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Abstract 
 

Efficient monitoring of highly complex process industries is essential for better 

management, safer operations and high-quality production. Timely detection of 

various faults helps to improve the performance of the complex industries, prevent 

various unfavorable consequences and reduce the maintenance cost. Fault 

Detection and Diagnosis (FDD) for process monitoring and control has been an 

active field of research for the past two decades. Distillation columns are inherently 

nonlinear, and thus to have an accurate and robust performance, the fault 

detection methods should be based on nonlinear dynamic methods. The paper 

presents a robust data-driven fault detection approach for realistic tray upsets in the 

distillation column. The detection of tray faults in the distillation column is conducted 

by Nonlinear AutoRegressive with eXogenous Input (NARX) network with Tapped 

Delay Lines (TDL). Aspen Plus® Dynamic simulation has been used to generate normal 

and faulty datasets. The study shows that the proposed method can be used for the 

detection of tray faults in distillation column for dynamic process monitoring. The 

performance of the proposed method has been evaluated by the Missed Detection 

Rate (MDR) and the Detection Delay (DD). 

 

Keywords: NARX network, data driven, fault detection, distillation column, Aspen Plus 

 

Abstrak 
 

Pemantauan cekap industri proses yang sangat kompleks adalah penting untuk 

pengurusan yang lebih baik, operasi yang lebih selamat dan pengeluaran berkualiti 

tinggi. Pengesanan pelbagai kesalahan pada masa yang tepat membantu 

meningkatkan prestasi industri yang kompleks, mencegah pelbagai masalah dan 

mengurangkan kos penyelenggaraan. Pengesanan dan Diagnosis Kesalahan (FDD) 

untuk pemantauan dan kawalan proses telah menjadi bidang penyelidikan yang 

aktif dalam dua dekad lalu. Kolom distilasi adalah tidak linear, oleh itu kaedah 

pengesanan kesalahan yang tepat dan mantap harus berdasarkan kaedah dinamik 

tidak linear. Dokumen ini membentangkan tentang sistem pengesanan kesalahan 

yang didorong data kukuh, untuk kesilapan dulang dalam kolom distilasi. 

Pengesanan kesilapan dulang dalam kolom distilasi dijalankan oleh Rangkaian 

Nonlinear AutoRegressive dengan rangkaian Input (NARX) dengan Talian Kelewatan 
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Disalurkan (TDL). Simulasi dinamik Aspen Plus® telah digunakan untuk menghasilkan 

dataset normal dan rosak. Kajian menunjukkan bahawa kaedah yang dicadangkan 

boleh digunakan untuk mengesan kesilapan dulang dalam kolom distilasi untuk 

pemantauan proses dinamik. Prestasi kaedah yang dicadangkan telah dinilai oleh 

Kadar Pengesan Terlepas (MDR) dan Kelewatan Pengesanan (DD). 

 

Kata kunci: Rangkaian NARX, didorong data, pengesanan kesalahan, lajur 

penyulingan, Aspen Plus 

 

© 2020 Penerbit UTM Press. All rights reserved 

  

 

 

1.0 INTRODUCTION 
 

The industrial systems and technical processes are 

gradually becoming more complex [1-3]. They 

incorporate various subsystems from different energy 

domains which are equipped with actuators, sensors, 

digital circuits, and software. The safety, 

maintainability, and reliability are essential to protect 

these engineering systems due to increased safety 

requirements and quality assurance. A supervisory 

control system is needed which can immediately 

detect the abnormal behavior of the system, isolate 

the root cause of the faults and generate alarms to 

initiate appropriate action in time [4]. This will allow 

taking various decisions such as to continue the 

operation if the abnormal dynamic behavior is still 

within the acceptable threshold limit. 

Distillation column is a multivariable system and 

holds a substantial part of the refinery and other 

chemical process industries [5, 6]. The change in 

reboiler steam pressure, tray efficiency, feed 

composition, or overall pressure and temperature of 

distillation column may significantly affect the overall 

performance of the column [7, 8]. It is reported that 

significant financial losses are incurred when a high-

throughput plant is shut down or partially operated. 

