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Abstract 
 

Data centers are constantly growing and evolving in number and complexity due to 

increasing demand for Internet-based services. As a result, energy consumption in 

data centers has increased significantly in recent years, which has become a critical 

concern for IT enterprises and governments because of high operational costs and 

negative environmental impact. Therefore, green solutions are needed to integrate 

the use of renewable energy with the development of reduction strategies in energy 

consumption. In this study, we investigated the performance of a system that can 

simulate a data center constrained by service-level agreements, energy 

consumption, power generation, and non-exponentially distributed service times. A 

discrete event simulation, an optimization model, and a forecasting method were 

integrated into the system's architecture to analyze performance when facing 

different scenarios with several changes in the system's characteristics. We conducted 

a survey on energy trading, considering that renewable energy generators were 

incorporated into the algorithm to determine the interaction between data centers 

and smart grids. The experimental results demonstrate that the proposed system has 

great potential in improving energy efficiency under different operating conditions in 

the data centers.  
 

Keywords: Energy efficiency, resource management, data center, smart grid, 

renewable energy 
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1.0  INTRODUCTION 
 

Cloud computing environments are based on the 

performance of several large-scale data centers 

that simultaneously provide different kinds of services 

to millions of customers. It has become a necessity in 

conducting our daily activities, for instance, services, 

like commerce, education, business, social 

networking, communication services, and others are 

related to data centers. Due to the use of Internet-

based services, the information technology (IT) 

infrastructure is a demanding topic. As a result, 

managing data centers has become an important 

issue involving several areas, such as energy 

consumption and production, IT performance, and 

cooling [1]. 

In recent years, the number of data centers has 

grown considerably; likewise, data capacity has 

been modified to constantly handle new 

requirements, for example, Google quadrupled the 

number of servers in the 2000-2010 period to support 

the operation of Google searches, YouTube viewing, 

Gmail messaging [2]. Nonetheless, this trend 

negatively affects the environment; it has generated 

a high carbon footprint derived from CO2 emissions 

produced by data centers. These environmental 

concerns have triggered green initiatives worldwide, 

one of the sustainable solutions that apply to this 

case is the integration of renewable energy to 

reduce energy dependency on the grid and 

emissions. Currently, wind and solar power are the 

sources to energize small and medium data centers 
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[3], even big companies are pointing in this 

direction; for instance, Apple and McGraw-Hill have 

implemented solar arrays for some of their data 

centers recently built. On the other hand, Google is 

taking advantage of the geographic location of its 

data center in Hamina-Finland, which uses a cooling 

system based on seawater supplied from the bay.  

Similarly, high energy consumption by data 

centers concerns IT enterprises and governments. It is 

estimated that data centers consumed 

approximately 1.5% of all electricity worldwide in 

2011 [4] because of continuous operation 

throughout the year. In fact, a cooling system can 

consume up to 50% of total energy [5]. It is also 

important to consider that most data centers have 

been designed based on the worst-case scenario 

and so one consequence is the oversize of the 

components that make them inefficient systems with 

high operating costs. In the past decade, power 

consumption of data centers worldwide rose from 70 

billion to 330 billion kWh and this value is projected to 

increase to more than triple by 2020 [6], which 

represents a significant economic investment for 

different companies in this sector and demonstrates 

the importance of efficiency in the operation of 

data centers. 

There are two methods to reducing energy 

consumption in data centers. The first method is to 

relocate the data centers to areas with cold 

climate, so thousands of servers can be cooled by 

using a smaller amount of cooling equipment. For 

example, Facebook recently built a data center at 

the edge of the Arctic Circle in Sweden, which uses 

outside air for cooling instead of air conditioning [2]. 

The second method consists in developing 

algorithms that operates within the data centers to 

allow servers to improve their performance by 

reducing power consumption [7].  

