU and tR are measured with setup 1200 of 

paths orientation angle. The results shown in Figure 14. 

The proportional value of tU and tR can be achieved 

in our proposed experiment setup. With increasing 

speed blower, the tU is getting smaller; on the contrary, 

the tR becomes larger. 
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3.3.2. Initial Evaluation of Asymmetric Flow Profile 

between USM-TOMO and Anemometer 

 

Comparison of particular flow velocity data from USM-

Tomo and hot-wire anemometer shown in Figure 15a 

with 50 Hz frequency inverter and 38.60 damper blade 

angle setup. The graph reveals that there is an offset 

even though the distribution of flow velocity has an 

almost identical pattern. For additional information, 

none of the hot-wire probe coincide directly with the 

USM-Tomo acoustic paths. 

The example of the reconstructed profile using 

USM-TOMO in the setting 44 Hz inverter and damper 

blade angle 00 and 38.60  are demonstrated in Table 6. 

Comparison Vavr that determined using USM-TOMO 

and hot wire anemometer also shown in Table 6. In 

general, the error ranges of USM-Tomo are from 0 % to 

14 % and 4% for the mean error if the hot wire 

anemometer used as reference. 

 

 
(a) 

 
 (b) 

Figure 15 (a) Comparison of particular flow velocity data 

from USM-Tomo and hot-wire at y=-x and 38.60 damper blade 

angle (b) Asymmetrical level of flow profile for four different 

blade angles 

 

 

The asymmetrical level of flow profile (AR) is 

calculated using Eq. (11). The RR value equal 1 

represents for symmetry of flow profile. The USM-TOMO 

scheme can maintain its accuracy when the AR lies 

between 0.85 and 1.15 (see Figure 15-b) [37]. The plot 

of AR value in different damper blade angles shown in 

Figure 15b. 

 

𝐴𝑅 =
𝑣1+𝑣2+𝑣3

𝑣4+𝑣5+𝑣6
   (11) 

 

Figure 1-5b shows that when the damper blade 

higher than 38.60, the flow profiles become very 

asymmetrical. 

 

 

 

Table 6 The flow profile of 44 Hz inverter when damper angle 

is varied 

 

α 
USM-Tomo Hot wire 

Profiles 2D Profiles 3D Vavr (m/s) Vavr (m/s) 

00 

  

Vavr = 3,6 

 
Vavr = 3,1 

38.60 

  

Vavr = 2,0  m/s 

 

 

Vavr = 2,0  

 

 

3.3.3. Performance of hybrid USM-Tomo with ANN 

and SVR 

 

In the training phase of the hybrid USM-Tomo, a 

mapping between the set of velocity on six parallel 

path of USM-Tomo (input) and VTOMO-AVR (target) are 

performed using ANN-233 and SVR-Poly as shown in 

Figure 6. In the simulation, 73% of experimental data 

used as training sets and the rest for testing sets. The 

experimental results show that the shape of flow 

profiles from different damper blade angles are 

different from each other, as shown in Table 6. 

Meanwhile, the pattern of flow profiles is almost equal 

for each damper blade angles, as displayed in Table 

7. Based on those conditions, hybrid USM-Tomo with 

ANN-233 or SVR-Poly are trained and tested for every 

blade angle. 

 
Table 7 The profile form when air velocities are varied 

 

Damper 

Average air flow velocity (m/s) / frequency 

(Hz) 

2,0/25 2,9/36 3,2/40 3,6/44 

00 

    

 

 

Asymmetrical level in Figure 18b reveals that 

velocity profile experimental data can be grouped 

into two conditions; symmetric and asymmetric flow. 

Comparison of AGA-9, hybrid USM-Tomo with ANN-233 

or SVR-Poly performances for symmetric profiles are 

shown in Figure 19a and the asymmetric in Figure 19b. 

The figures show the predicted values obtained by 

ANN-233 and SVR-Poly are almost close to the target 

value of USM-Tomo. The RMSE of ANN-233 and SVR-

poly are far lower than AGA-9, which means the 

presence of small error predictions. Moreover, if the 

two methods are compared, the RMSE of SVR-Poly is 

generally smaller than ANN-233 method. It indicates 

that the mapping capability of SVR-Poly is better than 

ANN-233. Both algorithms work effectively in mapping 

various asymmetric and symmetric flow profiles for 

both numerical and experimental data. This 

technique is more effective than reference [23] in 
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which the ANN architecture has to be redesigned for 

every profile form. 

 

 
(a) 

 
(b) 

 

Figure 19 RMSE of ANN-233 and SVR-Poly with damper angle 

(a) 00 and (b) 64.30 

 

 

Regarding the issue of temporal resolution of USM-

Tomo, by using the hybrid USM-Tomo and dual-

transducers technique for data collection strategy, 

the sampling period becomes shorter from about ± 

160 ms [28] to only ± 7 ms. Moreover, the computation 

time of the tomographic method is around 0.82 s, but 

for hybrid USM-Tomo using SVR-Poly or ANN-233 are 

around 0.01-0.03s or 0.05-0.09s, respectively. Thus, the 

proposed method is possible to be an alternative 

solution to obtain USM system which has high temporal 

resolution, good accuracy for symmetric and 

asymmetric flow, and easy adjustment for different 

circumstances. 

 

 

4.0 CONCLUSION 
 

The alternative scheme of USM for asymmetric profiles 

was presented. The novel scheme on the training 

phase is a strategy to determine the mapping function 

between the flow velocities on an individual acoustic 

path and the average flow velocity on a cross-section 

of a pipe based on the hybrid USM-Tomo. This scheme 

has the potential to be used industrial flow meter 

because it is based only on time flight ultrasonic for 

generating input and target data in the training 

phase.  

The heart of this scheme that is proven useful is the 

programmable acoustic path configuration that 

could set on the path configuration mode between 

USM parallel path and tomography. The 

measurement of time of flight on each acoustic path 

can be speed up by using dual–transducers 

technique. Based on performance evaluation on 

data simulation and experiment, ANN cascade 

correlation and SVR polynomial with 6 parallel paths 

can keep USM error below 1% compared to 

tomography. Moreover, the measurement time is only 

± 7 ms and the computational time of the hybrid USM-

Tomo with SVR polynomial and ANN cascade 

correlation are 0.01-0.03s and 0.05-0.09s, respectively. 

Thus, the hybrid USM-Tomo is potential to be 

implemented in industrial application. 
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