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Abstract 
 

This paper discusses the effect of different geometric representations of stenosis on the numerical solution of one-dimensional 

unsteady blood flow in stenotic blood vessel (or stenosis) taking into account fluid-structure interaction. In the formulation, a 

collapsible pressure-area constitutive relation is added to the coupled mass and momentum equations to allow for the 

interaction between the cross sectional area, volumetric flow rate and pressure of the flow and hence the prevalence of the 

one-dimensional fluid-structure interaction. The formulation is stabilized by employing Streamline-Upwind Petrov-Galerkin 

scheme. Non-reflecting boundary conditions are imposed based on the method of characteristics. Flow characteristics and 

the geometrical effects of the stenosis are then discussed. Numerical results show that stenosis with irregular shape is more 

prone to collapse as compared to the smooth one for a given baseline conditions. This study, thus, highlights the importance 

of representing the shape of the stenosis as close as possible as it might give information otherwise missing in the simplistic 

smooth representation of the stenosis.  

 

Keywords: Blood flow, streamline-upwind Petrov-Galerkin, stenosis, vessel collapse, fluid-structure interaction  

 

Abstrak 
 

Kajian ini membincangkan kesan bentuk geometri stenosis ke atas penyelesaian berangka aliran darah tak mantap di dalam 

pembuluh darah berbentuk stenotik. Formulasi yang diterbitkan menggunakan persamaan hubungan antara tekanan dan 

luas permukaan boleh-runtuh untuk melengkapkan persamaan-persamaan jisim dan momentum bagi membolehkan 

interaksi wujud di antara luas permukaan, kadar aliran isipadu dan tekanan dalam menghasilkan interaksi-bendalir-struktur 

satu dimensi. Formulasi ini telah distabilkan menggunakan skima Streamline-Upwind-Petrov-Galerkin. Keadaan sempadan 

tidak memantul digunakan mengikut kaedah ciri. Perbincangan mengenai aliran ciri dan kesan geometri stenosis ke atas 

aliran darah telah dibuat secara mendalam. Hasil keputusan berangka menunjukkan stenosis berbentuk tidak sekata lebih 

senang untuk runtuh berbanding stenosis yang licin dan sekata pada garis asas yang sama. Kajian ini seterusnya 

menegaskan kepentingan mewakili bentuk stenosis dengan ketepatan tinggi bagi mengelakkan kehilangan maklumat 

seandainya persamaan bentuk stenosis yang kurang tepat digunakan.  

 

Kata kunci: aliran darah, Streamline-Upwind-Petrov-Galerkin, stenosis, keruntuhan salur pembuluh, interaksi-bendalir-struktur 
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1.0 INTRODUCTION 
 
Numerical modelling of blood flow has been shown 

able to provide key information for hemodynamic 

non-intrusive monitoring. While the problem is 

effectively three dimensional (3D), one-dimensional 

(1D) models have been shown as being adequate in 

capturing the dominant effects at less computational 

cost [1, 2, 14-22]. This, thus, motivates the study of one-

dimensional modelling despite its mathematical 

simplicity. 

One-dimensional fluid-structure-interaction (1D-FSI) 

blood flow problem is governed by the mass and the 

linear momentum equations as well as the pressure-

area constitutive relation.  Such coupling allows the 

interaction between cross sectional area, A, 

volumetric flow rate, Q and pressure of the flow, P. 

Various forms of pressure-area constitutive relation 

have been proposed in literature [1-7]. Generally, it 

can be given as 

 

𝑃 − 𝑃𝑒 = 𝑓(𝐴) (1) 

 

where 𝑃𝑒 is the external pressures and 𝑓(𝐴) highlights 

the dependency of the pressure’s magnitude on the 

distribution of the cross-sectional area of the flow. The 

pressure difference (i.e.𝑃 − 𝑃𝑒) is termed as transmural 

pressure.  

Although the governing equations are simple, 

analytical solutions are not available thus it is common 

to solve the problem numerically [1-7]. In recent works 

by Sochi [5, 6], Bubnov-Galerkin finite element was 

formulated where good verifications of results were 

reported despite no stabilization scheme was 

employed. However, in our recent work [8], we 

showed that Sochi’s formulation produced spurious 

oscillations when repeated for higher pressure 

gradient cases. In accordance, we have proposed a 

stabilized formulation employing Streamline-Upwind 

Petrov-Galerkin (SUPG) in that work.  

Herein, we extend our work to unsteady problems. 