Modern data centers must be eco-friendly and 

manage energy consumption from technical and 

economic perspectives. As a new trend has been 

reported the use of green data centers which work 

on a smart grid environment [1]. A smart grid uses an 

electrical grid including energy-efficient resources, 

and renewable energy resources (mainly wind 

power and solar power). Renewable energy 

generation is highly variable and needs 

sophisticated control systems to achieve reliability 

and efficiency. On the other hand, the workloads of 

large-scale data centers are also variable, we 

believe that coordinated resource management 

and energy management approach could help 

data centers to use renewable energy more 

effectively. 

This paper presents an integrated set of discrete-

event simulation, nonlinear optimization, and 

forecasting used to analyze several aspects 

involving data center integration with smart grids 

environments. For the resource allocation algorithm, 

the principle of operation is similar to one reported in 

[8, 9]. The aspect of power consumption caused by 

IT and cooling infrastructure was evaluated due to 

the great importance of data center management, 

as discussed in [10, 11]; therefore, two scenarios 

were created in two different geographic locations 

with different atmospheric conditions, to determine 

how to affect power consumption in data centers. 

Integration of data centers and smart grids was also 

considered in the algorithm, incorporating the use of 

renewable energy generators [12, 13], by focusing 

on energy trading with the grid. The results showed a 

trade-off between service level agreement (SLA) 

fulfillment, turning on servers, and selling generated 

energy. This trade-off depends on parameters, like 

energy selling prices, generator capacity, and 

power consumption of the cooling infrastructure. 

There is a great potential in considering 

integrated management of IT systems, cooling, and 

energy in data centers. Creating this integrated 

solution is the aim of this paper. Particularly, the 

solution focuses on optimizing the workload 

management by integrating the supply of 

renewable energy, dynamic prices of renewable 

and non-renewable energy, and the supply of 

cooling to improve the power efficiency of the data 

center. An important aspect of our work is the 

change of the demand and the allocation of IT 

resources within the data center, considering the 

generation and use of renewable and 

nonrenewable energy according to its availability 

and cooling efficiency. A contribution considered in 

this work is the addition of a detailed cost model to 

the optimization problem contemplating the use of 

nonrenewable energy. To validate our model, 

several experiments were conducted to highlight the 

practicality of the approach used. 
 

 

2.0  METHODOLOGY 
 

The proposed model was developed on an 

application-based architecture with multiple tiers, 

where three types of servers were allocated in 

clusters, to respond to specific requests from 

different kinds of clients [14]. Hence, the data center 

model used was structured in three clusters, where 

servers performed various tasks (the web, database, 

and application services), as shown in Figure 1. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1 Data center model based on an application multi-

tier architecture including web, database and application 

services 



15                                  Sergio Mora Martinez et al. / Jurnal Teknologi (Sciences & Engineering) 82:3 (2020) 13–23 

 

 

The simulation model included power generation for 

the data center and a cooling method. The cooling 

method considered in this work, referred to as 

outside air temperature (OAT) cooling [15], uses the 

difference between the inside temperature     of the 

data center and the outside temperature      of the 

place where the data center is located  In OAT 

cooling, outside cold air is directed into the data 

center using air-side economizer to cool down 

servers [16]   so the data center uses OAT cooling 

when         . According to this method, when the 

outside air temperature decreases, high energy 

efficiency of the cooling system is obtained, resulting 

in lower energy consumption related to cooling. 

Other cooling methods exist that contemplate 

distinct variations between the temperature inside 

and outside the data center [17]  Regarding power 

generation, the model included renewable and 

non-renewable generation, in order to decide on 

the best selling price for both. The model was 

implemented in a discrete-event simulation, which 

was used to evaluate the results obtained from the 

optimization algorithm and to achieve more realistic 

results than the ones given by the algorithm. 

The model depicted in Figure 1 was analyzed as 

a queuing network with a total number of    servers, 

where a dispatcher was located at the entrance of 

the data center, assigning each request to its 

corresponding cluster. As soon as the request leaves 

the cluster, it could go to another cluster, or it could 

leave the data center. These decisions depend on 

routing probabilities among clusters. Figure 2 shows 

the architecture of the simulation model.  

