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Abstract 
 

Short-duration rainfall characteristics in the form of certain intensity, time, and 

spatial distribution become valuable contribution for lahar flow disaster mitigation in 

a mountainous region. Due to mitigation purpose, such information can be 

provided through the rainfall nowcasting process. One of the promising rainfall 

nowcasting applications is the extrapolation-based method. Rain motion tracking is 

a crucial part of the rainfall nowcasting based on this method. This paper discusses 

the application of Pyramid Lucas-Kanade Optical Flow (PLKOF) method on the rain 

motion tracking analysis using 150x150m resolution radar image. The study of rain 

motion tracking is carried out using 112 successive rainfall images with 10-minutes 

time interval originating from Mt. Merapi X-band multiparameter radar. The rainfall 

movement patterns in short duration are presented in the displacement vector (u,v) 

images and scatter diagrams of rain motions at x- and y-directions. From the 

simulations, it was found that the average displacement of rain motions in the Mt. 

Merapi region is 9 pixels (8.3 km/h) with the dominant direction is northeast. The 

results show that PLKOF is relatively good at detecting small displacements, yet 

unable to identify the occurrence of rain growth and decay properly. The ability of 

PLKOF method in predicting the position of rain cell displacement is satisfied as 

indicated by the POD, CSI, and FAR indexes. 

 

Keywords: Rain motion, displacement vector, optical flow, nowcastig, X-band MP 

radar  
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1.0 INTRODUCTION 
 

Mt. Merapi is one of the most active volcanoes in 

Indonesia and spouting large amounts of volcanic 

materials in every eruption. The eruption might pose a 

severe threat to the communities and the 

environment. There are three types of disasters that 

may be produced by Mt. Merapi, and these include 

(1) pyroclastic flows; (2) volcanic ashfall; and (3) lahar 

flows as triggered by heavy rainfall [1]. The latest 

seems to be affected by rainfall behavior at the flank 

area of the mountain. According to Lavigne et al., 

rainfall intensity as measured over 1-hour or 10-minute 

intervals play a crucial role in triggering lahar flows [2]. 

Therefore, information of the spatial distribution of 

rainfall intensity for short duration is highly worthwhile 

for applications those related to the mitigation of lahar 

flows disaster [3]. To anticipate lahar flow disasters and 

define rainfall criteria that induce lahar flows, 

monitoring of hydraulic and hydrological parameters is 
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needed, both in historical and real-time data [3, 4]. 

The results of the monitoring can be used to predict 

the occurrence of lahar flows. Through the Indonesia-

Japan research collaboration of SATREPS Project, an X-

band multi-parameter (X-band MP) radar rainfall has 

been operated since October 2015 to complement 

existing hydrological monitoring devices surrounding 

Mt. Merapi. Figure 1 shows a map of study area 

covered rainfall monitoring device network at Mt. 

Merapi region, including automatic rainfall recorder 

(ARR) and X-band MP radar. To this time, Mt. Merapi X-

band MP radar has not been utilized for rainfall 

nowcasting purposes. The establishment of an 

appropriate rainfall nowcasting model will 

undoubtedly give a valuable contribution to the lahar 

flows disaster mitigation system in Mt. Merapi region. 

 

 
 

Figure 1 The study area in the Mt. Merapi region 

 

 
Various short-term rainfall nowcasting methods 

have been developed by many researchers in the 

past few decades, both through simple approaches to 

those with high complexity. At present, only two 

applications are potentially used for rainfall 

nowcasting, namely Numerical Weather Prediction 

(NWP) and the Extrapolation method [5, 6]. Both of the 

models use different approaches, but complement 

each other because it has strengths and weaknesses 

[7, 8]. The NWP model has a limitation of short lead 

time prediction due to sensitivity to assimilation 

algorithms, initial conditions, and spatial resolution [6, 

9–11]. Also, the model is unsatisfying for some 

applications because the coarse spatial resolution of 

the output model often misses sub-grid scale processes 

such as small cells convective activity [6]. Compared 

to the NWP model, extrapolation-based methods offer 

better results for rainfall nowcasting [6, 8, 11, 12], 

especially in the first few hours of storm events [7, 13]. 

Recently, Bechini and Chandrasekar [13] found that 

extrapolation-based methods provide good results for 

the lead time up to about 20 minutes. 