We also consider geometrical variation of the vessel 

to represent stenosis. This is motivated by the question 

whether smooth representation of the shape of the 

stenosis is sufficient to render important information of 

the blood flow. This question has been considered in 

higher dimensions modelling (2D or 3D), with or without 

fluid-structure-interaction [9-13]. In the studies carried 

out by our fourth author on multi-irregular stenosis [12, 

13], it was shown that solutions are sensitive to the 

shape of the stenosis. However, despite the availability 

in 2D and 3D models, 1D-FSI studies on the subject are 

still limited. Pioneering studies of [2-4] only considered 

smooth stenosis. No stenosis was considered in [1, 5, 6]. 

It is therefore of great interest to consider such a 

question when in many occasions, the less-consuming 

one dimensional modelling has been the preferred 

approach for the analysis. Furthermore, our work is the 

first to employ SUPG finite element formulation to the 

problem.  

In our formulation, we employ first-order forward 

difference for the time integration and use Newton-

Raphson technique as the nonlinear scheme. The 

imposition of the non-reflecting boundary conditions is 

performed by replacing the mass equation with 

compatibility condition at the boundary nodes. The 

numerical results are verified against data available in 

literature. The effect of the geometry of the stenosis to 

the flow characteristics and vessel collapse 

phenomenon are then discussed. Since our discussion 

revolves around the collapse phenomenon of the 

blood vessel, it is prompt to give its definition at the 

onset. Collapse of vessel is defined as the point when 

the vessel area becomes reduced from its normal 

(initial) condition with a corresponding change from 

positive to negative pressure of the flow [2].  

 

 

2.0 METHODOLOGY 
 

2.1 Governing Equations 

 

Unsteady blood flow in stenotic vessel is governed by 

the mass and the momentum equations 

complemented by the pressure-area constitutive 

relation. The corresponding governing equations with 

frictional losses as detailed in [2, 3] are given as 

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0 (2) 

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑄2

𝐴
) +

𝐴

𝜌

𝜕(𝑃 − 𝑃𝑒)

𝜕𝑥
+ 𝐹frict𝐴 = 0 (3) 

𝑃 − 𝑃𝑒 = 𝐾𝑝 [(
𝐴

𝐴𝑜
)
𝑛1

− (
𝐴

𝐴𝑜
)
−𝑛2

] (4) 

where 𝑡 is time, 𝑥  is the axial coordinate along the 

vessel, 𝜌 is the fluid density, 𝐾𝑝 is the tube stiffness and 

𝐴𝑜  is the no-flow cross sectional area of the flow. 𝑛1 
and 𝑛2  are the tube law exponent parameters 

obtained from experimental data for a bovine carotid 

artery [2]. 𝐹frict is a lumped frictional loss introduced in 

[3] to account for the viscous losses due to friction 

between the blood vessel and the fluid as an 

enhancement to the otherwise inviscid flow of an 

earlier work [4]. It is defined as 

𝐹frict

=

{
 
 

 
 

32𝜇𝑓𝐿

𝜌𝐷𝑒
2 (

𝑄

𝐴
) ,

𝐾𝑠𝑒𝑝

2
(
1

𝐴𝑡ℎ
)
2𝑄2

𝐿𝑠
  ,

 

 

 

 

𝑥𝑠𝑒𝑝 < 𝑥

< 𝑥𝑠𝑒𝑝 + 𝐿𝑠 

 

Laminar 

loss  

 

Separation 

loss 

(5) 

where 𝜇 is the fluid viscosity, 𝑓𝐿 is the major laminar loss 

coefficient, 𝐾𝑠𝑒𝑝 is the separation loss coefficient, 𝐴𝑡ℎ is 

the throat cross sectional area of the stenosis, 𝑥𝑠𝑒𝑝 and 

𝐿𝑠 are the separation point and length of separation 

region of the stenosis. 𝐷𝑒  is the hydraulic diameter 

used to account for the noncircular shape of the 

compressed vessel for the negative transmural 

pressures where, 
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𝐷𝑒 = {
(
𝐴

𝐴𝑜
)𝐷0 ,

𝐷0 ,

 

𝐴

𝐴𝑜
< 1 

𝐴

𝐴𝑜
≥ 1 

(6) 

For the stenosis model, the cross sectional area and 

the stiffness variations along the vessel are defined by 

sine functions as: 

𝐴𝑜(𝑥) = 𝐴oo𝜆𝐴(𝑥) (7) 

𝐾𝑝(𝑥) = 𝐾𝑝𝑜𝜆𝐾(𝑥) (8) 

where 𝐴oo  and 𝐾𝑝𝑜  are the nominal vessel cross 

sectional area and the nominal vessel stiffness, 

respectively. 𝜆𝐴 and 𝜆𝐾 are the stenosis shape function 

and the stiffness variation function, respectively.    