 

 
 

Figure 2 Data center model used in the simulation 

 

 

Dispatcher performance (assuming inter-arrival 

and service times exponentially distributed) was 

considered as a       queue and each cluster was 

designated as a       queue with              , 

or    , where      is the number of servers in the 

web cluster,      is the number of servers in the 

application cluster, and     is the number of servers 

in the database cluster. The simulation was 

conducted according to the model explained 

above with support from the stochastic simulation in 

Java (SSJ) library [18]   

To achieve an actual approximation of the 

dynamics of a data center, a real trace was 

analyzed to obtain arrival and service rates. Full 

information on a particular day, containing 

approximately 15.000 logs during the day, was taken 

and separated at 2-hour intervals [19]  Table 1 

presents these variations of arrival and service rates 

during the day considered. 
 
Table 1 Arrival and service request rate during a particular 

day in the studied trace 

 

Hour 

(Interval) 

Arrival rate 

(requests/min) 

Service rate 

(requests/min) 

0-2 8.40 0.153 

2-4 10.90 0.151 

4-6 9.31 0.190 

6-8 8.87 0.210 

8-10 10.68 0.228 

10-12 8.25 0.196 

12-14 8.89 0.200 

14-16 8.98 0.180 

16-18 9.03 0.183 

18-20 9.97 0.209 

20-22 8.62 0.192 

22-24 9.68 0.200 

Minimum 8.25 0.151 

Maximum 10.90 0.228 

 

 

An optimization model that integrates data 

center performance and some features involving a 

smart grid environment was developed. This model 

can be executed dynamically, meaning that in 

each interval of time, the results are updated 

according to the variations of the problem inputs. 

Because of this, time was divided into   intervals and 

the optimization problem was defined for each 

interval   of time (         ). Hence, three aspects 

were considered in the optimization model: First, it 

was the SLA fulfillment between the data center and 

several types of clients with day. Second, the power 

consumption in the data center was considered, 

which was separated between server power 

consumption and cooling power consumption. The 

last consideration was the different types of power 

generation in the data center and the transactions 

that can be done with this energy. 

The whole system consisted of three main 

modules. The forecaster was used to predict the 

behavior of several parameters involved in the 

optimization model. Then, the optimization algorithm 

was executed to obtain the optimal resource 

allocation of the data center for the new interval. 

Additionally, the optimization algorithm achieves the 

best energy management configuration for the new 

interval. The simulation was used to evaluate the 

performance of the data center specifically in terms 

of average response time per type of client, using 
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the optimal server allocation. This process is depicted 

in Figure 3. 

 

 
 

Figure 3 Module integration when a time interval ends, and 

the other begins 

 

 

2.1 SLAs Fulfillment 

 

The performance metric evaluated in this model was 

the average response time in the data center for 

each type of client. Assuming    types of clients that 

entered a service level agreement (          ), 

each was assigned a cost function that depends on 

the average response time. Additionally, the 

average response time depends on the number of 

servers allocated to each cluster. The expression to 

be used to calculate the average response time for 

multi-server queues is not closed, which adds to a 

high level of complexity to find solutions to the 

objective function of the optimization problem. 

Hence, the following simplification was performed in 

the optimization model: each cluster was 

designated as a group of independent servers 

(      queues) with the same arrival rate, which is 

the effective arrival rate to the cluster divided by the 

number of servers assigned to the cluster. According 

to this, the average number of requests in each 

cluster (for the type of client  ) will be the sum of the 

mean number of requests in each server (in each 

      queue) as shown in Equation (1). 

 

       

  

    
                  

    
  

⁄

 
                             

                
 

The average number of requests in the 

dispatcher         ) was calculated in the same way 

as for one server of one cluster (because the 

dispatcher is an       queue) as: 

 

        
     

       
           

  

     
                                     

In the Equations (1), (2),   is the server service rate for 

a request (assuming        ) and each arrival rate 

is the effective arrival rate to each station, 

calculated assuming that the system itself is a 

Jackson network. A Jackson network is a set of 

queues (now named stations) with different routing 

probabilities, given by a route matrix   (each type of 

client has a different matrix) with the form, 

 

  

[
 
 
 
 
                           

                  

                 

                ]
 
 
 
 

 

 

This matrix was used to obtain the effective 

arrival rates to each station. By using these arrival 

rates, it was possible to collect performance metrics 

for each station and, therefore, obtaining 

performance metrics for the whole network. The 

vector  ̂ containing the effective arrival rates to 

each station was computed, as shown in Equation 

(3). 