The underlying idea of the extrapolation method is 

connecting two successive images to determine rain 

motion and extrapolate the distribution of values in the 

future [15]. There are usually two main processes in the 

extrapolation-based of rainfall nowcasting algorithm, 

and those are tracking and forecasting [8, 11]. In 

general, motion tracking techniques are divided into 

two types; those are object-based and pixel-based 

tracking. Object-based tracking uses image 

perspective and consider storm events as individual 

objects. However, it has difficulty tracking small-scale 

storms and rapidly developing cloud-patches [8, 15]. 

The pixel-based algorithm considers the motion 

between two consecutive radar images. This method 

has been used widely to improve the short-term 

predictability of storms using high-resolution radar data 

[8, 11, 15–20]. 

One of the very promising pixel-based methods is 

optical flow (OF). Several previous studies on rainfall 

nowcasting models that discussed the application of 

optical flow methods in the motion tracking process 

are [8, 12, 15, 16, 19, 20]. Those studies show that 

motion tracking using an optical flow method superior 

compared to other methods, even though it is applied 

to varying nowcasting models and nature of data. 

However, of all these investigations, none of them has 

used very high spatial resolution data similar to the Mt. 

Merapi X-band MP radar. Therefore, this study attempt 

to apply optical flow in rain motion tracking analysis 

using 150x150m resolution X-band MP radar image. 

With the smaller pixel size, the analysis on the sub-pixel 

level does not need to be utilized and more accurate 

rain motion estimation are obtained. 

 

 

2.0 METHODOLOGY 
 

2.1 Mt. Merapi X-band MP Radar 

 

The X-band radar is now widely used to estimate more 

accurate rainfall intensity with higher object resolution. 

It has several advantages compared to the previous 

generation of rainfall radar, involving higher spatial 

and temporal resolution, smaller antenna size, easier 

mobility due to smaller antennas for the same beam 

width, and lower costs  [24]. 

In order to provide a decision support system to 

reduce the impact of Mt. Merapi multimodal sediment 

disaster, an X-band polarimetric multi-parameter radar 

was installed on the rooftop of Mt. Merapi museum at 

742 m above MSL through the SATREPS Project for 

integrated study on mitigation of multimodal disasters 

caused by ejection of volcanic products. This radar is 
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classified as a short-range radar with an operating 

frequency of 9470 MHz and the maximum range of 30 

km, to produces data output in the form of reflectivity 

factor (ZH), Doppler velocity (V), Doppler velocity 

spectrum width (W), cross polarization difference 

phase (dp), specific differential phase (KDP), corporal 

correlation coefficient (HV), differential reflectivity 

(ZDR), and rainfall intensity (R). Currently, the X-band MP 

radar is being utilized for rainfall monitoring around the 

Mt. Merapi region with a 2-minute temporal resolution. 

Mt. Merapi X-band MP Radar uses Plan Position 

Indicator (PPI) scanning mode to detect rainfall, with 

elevation angles of 3, 5, 7, 9, 11, 13, 15, 18, and 21°. It 

generates a 150x150 m spatial resolution for each 

pixel. Table 1 shows the specifications of the Mt. 

Merapi X-band MP radar system. The rainfall rates are 

estimated using a composite algorithm as proposed 

by Park et al. [24] based on the reflectivity (Z) and 

specific differential phase (KDP) of CAPPI (constant 

altitude plan position indicator) at 1500 m height. 

 
For KDP ≤ 03okm-1, 

 
-3 0.819

H H
( ) 7.07x10ZR Z  (1) 

 

For KDP > 03okm-1, 

 
0.823

DP DP19.63( ) KKR   (2) 

 

 

Table 1 The specifications of the Mt. Merapi X-band MP Radar system [25] 

 

Polarization Dual polarimetry (vertical and horizontal), simultaneously transmitted/received 

Operating Frequency 9470 MHz 

Power Supply 100-240 VAC, Single phase, 50/60 Hz 

Power Consumption Max 350 W 

Beam Width 2.7o 

Peak Output Power 100 W 

Horizontal Scan Angel 360o 

Vertical Scan Angel -2o to 90o 

Resolution of Angel 0.1o 

Antenna Rotation Speed 0.5 to 16 rpm 

Radome size 1086 mm (diameter) x 1024 mm (height) 

Aperture Size 750 mm (diameter) 

Maximum Range 30 km 

Scan Modes PPI, CAPPI, RHI (Sector scan available) 