These losses may be direct costs, such as repair and 

dismantling expenses, or indirect costs of production 

losses [9]. Some of the abnormal behaviors have 

multiple causes, for example, foaming may be 

caused by plugging and/or tray damage. Flow 

changes, pressure fluctuations, and tray damage 

cause similar issues of column stability. However, 

identification of the root causes of the column 

instabilities is essential as different solutions may have 

different complexities and costs. Instrumentation and 

control remedies are suggested for the restoration of 

column stability and diagnosis of the root cause. Very 

less attention has been given to detect the tray 

damages in the distillation column. However, the 

savings expected from a new control strategy may 

be lost because of the tray damage during start-up 

or shutdown. 

Fault detection and diagnosis is an essential area 

for accident prevention in process industries to 

achieve most of the desired and challenging goals 

[10]. For a few decades, process industries have used 

fault detection and diagnosis extensively for efficient 

process monitoring where timely detection of the 

faults is vital for safety and profitability [7]. Fault 

detection is to evaluate whether the process is 

operating in the acceptable range, while fault 

diagnosis identifies the cause and characteristic of 

the fault [11]. Fault detection and diagnosis is divided 

into model-based, data-driven and knowledge-

based methods [3, 12-14]. The model-based 

approach utilizes first-principle modeling for the 

development of rigorous models. These model-based 

approaches have been widely applied due to their 

reliability and robustness [15]. However, model-based 

approaches are difficult to implement due to the 

complexities and nonlinearities in the processes. On 

the other hand, there is a continuous development in 

the soft-computing techniques, information 

technology, advanced process control (APC), and 

data mining and analytics for process monitoring in 

the modern process industries. The data collection 

and processing of the complex industrial processes 

has also increased [16].  

The data-driven approaches are based on 

process measurements. These approaches classify 

the faults by utilizing trained classifier based on 

normal and faulty data [17, 18]. The data-driven 

approaches are reliable for those complex processes 

which are either too complicated or uneconomical 

to develop an accurate mathematical model. 

Moreover, due to the nonlinearity and complexity in 

the modern process industry, there is a demand for 

data-based methods [14, 19]. Several methods have 

been adopted for the data-driven detection and 

diagnosis of abnormal behavior in process industries 

[12, 20]. Data-driven approaches consider fault 

detection and diagnosis as classification tasks [21]. 

This classification can be done by supervised or 

unsupervised learning methods, including Partial 

Least Square (PLS) [22], Principle Component Analysis 

(PCA) [23, 24], Artificial Neural Network (ANN) [25-27], 

Fisher Discriminant Analysis (FDA) [28], Bayesian 

Networks [29] and Support Vector Machine (SVM) [7]. 

The fault detection in distillation column is a 

challenging task due to complex interactions of faults 

and symptoms, high correlation between the 

measured variables and the nonlinear behavior [30]. 

Multilayer perceptron (MLP) type neural network has 

received considerable attention for fault detection 

[19, 31-33]. However, the conventional neural 

network-based methods are either complicated or 

applicable only to steady-state processes [34]. On 
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the other hand, nonlinear auto-regressive with 

exogenous inputs (NARX) based neural network 

structures are also used as they have the ability to 

capture the nonlinearity of the process accurately 

[35]. It has significant applications in simulation, 

monitoring, analysis, and control of various systems 

[36, 37].  

The distillation columns are inherently nonlinear, it 

is expected that accurate and robust fault detection 

methods should be based on nonlinear dynamic 

methods. However, there is no significant work 

published on fault detection based on nonlinear 

dynamic methods for the detection of tray faults. 

Thus, there is a need to develop an accurate and 

robust fault algorithm based on the dynamic 

nonlinear model of the process under investigation. 

The main contribution of this study is as follows: 

1. A robust fault detection algorithm is proposed 

that is capable of accurate and rapid fault 

detection applicable to the nonlinear dynamic 

distillation column.  

2. The tray faults have been simulated in Aspen 

Plus® and detected by using proposed NARX 

network-based data-driven fault detection 

framework. 

3. The performance of the proposed fault 

detection algorithm has been evaluated using 

Missed Detection Rate (MDR) and Detection 

Delay (DD) used in various studies. 