 

 ̂                                   
 

I corresponds to the identity matrix. The vector λ 

contains the external arrival rates to each station. For 

this model, this vector has zero values except in its 

first position, which is the arrival requests rate to the 

data center. By using the effective arrival rates to 

each station, it is possible to calculate the average 

number of requests for each station, while taking into 

account the specific expressions for each queuing 

system. The average number of request in the system 

   was computed by adding each value of the 

mean number of requests in each station, as shown 

in Equation (4). 

 
                                                      

 

Finally, the average response time in the system 

(     ) was calculated by using Little's law, which 

divides the average number of requests in the 

system by the arrival requests rate to the network, as 

shown in Equation (5). 

      
  

  
                             

 

There are    different average response times, 

all depending on three decision variables: the 

number of servers in the web cluster (    ), the 

number of servers in the application cluster (    ) 

and the number of servers in the database cluster 

(   ). Similarly, each average response time has a 

cost function associated. For a type of client  , the 

cost function was performed as a linear function with 

a positive slope as average response time increases 

[8]. 

If the data center performance can guarantee 

that the average response time for a type of client   
in the interval   is lower than the critical time   , there 

will be no penalty incurred and the data center will 

receive a benefit   , as shown in Equation (6). 
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However, if the average response time exceeds the 

critical time, the data center must pay a penalty 

that increases proportionally with the penalty slope 

  . 

 

     {

                                            

 
  (        )                     

                             

 

2.2 Power Consumption 

 

As stated above, the power consumption in the 

data center mainly depends on how many servers 

are working in each interval of time and how much 

energy it takes to cool down these devices. 

Assuming that each server consumes       amount 

of energy in one-time interval, the server's power 

consumption is defined as: 

 

     (                   )                                      

 

Where                     corresponds to web, 

application and database servers working in each 

interval of time. 

The power consumption of the cooling devices is 

directly related to the power consumption of IT 

devices. However, this relationship can change 

depending on the type of cooling process used in 

the facility. An outside air cooling method was 

implemented in the data center [11], with power 

consumption represented, as shown in Equation (8). 

 

             
                             

 

Parameter   is proportional to the difference 

between the outside temperature and the inside 

temperature in the facility, 

 

   (
 

        

)                         

 

The inside temperature was established at 35°C, 

whereas the outside temperature depends on the 

geographic location of the data center. The 

parameter   when the temperature is 35°C is 

approximately 0.03 given by [11]. Another important 

issue was to capture the dynamics between turning 

servers on and off for every consecutive interval. The 

process of turning on a server refers to the change 

from an idle state to an active state, the inverse 

process is known as turning off the server. To 

accomplish this goal, new decision variables were 

defined: the number of servers turned on      during 

the interval   and the number of servers turned off 

     related to the number of servers working       

on interval   by Equation (10). 

 
                                                        

 

During each time interval, some servers are 

turned on and off according to the tradeoff 

proposed in the optimization problem and 

complying with the restrictions imposed. The on 

process makes the server have an extra 

consumption of energy in the interval  . Additional 

energy consumption occurs at the start of each 

interval; however, when using a discrete system, an 

increase should be considered during the whole 

interval. Assuming that a server consumes     

amount of energy when turned on, the power 

consumption caused by     servers turned on was 

calculated based on Equation (11).  

 
                                                           

 

Finally, the total power consumption of the 

system during a time interval was defined as the sum 

of the three quantities considered, as shown in 

Equation (12). 