Output Data Reflectivity factor ZH (dBZ), Doppler velocity V (m/s), Doppler velocity spectrum width W 
(m/s), Cross polarization difference phase dp (deg), Specific differential phase KDP 

(deg/km), Corporal correlation coefficient HV, Differential reflectivity ZDR, Rainfall 

intensity R (mm/h) 

Data Correction Distance attenuation, Rain attenuation, Excessive Doppler velocity, Suppression of signal 

return from land, Clutter suppression 

 

 

2.2 Motion Tracking Using Optical Flow 

 
Optical flow is an image processing technique in the 

field of computer vision. Horn and Schunck [26] state 

that optical flow is the distribution of the movement 

velocity of the brightness pattern in the image. The 

concept of optical flow was first introduced by 

Gibson [27] to describe the visual stimulus given to 

the movement of animals throughout the world. This 

method then developed for research purposes in 

various fields. In hydrology, optical flow is one of the 

promising techniques for several applications. For 

instance, Tauro et al. [28] proposed a differential 

local optical flow-based approach through optical 

tracking velocimetry (OTV) to estimate the surface 

flow velocity field of natural streams. Lenzano et al. 

[29] used large displacement optical flow (LDOF) 

algorithm to obtain surface movement data to 

derive ice flow velocities in a glacier based on 

terrestrial, monoscopic time-lapse image series. An 

investigation on the short-term forecast of the 

effective cloud albedo based on TV-L1 optical flow 

estimation methods was conducted by Urbich et al. 

[30]. In this investigation, TV-L1 method is used for 

calculating cloud motion vectors. Hadhri et al. [31] 

introduced a framework for the tracking of 

geophysical complex phenomena via robust pre-

processing steps and optical flow computing based 

on time-lapse images. This framework was proposed 

to overcome the existing techniques for 

automatically estimating accurate long term motion 

time series. For rainfall nowcasting purpose, Ayzel et 

al. [32] introduced the open software "rainymotion" 

as a benchmark for radar-based precipitation 

nowcasting. Different optical flow algorithms are 

used for tracking step in this model. 

Optical flow analysis aims to calculate the 

approximate of the motion field based on image 
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intensity [33]. The basic assumption of optical flow 

calculations is that the brightness of an image is 

considered constant on an object [34]. It can be 

explained that if an object position changed 

(displaced) in a short time interval t1 to t2, its 

reflectivity and intensity would remain. In 

mathematical expression, the above assumption can 

be written as follows. 

 

( , , ) ( , , )f x x y y t t f x y t     (3) 

 
f(x,y,t) is the intensity of the image at position (x,y) 

in time t, x and y are displacements, while t is the 

time interval between successive images. In order to 

be able to analyze the motion of the object in 

numerical computation, Taylor series expansion 

should be applied. Since the change in a position 

considered small, then the higher order terms of 

Taylor series expansion are ignored. The Eq. (3) then 

re-written as Eq. (4). 

( , , ) ( , , )
f

f x x y y t t f x y t x
x

f f
y t O

y t


        



 
    
 

 (4) 

 

where , , and , are the partial derivatives of 

the image function in x, y and t dimensions, while O is 

a negligible error value. If Eq. (3) is substituted to Eq. 

(4), we get 
 

( , , ) ( , , )
f f f

f x y t f x y t x y t
x y t

  
      

  
 (5) 

0
f f f

x y t
x y t

  
     

  
 (6) 

 

In order to find the velocity variable, then all terms in 

Equation (6) are divided by t, so that the equation 

becomes  

 

0
f x f y f

x t y t t

    
  

    
 (7) 

0
f f f

u v
x y t

  
  

  
 (8) 

 

where u and v are the displacement velocity in the x 

(west-east) and y (north-south) directions. The 

function described is a value of brightness or 

intensity, so then it will be written in the form of the 

following optical flow constraint equation. 

 

0x y t m tI u I v I Iv I      (9) 

 

I = (Ix, Iy), is a spatial gradient, while variable vm = (u, 

v) is the optical flow vector that should be searched. 