The paper is organized as follows: Section 2 presents 

an Aspen Plus® dynamic simulation of the ethanol-

water distillation column which has been used for the 

generation of normal and faulty data. Section 3 

discusses the methodology of NARX network-based 

fault detection. Section 4 comprises results and 

discussion. The contribution and conclusion have 

been presented in Section 5.  

 

 

2.0 METHODOLOGY 
 

2.1 Aspen Plus® Steady-state & Dynamic Simulation 

 

The proposed fault detection framework based on 

NARX network utilizes a dynamic simulation of a 

binary distillation column for the generation of normal 

and faulty data. The distillation column located in 

Universiti Teknologi PETRONAS has been used for the 

development of steady-state and dynamic 

simulations. The column comprises ethanol-water 

mixture with the feed composition of 25% (molar) 

ethanol entering at 65οC at tray 9. The column 

comprises 17 stages including condenser and 

reboiler. The internal diameter and the height of the 

column are 0.15 m and 5.5 m respectively with the 

tray spacing of 0.35 m. The Aspen Plus® RADFRAC 

model has been used for the development of 

steady-state and dynamic simulation. Moreover, 

Universal Quasi-Chemical (UNIQUAC) model has 

been used as the thermodynamic package. The 

developed steady-state file has been exported to 

Aspen Plus Dynamics® for the control study and data 

generation. Various controllers are installed in the 

dynamic simulation i.e. flow, top and bottom 

compositions, column pressure, and top and bottom 

level controllers. The detailed description of the 

development of steady-state and dynamic 

simulation can be obtained from our previous 

publications [4, 5, 7, 25, 38]. The Aspen Plus dynamic 

simulation is shown in Figure 1. 

 

 
 
Figure 1 Aspen Plus® Dynamic Simulation of Distillation 

Column 
 

 

2.2 NARX Network Based Fault Detection 

 

Nonlinear Autoregressive with Exogenous Input 

(NARX) network has been used in this study for the 

detection of tray faults in distillation column. The 

NARX network is developed in MATLAB® 2018a. The 

step by step methodology has been presented in 

Table 1. The training data for the NARX network has 

been obtained from Aspen Plus® dynamic simulation 

for normal and abnormal conditions. In the next 

stage, the data has been normalized in the range of 

[0 1] to minimize the effect of larger values on the 

smaller ones. The training and testing dataset have 

been divided into 60% and 40% respectively. The 

data selected for testing has not been used for the 

training purpose. Once the network has been trained 

with the defined input/output datasets, the next step 

is to define the upper and lower threshold limits 

based on normal operating ranges. In this study, the 

control limit has been defined by using Walter theory, 

which is also known as Shewhart Control Chart [39].  

The mean for x can be written as x , while the 

standard deviation is 
x . The upper control limit 

( maxx ), Lower control limit ( minx ) and the central line 

( 0x ) can be presented as; 

max

xx x     (1) 

min

xx x     (2) 

0x x   (3) 

Where is generally known as the distance from the 

center line which can be expressed in standard 

deviation units. It is assumed that 99.7% of the data 
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will fall inside the control limit if the observed 

variables can be approximated by the normal 

distribution. Hence, the data which crosses the 

defined control limit is identified as the fault flag/fault 

signature. 

( )

ˆ1 3

ˆ0 3

y

t
y

y y

y y





    
   

    

 (4) 

Where
( )t is the fault flag. To identify the fault flag, 

the maxx and minx must be set as defined in Equations 

(1-2). If the values of the predictive variables are 

within the defined thresholds, ( ) 0t  and the 

system is considered as normal. When the predictions 

exceed the control limits, a fault flag is generated. 

The final stage is to evaluate the performance of the 

proposed fault detection algorithm. NARX Network 

based fault detection scheme is mentioned in Figure 

2 and the details of proposed Algorithm for using 

fault detection framework is presented in Table 2. The 

detailed methodology of NARX network can be 

found in our previous publication [4]. For the 

performance evaluation, Missed Detection Rate 

(MDR) and the Detection Delay (DD) has been used. 