 
                                                                      

 

2.3 Energy Generation 

 

This model involved two different types of power 

generation: renewable and non-renewable. This 

separation was performed because of different 

processes and costs associated with each type of 

power generation, which allows determining the 

best selling price of power generated by both 

methods. Because the data center uses renewable 

and nonrenewable energy for its operation, during 

an interval t, the use of one or both types of energy 

can be lower than the installed generation 

capacity. Variables required to define the 

optimization problem are listed ahead (at interval 

time  ): 
 

    : Renewable energy generated. 

    : Selling price of renewable energy 

     : Selling price of non-renewable energy  

       : Grid energy cost. 

     : Non-renewable generation capacity. 

 

The optimization program included the decision 

variables listed as follows: 

 

     : Renewable energy sold. 

      : Non-renewable energy sold. 

     : Non-renewable energy not sold. 

       : Energy taken from the grid. 

 

The following optimization problem was 

formulated to guide the proposed non-linear 

program to manage the resource allocation of an 

energy-efficient data center in a smart grid 

environment. We focus on minimizing power 

consumption to reduce the environmental impact 

while satisfying the clients' SLAs. 
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This optimization problem is nonlinear because 

of the expression for the average response time and 

the expression of the cooling method consumption. 

The objective function focused on the costs incurred 

in the data center, both for performance and power 

consumption. Also, in case the energy generated 

could be sold the possible benefits were included. 

 

2.4 Forecasting of Time Series 

 

Several parameters needed to be forecasted upon 

solving the optimization problem, given their actual 

values are only known during the corresponding 

time interval, but the planning decisions must be 

addressed in advance. These included the energy 

grid price, the renewable energy generated, and 

the generated energy sale price. According to this, it 

was necessary to use a method for these time series 

to predict their behavior for the next interval of time. 

The exponential smoothing method was 

implemented, which is a widely used forecasting 

technique based on assigning weights to different 

observations of the time series   , where the newer 

observations get more weight than the older ones 

[20]. When the time series presents a seasonality 

behavior (with a seasonality period of duration  ), 

the method learns about the prediction by using this 

feature of the series. To accomplish this forecasting 

process with seasonality behavior, the method uses 

two parameters:    and   , which were computed 

by using Equation (13), (14), as stated in [21] where 

       , 

 

    
  

    
                             

 

    
  
  

                                 

 

The prediction      for the next time interval is 

expressed regarding these two parameters as, 

 
                                             

 

It is important to mention that, depending on the 

values of   and  , it is possible to obtain a better 

prediction of the time series. These values should be 

chosen to minimize the mean squared error [22] to 

achieve more realistic results when the optimization 

is executed. Finally, a good way to initialize the first   

values of    and the value    is shown in Equation 

(16), (17). 

 

   
 

 
                                

 

   
  
  

                                      

 

The first   values of the time series    need to be 

known ahead of time to initialize the forecasting 

parameters. 

 

 

3.0 RESULTS AND DISCUSSION 
 

To evaluate the performance of the proposed 

system, a base scenario was created with four types 

of clients and four routing matrices, which were 

chosen randomly: 

 

   [

        
    
        
      

]        [

        
      
        
      

] 

 

   [

          
    
    
      

]         [

          
    
    
    

] 

 

Four clients were chosen considering that the 

number is enough to note the behavior of different 

effective arrival rates within the system. However, the 

proposed system has the capacity of being scalable 

and it may work with a higher number of clients. 

There is no limit to the number of clients that the 

system can hold, nonetheless, the models of queues 

might get saturated causing inaccuracies on the 

results of the optimization model. An appropriate IT 

equipment would allow working with a higher 

number of clients.   

The cost function parameters for each type of 

client are shown in Table 2. These parameters were 

selected to assign the same weight to SLA fulfillment 

and power consumption costs. The currency used in 

costs was the Colombian peso (COP), to be 

consistent with the geographical location of the 

scenarios. Also, the base scenario included the 

following features: 

 

 Dispatcher service rate: 6000 requests/min. 

 Server service rate: 0.228 requests/min. 

 Total number of servers: 500. 