 

2.2 Numerical Method  

 

The governing equations given by equation (2) and 

equation (3) is written in vector form for numerical 

implementation convenience as follows in which 

equation (3) is expanded with the insertion of 

equation (4).  

𝜕𝐔

𝜕𝑡
+
𝜕𝐅

𝜕𝑥
+ 𝐁 = 0 (9) 

where 

𝐔 = [
𝐴

𝑄
] (10) 

𝐅 =  

[
 
 
 
 

𝑄

𝑄2

𝐴
+ 
𝐾𝑝𝐴

𝜌
[
(
𝐴
𝐴𝑜
)
𝑛1
𝑛1

𝑛1 + 1
−
(
𝐴
𝐴𝑜
)
−𝑛2

𝑛2

𝑛2 − 1
]

]
 
 
 
 

 (11) 

𝐁 = [
0

𝐾1
𝜕𝐴𝑜
𝜕𝑥

+ 𝐾2
𝜕𝐾𝑝

𝜕𝑥
+ 𝐹frict𝐴

] (12) 

and 

𝐾1 =
𝐾𝑝𝐴

𝜌𝐴𝑜
[−(

𝐴

𝐴𝑜
)
𝑛1

𝑛1 − (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 +
(
𝐴
𝐴𝑜
)
𝑛1
𝑛1

2

𝑛1 + 1

+
(
𝐴
𝐴𝑜
)
−𝑛2

𝑛2
2

𝑛2 − 1
] 

(13) 

𝐾2 = 
𝐴

𝜌
[(
𝐴

𝐴𝑜
)
𝑛1

− (
𝐴

𝐴𝑜
)
−𝑛2

−
(
𝐴
𝐴𝑜
)
𝑛1
𝑛1

𝑛1 + 1

+
(
𝐴
𝐴𝑜
)
−𝑛2

𝑛2

𝑛2 − 1
] 

(14) 

 

2.2.1 Weak Statement – SUPG Formulation 

 

The SUPG weak statement for the problem is 

established by employing integration by parts to 

equation (9) and inserting a stabilizing term. It is given 

as follows. 

∫ 𝐰 ∙
𝜕𝐔

𝜕𝑡
 

𝑥

𝑑x + ∫ [− (
∂𝐰

∂x
) ∙ 𝐅 + 𝐰 ∙ 𝐁 ] 𝑑x

x

+ ∫(𝐏(𝐰) 𝝉 𝐑(𝐔))
𝑥

𝑑x

+ [𝐰 ⋅ 𝐅]|𝑥=0
𝑥=𝐿 = 0 

(15) 

where 𝐏(𝐰) is the operator applied to the weighting 

function,  𝐰 , 𝐑(𝐔)  is the residual of the governing 

equation in quasi-linear form and 𝜏 is the stabilization 

parameter, all as detailed in [23, 24]. Terms in equation 

(15) are given as 

𝐏(𝐰) = 𝐇
𝜕𝐰

𝜕𝑥
 (16) 

𝐑(𝐔) =  𝐇
∂𝐔

∂x
+ 𝐒 (17) 

𝝉 = (𝒃𝒃)−
1
2 (18) 

𝒃 =
𝜕𝜉

𝜕𝑥
𝐇 (19) 

𝐇 =
𝜕𝐅

𝜕𝐔

= [

0 1

−
𝑄2

𝐴2
+
𝐾𝑝

𝜌
[(
𝐴

𝐴𝑜
)
𝑛1

𝑛1 + (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 ]
2𝑄

𝐴
] 

(20) 

𝐒

= [

0 0
𝐾𝑝

𝜌𝐴𝑜
[− (

𝐴

𝐴𝑜
)
𝑛1

𝑛1 − (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2]
𝜕𝐴𝑜
𝜕𝑥

𝐹frict
]

+ [

0 0

+
1

𝜌
[(
𝐴

𝐴𝑜
)
𝑛1

− (
𝐴

𝐴𝑜
)
−𝑛2

]
𝜕𝐾𝑝

𝜕𝑥
0
] 

(21) 

where 𝑥 = 𝑥(𝜉) is the actual coordinates whilst 𝜉 refers 

to normalized local coordinates. To note, the 

weighting function 𝐰 in equation (15) is the same as 

the shape functions used for the variable 

interpolations, given as 

𝐴 =  ∑𝑁𝑖𝐴𝑖

𝑛

𝑖

 (22) 

𝑄 = ∑𝑁𝑖𝑄𝑖

𝑛

𝑖

 (23) 

where 𝑁𝑖 is the 𝑖𝑡ℎ linear shape function.  