The equation (9) provides only the component of the 

vector in the direction of the spatial gradient. This 

situation remains a significant problem called the 

aperture problem. The aperture problem refers to the 

ambiguity of the inferred global motions when the 

observing local image structures which only vary 

along one direction [35]. Since the flows are 

calculated from individual pixels, we are limited by 

the size of the gradient operators. Therefore, it might 

be too small to see the other component of the 

optical flow vector. The aperture problem of the 

optical flow can be solved by Lucas-Kanade method 

that utilized a local differential approach to 

calculate the movement of the pixel. In this method, 

the movement of optical flow in adjacent pixels is 

assumed to be constant [16] as illustrated by blue 

arrows in Figure 2. 

 

 
 
Figure 2 The basic assumption of optical flow in the Lucas-

Kanade method 

 

 

Based on the above assumptions, Equation (9) 

can be rewritten as 

 

( ) ( ) ( )x y tI p u I p v I p    (10) 

 

In the form of a matrix, equation (10) is written as 

follows. 

 

x y t

u
I I I

v

 
     

 
 (11) 

x yA I I     (12) 

.
x x x yT

y x y y

I I I I
A A B

I I I I

 
   

 
 (13) 

 

Then Equation (13) is substituted into Equation (12), 

resulting in equation (13). 

 

T
t

u
B A I

v

 
  

 
 (14) 

x x x y x t

y x y y y t

I I I I I Iu

I I I I I Iv

    
         

 (15) 
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The value of u and v can be calculated by 

multiplying all sides by inverse matrix of [B]-1. So that 

the equation becomes 

 
1

x x x y x t

y x y y y t

I I I I I Iu

I I I I I Iv


    

           
 (16) 

 

Equation (16) can be solved by applying a Gaussian 

convolution (Equation 17) so that the data noise can 

be filtered. 

 

   

   

 

 

1

( ) ( )

( ) ( )

( )

( )

x x x y

y x y y

x t

y t

g x I I g x I Iu

v g x I I g x I I

g x I I

g x I I


          
 

  
 
  
 

 (17) 

 

where  denotes convolution operations, and g(x) is 

a Gaussian kernel. 

The Lucas-Kanade method has limitations in 

tracking fast-moving objects and large-scale 

movement due to the optical flow constraint 

equation [16]. The application of the Gaussian image 

pyramid technique can get over such limitation  [9]. 

The Gaussian image pyramid is a data structure that 

reconstructs images by convolving Gaussian kernel 

to the image through reduced image representation 

[19, 33, 34]. This method can efficiently extract 

features of different scales. In order to connect 

multiscale features, each level of the Gaussian 

pyramid image is normalized by the spatial 

interpolation. This step is carried out until the spatial 

size is as large as the original image at the first level. 

Typical construction of Gaussian image pyramid 

decomposition is shown in Figure 3. 

 

 

I1

I2

I3

Im

Smoothing and 

downsampling

Smoothing and 

downsampling

Smoothing and 

downsampling

High resolution

Low resolution

 

Figure 3 The constructs of Gaussian image pyramid 

decomposition (modified after [38]) 
 

The concept of the Pyramid Lucas-Kanade Optical 

Flow (PLKOF) method [9] is presented in Figure 4. 

Figure 4 illustrates two consecutive images at time t-

t and t are used to estimate the displacement 

vector of rain motions. At time t-t (Figure 4a) there 

are six rainy pixels, namely q28, q29, q36, q37, q45, and 

q46. Next, at time t (Figure 4b), there was an 

expansion of rainy pixels to the northwards, 

westwards, and northwestwards from the previous 

time, so that becomes 12 rainy pixels. The 

displacement vectors of rain motions are estimated 

based on those spatial changes (Figure 4c). The solid 

arrows are the displacement vector of rain motion 

which is estimated from time t-t to time t, while the 

dot arrows are the prediction of the displacement 

vector of rain motions at time t+t. 

 

 

Figure 4 The concept of motion tracking using PLKOF 

method (modified after [9]) 

 

 

The advantage of PLKOF technique is its ability to 

detect large and small displacement motions using a 

multi-resolution data structure. There are two steps to 

implement the Gaussian image pyramid: first, 

applying Gaussian smoothing on the images; 

second, down-sampling the image to obtain the 

resampled images. The application of image 

smoothing is intended to enhance the robustness of 

the optical flow against noise contained in the 

image, while the down-sampling process is designed 

to deal with the search of objects at different scales 

efficiently. In order to generate the smoothed 

images, the original rainfall images can be 

convolved with a Gaussian Kernel, g(x). The Gaussian 

kernel is one of the most commonly used kernels in 
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the image smoothing process, for example by [8, 19, 

35–38]. One of the Gaussian kernel size that has been 

used by Barron et al. [39] and Neustaedter [42] in 

optical flow analysis are 1/12 [-1 8 0 -8 1]. 
 