 

 

 

 

 



19                                  Sergio Mora Martinez et al. / Jurnal Teknologi (Sciences & Engineering) 82:3 (2020) 13–23 

 

 

Table 2 Cost function parameters for each type of client 

 

Type of 

Client 

b (COP) m(COP/s)       

1 2000 2000 520 

2 3000 1000 530 

3 1000 5000 228 

4 5000 1000 200 

 
 

Both service and arrival rates (for each type of 

client) were taken according to the results obtained 

for the Google trace analyzed [19]. Regarding 

energy generation, the following parameters were 

considered in the base scenario: 

 

 Non-renewable generator: 1000 kW diesel 

generator. 

 Renewable generation: 1000 kW solar array 

and 850 kW wind generator. We assumed 

the generator is located in the city of 

Barranquilla-Colombia, specifically in Las 

Flores. This assumption was made to provide 

accurate data on wind speed because the 

power generated by a wind generator is 

directly proportional to wind speed. 

 Purchase price of electricity (market price): 

taken from April 4 to April 7 (2017) with hourly 

resolution [23]. 

 Renewable energy selling price: 12.5% less 

than the purchase price of energy. 

 Non-renewable energy sale price: 6.25% less 

than the purchase price of energy. 

 

The reduction percentages of the selling price of 

generated energy were assigned based on the 

information by [24]. However, given that operation 

and maintenance costs of renewable energy are 

higher, the reduction of its selling price is bigger.  

The parameters related to power consumption 

were as follows: 

 

 Energy consumption of a server when it is 

switched on: 0.45 kWh. Energy consumption 

of a server working: 0.4 kWh [25]. The 

difference in energy consumption between 

a server that has just been turned on and 

one that was already operating is of 0.05 

kWh. 

 Difference between external and internal 

temperature: 7°C (assuming an average 

external temperature of 28°C); this value is 

necessary to obtain the energy 

consumption of the cooling infrastructure. 

 

The system was tested by simulating a complete 

day divided into 1-hour intervals. In every interval, 

the forecaster was used to predict energy prices, 

renewable generation, and client arrival rates; 

thereafter, these predictions were used to execute 

the optimization algorithm (at every interval) that 

determines the number of servers to assign to each 

cluster and the values of the other decision 

variables. 

Figure 4 shows the cost of the objective function 

during the day. There is a difference between the 

results of the optimization algorithm and the 

simulation, which was caused by two aspects. First, 

the simplification of the calculation of the average 

response time is always an upper bound on the 

actual average response time given by an       

queue. This statement is true because the main 

assumption for the simplified model is that servers 

belonging to a cluster divide their workload equally 

and work independently. This is not the case of a 

      queue where the system dynamically 

distributes the workload among servers, making 

them better exploit resources. The second aspect is 

related to the forecasting method because the 

forecaster cannot predict with 100% accuracy; thus, 

there will be minor errors in the optimization 

algorithm compared to the real data of the time 

series used to obtain the costs of the objective 

function in the simulation. The mean absolute error 

was obtained for the forecasting method, and it 

always was lower than 13.5%.  
 

 
 
Figure 4 Objective function costs for the optimization 

algorithm and simulation during the day of simulation 

 

 

The number of servers allocated to each cluster 

during the day is depicted in Figure 5. It is worth 

mentioning that the optimization algorithm does not 

turn on all servers at any hour of the day, as shown in 

Figure 5, because it generates a higher costs due to 

power consumption, even though the data center 

has to assume an SLA violation penalty. Likewise, by 

having a number of servers turned off, the data 

center obtains a surplus of generated energy, which 

can be sold. The optimization algorithm chooses to 

sell non-renewable energy because it is more 

profitable (its selling price is greater than the 

renewable energy sale price). 
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Figure 5 (a) Number of servers allocated to each cluster, 

(b) Number of servers turned on and turned off 

 
 

Figures 6, 7, and 8 show the differences between 

the values predicted and the actual observations for 

all the forecasted time series. The values of   and    

were chosen to be the same for all series (0.5) [26]. In 

effect, the performance of the forecasting method is 

adequate to obtain well-predicted data. However, 

this performance could be damaged if the time 

series presents abrupt changes during the day. To 

improve the performance of the forecasting 

method, it is possible to assign the values of   and β 

that minimize the mean squared error in each of the 

time series used. 