 

2.2.2 Time Integration and Nonlinear Scheme  

 

The hyperbolic nature of the governing equations 

allows time marching scheme to be employed. Time 

derivative term in equation (15) is expanded by first 

order forward difference as 

𝜕𝐔

𝜕𝑡
≈
𝐔𝑡+∆𝑡 −𝐔𝑡

∆𝑡
 (24) 

where time step, ∆t is chosen in such a way it satisfies 

the Courant–Friedrichs–Lewy (CFL) condition. For the 

implementation of the Newton-Raphson scheme, 

equation (22) to (24) are inserted into equation (15) to 

give the residual function, 𝐑𝒇 (in explicit form) as 
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𝐑𝒇 = 𝐌
𝐔𝑡+∆𝑡 −𝐔𝑡

∆𝑡
+ 𝐊𝐔𝑡 (25) 

where 𝐌  and 𝐊  are the mass and the stiffness 

matrices, respectively. Expanding equation (25) about 

the rth known iteration gives 

𝐑𝒇
𝒓 +

𝜕𝐑𝒇
𝒓

𝜕𝐔𝒓
∆𝐔 = 𝟎 (26) 

Rearranging gives 

𝐓∆𝐔 = −𝐑𝒇
𝒓  (27) 

where 𝐓 is the tangent stiffness matrix. The r+1 solution 

is then obtained by updating the previous solution as 

follows 

𝐔𝑟+1 = ∆𝐔 + 𝐔𝑟 (28) 

The iteration continues until a convergence criterion is 

met. 

 

2.2.3 Imposition of Boundary Conditions  

 

The weak formulation in equation (15) is prescribed 

with suitable boundary conditions in the form of 

compatibility conditions. Based on the method of 

characteristics as detailed in [5-7, 16-17], the 

eigenvalues of H can be obtained by solving 

det( 𝐇 − 𝛌𝐈 ) = 0 (29) 

where 𝛌 is the vector of the eigenvalues and 𝐈 is the 

identity matrix. Left-eigenvectors, 𝐋 can be obtained 

by solving 

𝐋𝐇 = 𝚲𝐋 (30) 

where 𝐋 is left the eigenvectors of 𝐇 whilst 𝚲 is given as 

𝚲 = [
𝜆1 0
0 𝜆2

]  (31) 

By solving equation (30) and equation (31), the 

eigenvalues and the left-eigenvectors are given as  

λ1,2 =
𝑄

𝐴
 ± √

𝐾𝑝

𝜌
[(
𝐴

𝐴0
)
𝑛1

𝑛1 + (
𝐴

𝐴0
)
−𝑛2

𝑛2]   (32) 

𝐋𝟏,𝟐

= [−
𝑄

𝐴
 ± √ 

𝐾𝑝

𝜌
[(
𝐴

𝐴0
)
𝑛1

𝑛1 + (
𝐴

𝐴0
)
−𝑛2

𝑛2]   1] 
(33) 

Specifically for the imposition of the boundary 

conditions, equation (9) is rearranged in quasi-linear 

form by employing chain rule and inserting equation 

(21) in place of 𝐁, thus; 

𝜕𝐔

𝜕𝑡
+ 𝐇

∂𝐔

∂x
+ 𝐒 = 0 (34) 

Based on equation (30), 𝐇 can be represented by the 

eigenvalues and the left-eigenvectors without loss of 

generality, thus 

𝐇 = 𝐋−𝟏𝚲𝐋 (35) 

where  𝐋𝐋−𝟏 = 𝐈 . By substituting equation (35) into 

equation (34), we obtain 

𝜕𝐔

𝜕𝑡
+ 𝐋−𝟏𝚲𝐋

𝜕𝐔

𝜕𝑥
+ 𝐒 = 0 (36) 

By multiplying equation (36) with 𝐋, we obtain 

𝐋
𝜕𝐔

𝜕𝑡
+ 𝚲𝐋

𝜕𝐔

𝜕𝑥
+ 𝐋𝐒 = 0 (37) 

The evaluation of equation (37) at the boundary 

nodes are known as time-dependent compatibility 

conditions, 𝐶𝑇𝐷, which is written as: 