2.3 Case Study 

 

In this study, 112 consecutive images of 9 rainfall 

events during 2016-2018 were selected to be 

analyzed (Table 2). The rainfall events were selected 

randomly neglecting the speed of the rain 

movement, due to limited data availability. These 

events have an evenly distributed rainfall in radar 

coverage areas with varied intensity. The images 

used in this study are produced based on 

quantitative precipitation estimation (QPE) algorithm 

of Mt. Merapi X-band MP Radar (Figure 5). The size of 

each image is 600x600 pixels, coverage 

geographical area from 110o9’18”E-110o42’0”E 

Longitude and 7o21’30”S-7o53’28”S. Considering the 

consumption of sufficiently long computing time for 

high-resolution images (pixel size 150x150 m), this rain 

motion tracking analysis is performed only in the 

domain of 100x100 pixels with 10-minutes time 

interval. 

 
Table 2 The list of rainfall events collected in the analysis 

 

Rainfall events 

(yyyymmdd) 
ID 

Start time 

(hh:mm) 

Number 

of images 

Rainfall intensity 

(mm/h) 

Max Avg. 

20161110 R1 13:00 22 107.4 9.14 

20161230 R2 04:20 13 70.1 4.44 

20170105 R3 14:30 10 112.5 10.4 

20171008 R4 16:40 9 106.8 6.8 

20171220 R5 13:30 19 113.5 9.4 

20171226 R6 16:30 12 114.5 14.7 

20180204 R7 13:40 6 106.3 9.1 

20180211 R8 14:40 7 89.6 10.6 

20180307 R9 13:30 14 117.8 13.6 

 

 

Figure 5 is an example of 30 minutes of 

consecutive images on January 5, 2017, to show the 

spatial change of short-duration rainfall in the Mt. 

Merapi region. Visually, it can be seen the changes 

of rainfall field and intensity every 10 minutes from 

these consecutive images, where high-intensity 

rainfall (>20 mm/h) increasingly widespread towards 

the south-west (SW) and north-west (NW) directions. 

Indeed, the rainfall around Mt. Merapi is highly 

dynamics, both spatially and temporally. It is 

indicated by the high variability of spatial and 

temporal distribution in short duration. 

The shadow areas observed in the southwest and 

northeast parts (Figure 5) are due to beam shielding 

related to the radar position which was too close to 

the tower building (southwest) and Mt. Merapi 

summit (northeast). The radar elevation was relatively 

low to avoid these obstacles. 

 

  

  
 

Figure 5 Mt. Merapi X-band MP Radar images on January 

5th, 2017 at (a) 14:30, (b) 14:40, (c) 14:50, and (d) 15:00 
 

 

Three levels of pyramid images were used in the 

analysis, which the original image is at the bottom 

level. We applied the Gaussian pyramid with down-

sampling two consecutive images to half size in each 

level (except original images), recursively from high 

resolution to low resolution. The values of the optical 

flow in the initial level are obtained by computing the 

sub-pixel value using bilinear interpolation method 

between integers pixel at each level. Minimum 

threshold of rain motion velocity for recursive process 

of optical flow calculation is determined 0.01. 

The analysis results are presented in the 

displacement vector map and scatter diagrams of 

rain motion, which describe the magnitude and 

directions. The value of displacement vectors 

explained by average and dominant directions. 

Refers to Urbich et al. [30], the calculation of rain 

motion vectors is based on the minimization of the 

absolute difference between a shifted image in the 

x-y direction and the subsequent image. Therefore, 

the performance of PLKOF method for rain motion 

tracking in this study is evaluated through its ability in 

rain position predictability at time t+t. The 

predictability indexes are POD (probability of 

detection), FAR (false alarm ratio) and CSI (critical 

success index), and defined as 

 

hits
POD

hits misses



 (16) 
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false alarms
FAR

hits false alarms



 (17) 

hits
CSI

hits misses false alarms


 
 (18) 

 
A contingency table is given (Table 3) to verify 

hits, false alarm, and misses. Contingency table is a 

two-dimensional table that provides a discrete 

distribution of forecast and observation values in 

terms of pixels number. 