 

 
Figure 6 Comparison between the real time series of the 

arrival requests rate for each type of client and the results 

of its prediction 
 

 
Figure 7 (a) Comparison between the real-time series and 

its prediction for the renewable energy generated using 

solar and (b) wind generators 

 
 

Several experiments were conducted to 

evaluate data center performance when 

encountering changes in various parameters.  

 

Experiment 1: This experiment changed the 

geographic location of the data center to Bogotá-

Colombia because the outside temperature is lower 

in Bogotá than in Barranquilla, the OAT cooling 

method would be more efficient regarding power 

consumption. If the power consumed by the cooling 

infrastructure is reduced, it could be possible to turn 

on more servers because, as seen in the base 

scenario, surplus energy was generated. If this surplus 

is used to provide energy to new servers, there will 

be no grid power cost. 
 

 
Figure 8 (a) Comparison between the real-time series and 

its prediction for the renewable energy selling price, (b) the 

non-renewable energy selling price, and (c) the grid 

energy cost 
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In fact, Figure 9 shows the new resource allocation 

for this scenario, indicating that most of the time all 

the servers are on. Also, if the geographic location is 

changed, there is a change in renewable energy 

generated. In this experiment, wind and solar 

capacity were reduced to consider the geographic 

change. Figure 10 shows the total reduction of 

power taken from the grid compared to the base 

scenario. The peak energy values for both scenarios 

have differences of almost 50%; this suggests that the 

geographic location change saves nearly half the 

energy taken from the grid when the data center is 

using an OAT cooling method. 
 

 
Figure 9 (a) Number of servers allocated in each cluster, (b) 

Number of servers turned on and turned off, when the data 

center location is changed to Bogotá 
 

 
Figure 10 Reduction of the energy taken from the grid 

when the data center location changes 
 

 

Experiment 2: We reduced by half the capacity 

of all renewable and non-renewable generators to 

determine if the optimization algorithm would 

change its resource allocation policy. In effect, the 

number of servers turned on was less than the results 

from Figure 9, while quite similar to those shown in 

Figure 5. The number of servers turned on depends 

on the installed capacity of generators. 

Experiment 3: A sensitivity analysis on the energy 

selling price of renewable and non-renewable 

energy was conducted. We did 16 runs of the 

scenario with different values of this price based on 

a reduction percentage of the energy grid cost. 

Table 3 shows the results of this sensitivity analysis, 

where each cell is the average benefit on the day 

when the renewable energy selling price,   , and the 

non-renewable energy sale price,    , are reduced 

by those percentages. 

 
Table 3 Average day benefit when selling generated 

energy. The energy selling price is chosen by reducing the 

power grid costs by the percentages above 
 

                 

 25% 12.5% 4% 1% 

   25% $8330.23 $9750.2 $12090.3 $13341.01 

   12.5% $9431.8 $9750.2 $12090.3 $13341.01 

   4% $11014.4 $11014.4 $12090.3 $13341.01 

   1% $13216.8 $13216.8 $13478.5 $14583.9 

 

 

As a result, the lower the gap between the 

selling price and the energy grid cost, the better the 

benefit because it becomes more attractive to sell 

energy; this is why the best energy sale price for both 

types of generation is 1% above the energy cost. 

With these results, the data center could aim to 

reduce energy production costs to obtain better 

profits when energy is sold. 

 

Experiment 4: Another aspect evaluated was the 

effect of abrupt changes in the forecasted data. 

Figure 11 shows this effect on the arrival requests rate 

for client 2. Indeed, the forecast fails to accurately 

predict some points of the day and this makes the 

optimization algorithm provide a solution that is not 

necessarily the best. In fact, the average cost of the 

objective function during the day is 20.83% greater in 

this case than with the new geographic location, this 

increased cost is caused because the forecaster 

predicts lower arrival rates for client 2, causing the 

optimization model to assign a lower number of 

servers and increasing penalties in SLAs. 
 