𝐋 (
𝜕𝐔

𝜕𝑡
+ 𝐇

𝜕𝐔

𝜕𝑥
+ 𝐒)|

𝐱=𝟎,𝐋
= 0 (38) 

and is expanded as follows 
𝐶𝑇𝐷

= [−
𝑄

𝐴
± √

𝐾𝑝

𝜌
((
𝐴

𝐴𝑜
)
𝑛1

𝑛1 + (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 )]
𝜕𝐴

𝜕𝑡

+ 
𝜕𝑄

𝜕𝑡

+ [−
𝑄

𝐴
± √

𝐾𝑝

𝜌
((
𝐴

𝐴𝑜
)
𝑛1

𝑛1 + (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 )]
𝜕𝑄

𝜕𝑥

+ [−
𝑄2

𝐴2
+
𝐾𝑝

𝜌
((
𝐴

𝐴𝑜
)
𝑛1

𝑛1 + (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 )]
𝜕𝐴

𝜕𝑥

+
2𝑄

𝐴

𝜕𝑄

𝜕𝑥

+ [ 
𝐾𝑝𝐴

𝜌𝐴𝑜
(−(

𝐴

𝐴𝑜
)
𝑛1

𝑛1 − (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 )]
𝜕𝐴𝑜
𝜕𝑥

+ 
𝐴

𝜌
((
𝐴

𝐴𝑜
)
𝑛1

𝑛1 − (
𝐴

𝐴𝑜
)
−𝑛2

𝑛2 )
𝜕𝐾𝑝

𝜕𝑥
+ 𝐹frict𝐴 = 0 

(39) 

 

The imposition of the compatibility conditions is 

accomplished by replacing the mass equation at the 

boundary nodes with equation (39). It should be noted 

that there are two opposite signs. The negative sign is 

applied at the inlet boundary while the positive sign is 

applied at the outlet boundary in accordance with 

the propagation of the outgoing characteristic waves 

so as to minimize the wave reflection at the 

boundaries as detailed in [5,6]. 

The first and second terms on the right hand side of 

equation (32) are referred as velocity, U and local 

wave speed of the nonlinear system, c, respectively 

which ratio is the speed index, S, introduced to 

describe the physiological flow in the stenotic vessel. 

Flow can be categorized as subcritical flow (S < 1), 

critical flow (S = 1) or supercritical flow (S > 1).  

 

2.3 Validation of the Formulation  

 

For validation purposes, a smooth stenosis previously 

studied in [3] is considered herein as shown in Figure 1 

with the biological parameters as tabulated in Table 

1. For comparison, results reported in [3] are extracted 

using WebPlotDigitizer. 
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Figure 1 Smooth geometry of stenosis [3] 

 

Table 1 Biological and geometrical parameters of stenosis [3] 

 

Parameters Values [ Units ] 

Fluid density, 𝜌 995 kgm−3 

Fluid viscosity, 𝜇 0.003Pa ∙ s 

Vessel stiffness, 𝐾𝑝 125 Pa 

Tube law exponents, 𝑛1 7 

Tube law exponents, 𝑛2 2.5 

Nominal vessel diameter, 𝐷0 0.006 m 

Vessel radius, R 0.003 m 

Length, L 0.03 m 

Major laminar loss coefficient, 𝑓𝐿 20 

Major separation loss coefficient, 𝐾𝑠𝑒𝑝 0.2 

Length of separation region, 𝐿𝑠 2𝐷0 

Starting point for stenosis, 𝑥𝑠 0.5𝐷0 

Ending point for stenosis, 𝑥𝐸 2.5𝐷0 

Area reduction amplitude, 𝜆𝐴𝑜 91.5% 

Stiffness reduction amplitude, 𝜆𝐾𝑜 10 

 

 

2.3.1 Steady Case Validation 

 

For the steady case, a constant inlet pressure of 𝑃1 = 

100 mmHg and a distal pressure of  𝑃2 = 60 mmHg are 

applied. The external pressure 𝑃𝑒 is fixed at zero so that 

the transmural pressure reflects the internal pressure 

within the blood vessel. 𝜆𝐴 and 𝜆𝐾 in equation (7) and 

equation (8) are given specifically for this case as:  
𝜆𝐴(𝑥)

=

{
 
 

 
 

1 ,    

1 − 𝜆𝐴𝑜 sin
2 [𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] ,

1 ,

 

𝑥 < 𝑥𝑠 
𝑥𝑠 <  𝑥
< 𝑥𝐸 

𝑥 > 𝑥𝐸 

(40) 

𝜆𝐾(𝑥)

=

{
 
 

 
 

1 ,

1 + 𝜆𝐾𝑜 sin
2 [𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] ,

1 ,   

 

𝑥 < 𝑥𝑠 
𝑥𝑠 <  𝑥
< 𝑥𝐸 

𝑥 > 𝑥𝐸 

(41) 

where  𝑥𝑆  and 𝑥𝐸 are the starting point and stopping 

point of the stenosis as illustrated in Figure 1. 𝜆𝐴𝑜 and 

𝜆𝐾𝑜  are the area reduction amplitude and stiffness 

variation amplitude, respectively.  