 
Table 3 Contingency table for events verification 

 

Forecast 
observation 

Yes No 

Yes hits false alarms 

No misses correct negatives 

 

 

POD is the number of hits divided by the total 

number of observed events. Phisically, it means event 

was forecast and it occurred. FAR is the number of 

false alarms divided by the number of predicted 

events. in other words, FAR mean event was forecast 

but did not occur. Critical success index (CSI) is a 

simple summary statistic that combines information 

from hits, misses, and false alarms. The POD, FAR and 

CSI score range from 0 to 1 with the best score of 1 

for POD and CSI, and 0 for FAR. 

 

 

3.0 RESULTS AND DISCUSSION 
 

This study has confined the discussion to the process 

of rain motion tracking carried out using the PLKOF 

method. All critical stages in the rain motion tracking 

process based on X-band MP radar images have 

been performed. From 112 images that have been 

analyzed, it shows that the selected rainfall events 

have diverse temporal and spatial characteristics. 

Most of the rainfall events have a reasonably tidy 

change in spatial distribution with low to moderate 

rain motion (3.6-7.2 km/h), such as the rainfall events 

of 10 November 2016, 30 December 2016, 5 January 

2017, 8 October 2017, 26 December 2017, and 11 

February 2018. As an example, on 5 January 2017, 

rainfall shows the position change steadily and slowly 

from southwest to northeast, then rain growth occurs 

at the southern part and moves to the northeast. 

Some rainfall events have a rapid change (> 7.2 

km/h), and others experience unrest in directions 

change, such as the rainfall events on 26 December 

2016 and 7 March 2018. 

Figure 6 shows an example of motion vector 

estimation with 10 minutes interval for the case study 

on 10 November 2016. At 14:20-14:30 LT (Figure 6a 

and 6b), the displacement vectors of rainfall moving 

from south and west to the northeast with average 

displacement value is 7 pixels or equal to 6.3 km/h in 

velocity, and maximum displacement is 27 pixels 

(equivalent to 24.3 km/h). At 14:30-14:40 LT (Figure 6c 

and 6d), the displacement vectors of rain motion 

show a dominant component on the right side 

domain area moving from south (S) to the north (N) 

and northwest (NW). Average displacement values 

are 4 pixels (3.6 km/h), while the maximum 

displacement is 18 pixels (16.2 km/h). 

To set better understand the quantification of the 

displacement vector of rain motion in the x-direction 

(east-west) and y-direction (north-south), scatter 

diagrams have been used. Figure 7 and Figure 8 

depict the scatter diagrams of the displacement 

vector of rain motion for rainfall events on 10 

November 2016, as shown in Figure 6. Based on 

Figure 7, it can be explained that the dominant 

direction of rain motion is northward, although some 

large displacements appeared to point northeast. 

Not so much different from the previous case, Figure 

8 also shows the dominant direction as same as 

Figure 7. Nevertheless, in this case, the rain motions 

relatively concentrated to the northwest, and only 

small portions are heading in the opposite directions. 

Table 4 represents a summary of the displacement 

vector of rain motion based on motion tracking 

analysis using The PLKOF method. 

 

 
 

Figure 6 Example of motion vector estimations on 

November 10th, 2016 at (a) 14:20 (b) 14:30 with 

displacement vector (C) 14:30 (d) 14:00 with displacement 

vector 

 

 

Based on Table 4 the rain motion displacement 

averagely shows values about 9 pixels or equal to 8.3 

km/h in velocity. However, some parts in the domain 

have relatively large displacement values, especially 

in events such as R5, R6, R7, and R9, where maximum 

displacement exceeds the domain area. Refers to 

Ulbrich et al. [43], the advection of rainfall objects 

can reach a maximum velocity of 130 km/h. With a 

pixel size of 150 x 150 meters, such velocity is 

equivalent to 144 pixels in 10 minutes, while the 
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domain area is limited to 100x100 pixels only. Such 

large displacement as identified in several cases 

above generally occurs due to the growth and 

decay activities. 
 