They are defined as follow; 

 

No. of fault samples identified as normal
MDR= ×100

Total no.of fault samples
(5) 

a fDD = number of samples between T  and T (6) 

Where,  

Ta = is the time at which the alarm is raised 

Tf = is the time at which the process variable moves 

from the fault-free region of operation into the faulty 

region of operation. 

 
Table 1 Proposed Algorithm for Development of Fault 

Detection Framework 

 

1. Develop a representative dynamic simulation of the 

system. 

2. Select manipulated and observed variables. 

3. Generate timeseries input-response data for 

different normal scenarios.  

4. Divide data into training (60%) and testing (40%).  

5. Train NARX network detection model using the 

training data. 

6. Test the trained model using testing dataset. 

7. Find the standard deviation and mean. 

8. Define the central line, upper control limit and lower 

control limit for the observed variables using 

Equations (1) – (3). 

9. Define fault flag using equation (4). 

10. Evaluate the performance of the detection scheme 

using selected indices (MDR and DD) using 

Equations (5) and (6). 

11. If the performance is satisfactory, the model is ready 

for fault detection of the system, otherwise, repeat 

steps 3-10. 

Table 2 Proposed Algorithm for Using Fault Detection 

Framework 

 

1. Generate timeseries input-response data of the 

system. 

2. Train and test the NARX network using generated 

dataset. 

3. Apply control limits on the system. 

4. If the variable exceeds control limits, the fault flag is 

triggered. 

5. Evaluate the performance of the proposed 

algorithm based on MDR, DD and FAR. 

 

 

2.3 Normal and Fault Conditions 
 

2.3.1 Normal Condition 

 
In this case, the data has been generated when the 

column is running at normal condition i.e. no-fault 

state. The simulation has been done to collect 1500 

samples for the training of NARX network. It has been 

assumed that all the parameters are in the normal 

range. However, by giving a new setpoint to the 

controllers, it is observed that all the variables are in 

the defined range after taking control action by the 

controllers into account.  
 

Aspen Plus Dynamic Simulation 

(Normal and Faulty) Data 

Generation

Normalization of Data

Training of NARX Network

Control Plots
Whether Exceed the Limit?

Detection of 

Fault

Fault Flag

Retrain the Network

No

Fault Alarm

Start

Figure 2 NARX Network based Fault Detection Scheme 
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The distillation column response at normal conditions 

is presented in Figure 3. 

 

2.3.2 Feed Tray Upset (Efficiency Reduction) [F1] 

 
Fault 1 is simulated by introducing a feed tray upset 

in the distillation column. The liquid level in the 

column, vapor velocity, and purity of the top and 

bottom products are significantly influenced by the 

low efficiency of the feed tray. The abrupt changes 

in differential pressure of the column and separation 

efficiency occur due to weeping in the column. This 

phenomenon considerably decreases the liquid-

vapor separation at each stage, resulting in the 

reduction of tray efficiency. To simulate this upset, 

feed tray efficiency is reduced to 1%.  

 

2.3.3 Low Efficiency in Refining Section [F2] 

 

Fault 2 is simulated by reducing the efficiency in the 

refining section. The refining section comprises all 

trays above the feed tray. Therefore, a fault, i.e., low 

tray efficiency is introduced in all stages of the 

refining section (2nd– 6th) to observe the changed 

behaviour of the distillation column. In this case, the 

tray efficiencies are reduced to 1%. 

 

 

3.0 RESULTS AND DISCUSSION 
 

The normal and faulty data has been used for the 

timely detection of faults in distillation column. Figure 

3 shows the response of input and output variables 

when there is no fault in the system. It can be seen 

that column pressure, top and bottom compositions 

are close to the steady-state values and showing 

very few fluctuations.  

 

 
Figure 3 Data Obtained at Normal Condition of Distillation 

Column 

 

 

Fault 1 (F1) is associated with the low efficiency at 

the feed stage (6th stage). The feed stage efficiency 

has been reduced to 1% to observe the column 

behaviour. Fault 1 is introduced in the column at t = 

5.0 hr. It can be observed from Figure 4 that once the 

fault occurs in the column the top composition has 

suddenly increased to 86 mole% and then has 

decreased to 82 mole%.  