Bubnov-Galerkin finite element formulation is also run 

to highlight the occurrence of the oscillations at the 

throat due to the lack of stabilization term. To note, 

Bubnov-Galerkin can be retrieved from the present 

SUPG formulation by simply eliminating the third 

integration term in equation (15). Numerical results 

obtained from both Bubnov-Galerkin and SUPG 

formulations are plotted and compared against the 

results of [3] in Figure 2. To note, in [3] the problem was 

solved using MacCormack finite difference 

approach. 

As expected, oscillations are observed for Bubnov-

Galerkin in the throat region but vanished with the 

employment of the SUPG formulation. The numerical 

solutions have therefore been stabilized and 

validated against the numerical data of [3]. This marks 

our success in eliminating the oscillations through 

SUPG formulation. 

 
(a) Cross Sectional Area 

 
(b) Pressure 

 
(c) Speed Index 

 

Figure 2 Comparison of results of steady blood flow between 

Bubnov-Galerkin, SUPG and [3] for 𝑃2= 60mmHg 
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2.3.2 Unsteady Case Validation 

 

For the unsteady case, sinusoidal time varying term is 

added to the pressure at the inlet, given as 

𝑃𝑖𝑛(𝑡) = 100 + 20 sin (2𝜋𝑓𝑡) (42) 

where 𝑓 is the frequency. There are various outlet 

boundary conditions have been proposed in 

literature. Amongst others are the constant distal 

resistance and the Windkessel models [16]. In [3] the 

former model was employed. In this model, a time 

varying outlet pressure,  𝑃𝑜𝑢(𝑡)  with a constant distal 

resistance, 𝑅𝑑𝑖𝑠 is imposed. It is given as 

𝑃𝑜𝑢(𝑡) = 𝑄𝑜𝑢(𝑡)𝑅𝑑𝑖𝑠 + 𝑃𝑣𝑒𝑛 (43) 

where 𝑃𝑣𝑒𝑛 is venous pressure having typical values in 

the range of 3 to 8 mmHg and 𝑄𝑜𝑢(𝑡) is given as 

𝑄𝑜𝑢 = (
𝑄𝑜𝑢 − 𝑄𝑜𝑢−1

∆𝑥
) (
𝑄𝑜𝑢
𝐴𝑜𝑢

−
𝑄𝑜𝑢−1
𝐴𝑜𝑢−1

)
∆𝑡

2 𝑐
+ 𝑄𝑜𝑢−1  (44) 

where 𝑄𝑜𝑢  and 𝑄𝑜𝑢−1are the flow rate at the outlet 

boundary node and at the adjacent node, 

respectively. The same subscript convention applies to 

𝐴𝑜𝑢.  

For this unsteady case, three different frequencies; 

1 Hz, 5 Hz and 10 Hz, are evaluated. Steady solution 

obtained for 𝑃2 = 55mmHg is taken as the initial 

condition. 𝑅𝑑𝑖𝑠  = 6.1 mmHg/(ml/s) and 𝑃𝑣𝑒𝑛 = 5 mmHg 
are used in the calculation of the outlet pressure. 

Figure 3 shows the plots of the flow variables against 

cycle phase. SUPG are shown to agree well with the 

numerical data reported in [3]. With this validation we 

proceed to study the effect of the geometry of the 

stenosis to the flow characteristics in the next section. 

 

 
(a) Minimum Cross Sectional Area 

 
(b) Maximum Speed Index 

 
(c) Average Flow Rate 

Figure 3 Comparison of results between SUPG and [3] for 𝑅𝑑𝑖𝑠 
= 6.1 mmHg/(ml/s) and f =1 Hz, 5 Hz and 10 Hz  

 

 

3.0 RESULTS AND DISCUSSION  
 

3.1 Effect of Geometry of Stenosis 

 

This section aims at investigating the effect of the 

geometry of stenosis to the flow characteristics and 

vessel collapse conditions. For this purpose, a 

hypothetical irregular shape of the stenosis is 

considered. The separation length of the stenosis is 

taken as 3𝐷0. The irregular shape function, 𝜆𝐴(𝑥) and 

the stiffness variation, 𝜆𝐾(𝑥)  of the blood vessel are 

respectively given in equation (45) and equation (46). 
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𝜆𝐴(𝑥) =