 
Figure 11 Comparison between the real-time series and its 

prediction for the arrival request rate of client 2 when there 

are abrupt variations in the data 
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Experiment 5: The average solving time of the 

optimization algorithm was estimated as a function 

of the data center size. By increasing the total 

number of servers in the data center, we also 

increased the SLA penalties and the input demand 

of each type of client to keep the same order of 

magnitude. As shown in Figure 12, the average 

solving time increases with the number of servers. 

However, this increase only gets a big difference 

when the data center has more than 104 servers. If 

we assume that each interval the algorithm requires 

this average time to solve itself, the simulation will 

take approximately   times this average time to 

complete. Thus, for a data center of 105 servers, 

results will be given in approximately 1.5 min (without 

taking into account simulation and forecasting). The 

total execution time of the system (including 

forecasting and simulation) with our configuration of 

clients and servers is approximately 12 minutes, 

which is faster than the one reported by [8], that 

exceeds 30 minutes. 

 

 
Figure 12 Average solving time of the optimization 

algorithm in function of the data center size 

 

 

4.0 CONCLUSION 
 

This work presents an integrated workload 

management system for data centers constrained 

by service level agreements, power consumption, 

and energy generation. Additionally, other factors 

were considered in the integration between data 

centers and smart grids. Such as electricity price, 

cooling, and the availability of renewable energy. 

The proposed system simulates the performance of 

the data center using a forecasting method, and an 

optimization model that involves all the variables 

mentioned before. To ensure an actual 

approximation of the dynamics of a data center, a 

real trace was analyzed to obtain arrival and service 

times. 

A base scenario was developed and used to 

study the effects of different operating conditions on 

the system's performance; the behavior of energy 

trading with the grid was also determined from these 

experiments. An OAT cooling method was 

implemented in the facility; thus, allowing to 

determine that the geographic location is critical in 

the total power consumption, particularly in cold 

places where it generates the possibility of 

increasing considerably the number of servers turned 

on. When the data center location was changed to 

Bogotá, the total energy consumption from the grid 

where almost 50% (peak value) less than the base 

scenario (with the location in Barranquilla). Because 

of this reduction, the number of servers turned on 

increased to almost the total number of servers in 

the place. Although the data center could turn on 

more servers (between 10-15 hours) since there was 

a surplus of generated energy, the optimization 

algorithm decided to sell this energy using the best-

selling price, which was for non-renewable energy. 

Also, a trade-off was noticed between power 

consumption and service level agreements, even 

though the data center had the possibility of 

keeping all the servers on, it kept some of them off.  

A sensitivity analysis was applied to the selling 

prices of energy generated; the results showed that 

the highest average benefit during a day was 

achieved when there was a small difference 

between the selling price and the energy grid cost. 

This would lead the data center to implement 

policies to reduce operating costs of generation to 

obtain higher utility.  

The results obtained from the optimization model 

and the simulation presented differences due mainly 

to the simplifications made to the average response 

time calculation in the optimization algorithm; thus, 

the simulation provided results close to reality 

regarding costs for the objective function. The 

forecasting method presented an odd behavior 

when the input time series had abrupt changes 

because it calculated a lower value than the actual 

data, which causes increased SLA penalties.  

A limitation of this work is the calculation of the 

average response time in the optimization model 

because it is not done independently of the 

probability density of the parameters. This could be 

achieved by generating a function based on a 

multivariable regression because the average 

response time depends on the number of servers in 

each cluster and the arrival rates of each type of 

client. In terms of the simulation model, it could 

include other aspects of the data center dynamics 

such as server virtualization, and taking advantage 

of its discrete-event condition, it could consider 

power grid failures and the response of the data 

center generators. 

Finally, the results of the study demonstrate that 

the proposed system has a great potential for 

improving energy efficiency under different 

operating conditions in the data centers. Future work 

complementing the study presented in this paper 

consists of contemplating different cooling schemes, 

and on analyzing the impact of workload 

management in the size of renewable and IT 

infrastructure.    
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