Table 4 Summary of the displacement vector of rain motion 
 

Rainfall 

events 

Average 

Displacements Dominant 

directions 

Predictability 

indexes 

(pixels) 
velocity 

(km/h) 

POD CSI FAR 

R1 4 3.6 NE 0.882 0.801 0.104 

R2 7 6.3 NE 0.957 0.920 0.046 

R3 5 4.5 NE, SE 0.883 0.792 0.147 

R4 8 7.2 NE 0.791 0.684 0.163 

R5 13 11.7 NE 0.768 0.655 0.220 

R6 8 7.2 NE 0.813 0.703 0.186 

R7 11 9.9 

N, E, NE, 

SE, SW 
0.740 0.538 0.379 

R8 6 5.4 NE 0.916 0.735 0.245 

R9 21 18.9 NE, NW 0.706 0.571 0.300 

 
 

Figure 7 Scatter plot of displacement vector estimations on 

November 10th, 2016, at 14:20-14:30 

 
 

Figure 8 Scatter plot of displacement vector estimations on 

November 10th, 2016, at 14:30-14:40 

In general, the algorithm used for rain motions 

tracking shows good results, especially for small 

displacements. The overall performance of HPLK 

model is generally satisfied, especially of its ability to 

predict the rain cell displacements as indicated by 

the POD, CSI, and FAR indexes (Table 4). The average 

values of POD and CSI were 0.882 and 0.801, 

respectively, while the FAR was 0.104. The POD and 

CSI index values averagely decreased while FAR 

increased at the end of the simulation sequences. 

However, the algorithm cannot identify the 

occurrence of rain growth and decay, so the 

situation is considered as an extremely rapid rain 

motion from or to the outside domain area. As a 

consequence, a critical error occurs when estimating 

the displacement of rain motion field. For example, it 

arises in the rainfall event of October 8th, 2017, where 

there are very irrational displacement values as 

shown in Figure 9. This case happens due to the 

algorithm detects the growth of rain objects (Figure 

10) as a swift movement from outside of the domain 

area. 

 
 

Figure 9 Scatter plot of displacement vector estimations 

error on October 8th, 2017, 17:50-18:00 
 

 
 

Figure 10 The growth and decay of rain objects detection 

from two consecutive images on October 8th, 2017, at (a) 

17:50 and (b) 18:00 
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The shortcoming of objects tracking with the optical 

flow has been revealed by Bechini and 

Chandrasekar [13], where rain motions detected 

based on existing objects, irrespective the 

occurrence of rain growth and decay. Also, the 

displacement vector of rain motion is usually 

estimated from observations confined to the radar 

domain. There was no simple model that could 

complement the lack of optical flow method. An 

enhanced optical flow technique proposed by [13] 

was too complex and involved many parameters. 

To evaluate the success performance of the 

proposed model, we attempt to compare the values 

of the evaluation indexes toward PPLK model (Liu, et 

al., 2015) and the SPLK model (Li, et al., 2018). The 

comparison is shown in Figure 11. Based on Figure 11, 

the PLKOF model in this study is superior to the PPLK 

model for POD, CSI and FAR indexes with an 

advantage of 11%, 15% and -14%, respectively. 

Compared to the SPLK model, the CSI index has 

almost the same value, but the SPLK model is slightly 

superior for the POD and FAR values. 
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Figure 11 Comparison of POD, CSI and FAR index values 

between the Proposed Models, PPLK, and SPLK 

 

 

4.0 CONCLUSION 
 

In this study, the PLKOF method was applied to 

analyze displacement vector of rain motions using 

high-resolution X-band MP radar image data. The use 

of high-resolution image data with a grid size of 

150x150 m is very worthwhile because the 

displacement of rain motions in the sub-pixel scale 

assumed to be small, and it can be ignored. 

Simulation results show that this method is relatively 

good at detecting small displacements or slow 

movement. The ability of PLKOF method in rain 

position predictability at time t+t is satisfied as 

indicated by the POD, CSI, and FAR indexes. From 

the nine selected rainfall events, the average 

displacement of 10-minutes time interval rain motions 

in the Mt. Merapi region is 9 pixels (8.3 km/h) with the 

dominant direction being northeast.  

We emphasized that the occurrence of rain growth 

and decay are the main problem that still cannot be 

resolved with the PLKOF method in this study. This 

method does not consider the presence of such 

scheme, so the algorithm takes into account the new 

object as a displacement from or to an area outside 

the observation domain with very high velocity. 

Further investigation to overcome such problems is 

necessary for the development of better algorithms. 

In the future works, simulations with more cases are 

needed to train models with varies data that 

represent the study area. Moreover, the experiment 

of applying several image filtering parameters or 

even filtering methods would also provide an optimal 

result to enhance the performance of the PLKOF 

method. 
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