{
  
 

  
 

1,

1 − 𝜆𝐴𝑜 (
43

100
sin2 [𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] +
9

13
 sin2 [

9

2
𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)]) ,

1 −
43

100
𝜆𝐴𝑜 sin

2 [𝜋 (
𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] ,

1,

 

 
𝑥 < 𝑥𝑠

𝑥𝑠 <  𝑥 < 𝑥𝐸 − 0.3𝐷𝑜

𝑥𝑠 <  𝑥 < 𝑥𝐸

𝑥 > 𝑥𝐸

 
(45) 

𝜆𝐾(𝑥) =

{
 
 
 
 

 
 
 
 

1,

1 + 𝜆𝐾𝑜 (
43

100
sin2 [𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] +
9

13
 sin2 [

9

2
𝜋 (

𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)]) ,

1 +
43

100
𝜆𝐾𝑜 sin

2 [𝜋 (
𝑥 − 𝑥𝑠
𝑥𝐸 − 𝑥𝑠

)] ,

1,

 

 
𝑥 < 𝑥𝑠

𝑥𝑠 <  𝑥 < 𝑥𝐸 − 0.3𝐷𝑜

𝑥𝑠 <  𝑥 < 𝑥𝐸

𝑥 > 𝑥𝐸

 
(46) 

 

 

The baseline settings are, 𝜆𝐴𝑜  = 85%, 𝜆𝐾𝑜  = 10 and 

𝑃1= 100 mmHg. Cross sectional area along the vessel 

employing the shape function given by equation (42) 

is plotted in Figure 4 together with the smooth shape 

of equation (36). The minimum cross sectional area for 

smooth and irregular stenosis are 4.24 mm2 and 4.41 

mm2, respectively which are located at 
𝑥

𝐷𝑜
= 2 

and  
𝑥

𝐷𝑜
= 2.14 , respectively. These cross sectional 

areas are also referred as no-flow minimum cross 

sectional areas. No-flow refers to the flow not driven 

by pressure gradient i.e. 𝑃1 = 𝑃2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 The initial cross sectional area for smooth and 

irregular stenosis with 𝜆𝐴𝑜 = 85% 

 

 

3.1.1 Steady Solutions 
 

Distal pressure, 𝑃2 is varied so as to observe the effects 

of geometry to the flow characteristics. Figures 5 and 

6 show the results for three distal pressures; 47 mmHg, 

55 mmHg and 65mmHg for smooth and irregular 

stenosis, respectively. The general trend is that the 

increase in the pressure gradient increases the speed 

of the flow (represented by the increased in speed 

index, S) and reduces the pressure inside the throat. 

For all conditions, flow is subcritical (i.e. S < 1) except 

for the case of irregular stenosis having distal pressure 

of 47 mmHg. In this case, the flow reaches supercritical 

and the corresponding pressure inside the throat 

becomes negative. The latter indicates the collapse 

of the vessel. 

 

(a) Cross Sectional Area 

 

(b) Pressure 

 

(c) Speed Index 

Figure 5 Effect of distal pressure in smooth stenosis 
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(a) Cross Sectional Area 

 

(b) Pressure 

 

(c) Speed Index 

Figure 6 Effect of distal pressure in irregular stenosis 

 

 

Figure 7 shows the results for other distal pressures 

given in the form of flow variables against pressure 

gradient, (𝑃1 − 𝑃2)  mmHg. Continuous reduction in 

cross sectional area is observed in 7(a) for both 

smooth and irregular stenosis as the pressure gradient 

increases. Whilst the curve for smooth stenosis never 

passes its no-flow minimum cross-sectional area line, 

the irregular stenosis passes its line indicating collapse 

phenomenon. Similar trend is observed in 7(b) where 

the pressure curve of the irregular stenosis passes the 

x-axis and changes sign from positive to negative 

when smooth stenosis curve does not despite both are 

reducing. Inverse trend is observed in 7(c) where 

speed index increases with the increase in pressure 

gradient. However, flow in smooth stenosis remains 

subcritical.  