 
Figure 4 NARX network-based detection in top composition 

for F1 

 

 

It is difficult to observe the abnormal behaviour of 

the column while monitoring the bottom composition 

presented in Figure 5. It can be observed that it does 

not cross the threshold limit since the controller has 

taken appropriate action to keep the bottom 

composition in the defined limit.  

 

 
Figure 5 NARX network-based detection in bottom 

composition for F1 

 

 

The reflux flow shown in Figure 6 has also 

increased by twice the normal value to maintain the 

top composition in the column. A similar trend can 

be seen in the reboiler duty as shown in Figure 7. 

Abnormal 

Normal 

Normal 

Abnormal 
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Figure 6 NARX network-based detection in reflux flow rate 

for F1 

 

 

Fault 2 (F2) shows the decrease of column 

efficiency in the refining section i.e. from (2nd – 6th 

stage). Theoretically, it is expected from the column 

operating at 100% efficiency that the vapors leaving 

the tray are in equilibrium with the liquid leaving the 

same tray. Hence it is assumed for this case that VLE 

across the tray is disturbed due to which the 

efficiency in the refining section is decreased from 

100% to 1%. The fault occurs at t = 5.0 hr. It can be 

observed that once the fault occurs the top 

composition is increased first and then decreased to 

78.0 mole% as shown in Figure 8. However, the 

bottom composition does not show any significant 

changes as presented in Figure 9.  

 

 
Figure 7 NARX network-based detection in reboiler duty for 

F1 

 

 

The fault is introduced in the top section of the 

column hence the adverse effects of this fault take 

enough time to reach the bottom of the column. 

Therefore, the controller is able to take remedial 

action and keep the bottom composition within its 

defined limits.  

 
Figure 8 NARX network-based detection in top composition 

for F2 

 

Figure 9 NARX network-based detection in bottom 

composition for F2 

 

 

It can be seen in Figure 10 that the normal range 

of the reflux is 500-600 kg/h. However, it has 

increased to a higher value once the fault occurs in 

the refining section at t = 5.0 hr. The reflux has been 

increased to a higher value of approximately 1050 

kg/h which has significantly affected the top 

composition and other parameters. The reboiler duty 

has also increased from 150 kW to approximately 280 

kW due to which the column performance has been 

disturbed as shown in Figure 11.  

 

Abnormal 

Normal 

Abnormal 

Normal 

Abnormal 

Normal 

Abnormal 

Normal 
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Figure 10 NARX network-based detection in reflux flow rate 

for F2 

 

 
Figure 11 NARX network-based detection in reboiler duty for 

F2 

 

 

The performance evaluation of the proposed 

NARX network has been done by Missed Detection 

Rate (MDR) and the Detection Delay (DD). Table 3 

shows the MDR and DD for both types of tray faults in 

distillation column. The main objective of MDR is to 

define the percentage of samples identified as 

normal in the faulty dataset. However, the detection 

delay is the measure of the difference of samples 

between the actual instance of fault occurrence 

and the instance of alarm raised. It can be observed 

that both the faults have almost similar MDR and DD. 

The algorithm was able to detect the fault with 15-16 

sec. Therefore, the detection algorithm is able to 

identify the abnormality in the column effectively. 
 

 

 

 

 

 

 

 

 

Table 3 Missed Detection Rate & Detection Delay for Tray 

Faults 

 

Fault ID Missed Detection 

Rate 

MDR (%) 

Detection 

Delay 

DD (sec) 

F1 0.001 15 

F2 0.003 16 

 

 

4.0 CONCLUSION 
 

The proposed NARX network-based data-driven 

algorithm for fault detection is found to be very 

effective for the detection of tray faults in the 

distillation column. Tray faults have been introduced 

in the distillation column to observe the abnormal 

behaviour of the column. APD-MATLAB co-simulation 

has been used for the generation of data. Results 

showed that the NARX network has the ability to 

capture the nonlinearity of the distillation column 

accurately. 70% of the data was used to train the 

neural network model, while 30% was used for testing 

and validation. The proposed model was found to be 

adequate for the representation of system 

behaviour, and thus suitable for fault detection 

efficiently. The performance indices and reliability of 

the proposed fault detection algorithm ware 

evaluated by MDR and DD.  
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