 

(a) Minimum Cross Sectional Area 

 

(b) Pressure 

 

(c) Speed Index 

Figure 7 Plots of flow variables against pressure gradient 

 

 

For irregular stenosis, supercritical flow is attained at 

pressure gradient of about 52 mmHg and beyond. For 

future reference, several numerical values of the flow 

variables are given in Tables 2 and 3 for smooth and 

irregular stenosis, respectively, taken at the location of 

the no-flow minimum cross-sectional areas. 
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Table 2 Numerical values of flow variables for smooth stenosis 

taken at 𝑥/𝐷𝑜 =  2 

 

𝑷𝟐 (mmHg) 𝑨 (mm2) 𝑷(mmHg) 𝑺 

46 5.07 29.28 0.63 

47 5.11 31.71 0.60 

49 5.19 36.23 0.54 

51 5.26 40.41 0.50 

52 5.29 42.38 0.48 

53 5.32 44.28 0.46 

55 5.37 47.95 0.43 

60 5.48 56.36 0.36 

65 5.57 64.02 0.30 

 

Table 3 Numerical values of flow variables for irregular 

stenosis taken at 𝑥/𝐷𝑜 =  2.14 

 

𝑷𝟐 (mmHg) 𝑨 (mm2) 𝑷(mmHg) 𝑺 

46 2.97 -26.73 2.21 

47 3.71 -12.66 1.96 

49 5.01 17.61 0.80 

51 5.21 26.38 0.66 

52 5.28 29.78 0.62 

53 5.34 32.85 0.58 

55 5.44 38.39 0.52 

60 5.61 50.07 0.41 

65 5.74 60.07 0.33 

 

 

3.1.2 Unsteady Solutions 

 

By imposing a time varying inlet pressure given by 

equation (42), we can observe the pulsatile behavior 

of the flow variables over time (or cycle phase). For 

this purpose, a frequency of 10 Hz is chosen and two 

initial conditions are selected for comparison. These 

are the data obtained from steady cases of 51 mmHg 

and 52 mmHg distal pressures. The former results in a 

distal resistance of 2.87 mmHg/(ml/s) for smooth 

stenosis and 2.55 mmHg/(ml/s) for irregular stenosis 

whilst the latter gives 2.97 mmHg/(ml/s) and 2.65 

mmHg/(ml/s), respectively. Accordingly, these distal 

resistances and venous pressure of 3 mmHg are used 

in equation (43) for the determination of the outlet 

pressure. Figure 8 shows the plots of the flow variables 

against cycle phase. 8(a) shows that irregular stenosis 

is more deformable than the smooth stenosis as the 

cross sectional area fluctuation over the phase of the 

former is larger for a given initial condition. Such a 

larger fluctuation is also seen for other flow variables.  

Collapse phenomenon is observed for irregular 

stenosis with 51 mmHg initial condition. Its cross 

sectional area becomes reduced from its no-flow 

minimum cross sectional area (i.e. 4.41 mm2) as the 

phase ranges from 0.08 to 0.32 during which the 

pressure becomes negative. The smallest cross 

sectional area attained by the curve is 4.27 mm2 

occurs at phase 0.17 accompanied by a negative 

pressure of (-) 2.83 mmHg. Although both curves of the 

irregular stenosis start off as supercritical which then 

transit into subcritical flows before half of the cycle (as 

seen in 8(c)), initial condition of 52 mmHg could not 

bring down the pressure to negative values and the 

cross sectional area to be less than the no-flow 

minimum cross sectional area. This highlights that a 

supercritical flow is necessary but not sufficient for a 

vessel collapse.  

As in the steady case, no collapse phenomenon is 

observed for the smooth stenosis. Regardless of the 

initial conditions, the smallest cross sectional area and 

lowest pressure attained by the smooth stenosis is 4.8 

mm2 and 15 mmHg respectively, attained at the 

beginning of the cycle. The former is well above the 

no-flow minimum cross sectional area of 4.24 mm2 and 

latter is far from becoming negative. The highest 

speed index is 0.95 just below the critical point. Flow in 

smooth stenosis is always subcritical.   

 

 

(a) Minimum cross sectional area 

 

(b) Minimum pressure 

 

(c) Maximum speed index 

Figure 8 Unsteady solutions for smooth stenosis 
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4.0 CONCLUSION 

 

In this study, we have stabilized the solutions of an 

unsteady blood flow in stenosis from spurious 

oscillations by employing SUPG formulation. Our 

formulation has the advantage of allowing the 

interaction between the cross-sectional area, the 

volumetric flow rate and the pressure of the flow 

despite being one-dimensional. With such an 

advantage, we study the effect of the geometrical 

representation of the stenosis on the numerical 

solutions by comparing the results between a 

hypothetical irregular stenosis with a smooth stenosis 

under the same baseline conditions. After studying 

both steady and unsteady cases, we found that there 

are conditions when the two geometrical 

representations of the stenosis yield different flow 

characteristics. This, thus, highlights the importance of 

representing the shape of the stenosis as close as 

possible to render key information of the blood flow in 

during the modelling.  
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