

83:1 (2021) 133–143 |https://journals.utm.my/jurnalteknologi| eISSN 2180–3722 |DOI:

https://doi.org/10.11113/jurnalteknologi.v83.14600

Jurnal

Teknologi

Full Paper

COMPUTATIONALLY EFFICIENT PATH PLANNING

ALGORITHM FOR AUTONOMOUS VEHICLE

Sanjoy Kumar Debnatha, Rosli Omara*, Nor Badariyah Abdul Latipa,

Susama Bagchia, Elia Nadira Sabudina, Abdul Rashid Omar Mumina,

Abdul Majid Soomrob, Marwan Nafeac, Bashir Bala Muhammadd,

Ranesh Kumar Nahae

aFaculty of Electrical and Electronic Engineering, Universiti Tun

Hussein Onn Malaysia, 86400, Johor, Malaysia
bFaculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
cDepartment of Electrical and Electronic Engineering, University of

Nottingham Malaysia, Semenyih, Selangor, Malaysia
dFaculty of Air Engineering, Air Force Institute of Technology,

Kaduna Nigeria
eDiscipline of ICT, University of Tasmania, Hobart, TAS7005 Australia

Article history

Received

29 January 2020

Received in revised form

13 October 2020

Accepted

4 November 2020

Published online

17 December 2020

*Corresponding author

roslio@uthm.edu.my

Graphical abstract

Abstract

This paper analyses an experimental path planning performance between the Iterative

Equilateral Space Oriented Visibility Graph (IESOVG) and conventional Visibility Graph

(VG) algorithms in terms of computation time and path length for an autonomous

vehicle. IESOVG is a path planning algorithm that was proposed to overcome the

limitations of VG which is slow in obstacle-rich environment. The performance

assessment was done in several identical scenarios through simulation. The results

showed that the proposed IESOVG algorithm was much faster in comparison to VG. In

terms of path length, IESOVG was found to have almost similar performance with VG. It

was also found that IESOVG was complete as it could find a collision-free path in all

scenarios.

Keywords: Visibility graph, computionally efficient path planning, C-space, graph search

algorithm, autonomous vehicle

Abstrak

Makalah ini membentangkan prestasi perancangan laluan secara eksperimen antara

algoritma Iterative Equilateral Space Oriented Visibility Graph (IESOVG) dan Visibility

Graph (VG) dari segi masa pengiraan dan panjang laluan untuk kenderaan autonomi.

IESOVG adalah satu algorithm perancangan laluan yang dibangunkan bertujuan

mengatasi kelemahan VG iaitu perlahan dalam senario yang mempunyai banyak

halangan. Penilaian prestasi dilakukan dalam beberapa senario yang sama melalui

simulasi. Hasil eksperimen menunjukkan bahawa IESOVG adalah sangat cepat

berbanding VG. Dari segi panjang laluan, IESOVG mempunyai prestasi yang sama

dengan VG. Didapati juga bahawa IESOVG adalah lengkap kerana ia dapat mencari

laluan yang bebas perlanggaran dalam semua senario.

Kata kunci: Graf penyambungan, perancangan laluan berkesan secara pengiraan,

ruang konfigurasi, algoritma pencarian graf, kenderaan autonomi

© 2021 Penerbit UTM Press. All rights reserved

134 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

1.0 INTRODUCTION

Path planning is necessary to complete a given

mission for an autonomous vehicle [1]. Autonomous

vehicle aids human operators in dangerous

circumstances during natural disasters and

hazardous areas [2], such as collapse of the World

Trade Centre in 2001 [3], Hurricane Katrina in 2005,

and the Tohoku tsunami and earthquake [4] in 2011.

There are several types of path planning agorithms

such as combinatorial, sampling based and bio-

inspired method as shown in Figure 1. Each path

planning algorithm has its own benefits and

drawbacks in terms of the resulting path length,

computation time and completeness [6-10]. Besides

that, a path planning method must be able to find

collision-free path in real time where environment

changes.

Planning Algorithm

Combinatorial Sampling Based Biologically Inspired

C-Space

Road Map

Visibility Graph

Voronoi Diagram

Cell Decomposition

Potential Field

Graph Search

Depth First Search

Breadth First Search

Dijkstra s

Best First

A* M*D*

Probability Roadmap

Evolutionary Algorithm

Ecology Based

Rapid

 Random Tree
Genetic Algorithm

Differential Evolution

Swarm Intelligence

Particle Swarm

Optimization

Ant Colony Optimization

Simulated Annealing

Figure 1 Planning algorithm based on classical taxonomy,

adapted form [9]

Among the biologically inspired methods, genetic

algorithm(GA) is currently used for an energy efficient

path planning but it cannot guarantee to produce

optimal paths because the local minima may occur

in narrow environments. Moreover, GA is

computationally expensive and practically not

complete. Particle swarm optimization (PSO) has real

time effect but it can easily fall into the local optima

in many optimization problems [21]. Ant colony

optimization (ACO) does a blind search [22] and

thus, it is not optimistic and suitable for energy saving

path planning. Simulated Annealing (SA) is also not

capable of finding an optimal path.

In sampling based type, Rapidly Exploring

Random Tree (RRT) does not always provide an

optimal result. Probability Road Map (PRM) is

expensive without any guarantee of finding the path.

Combinatorial type consists of mainly

configuration space (C-space) and graph search

algorithm [9]. Furthermore, this type has two main

phases, where C-space works with pre-processing

stage and graph search is associated with query

stage [26-27].

The pre-processing phase specifies the

environment of configuration spaces (C-spaces)

while the query phase finds a collision-free path by

using a graph search algorithm. In the pre-processing

step, after specifying the C-Space, the nodes and

the edges are built. In this phase, the starting point

(Sp) and the target point (Tp) are defined. Then a

map of the graph is generated [11]. C-space

denotes the actual free space zone for a moving

robot and also gives a guarantee that the vehicle or

robot must not collide with any obstacle. However in

dynamic and unknown environment, it is hard to find

a collision-free path where information is uncertain

[12]. Table 1 tabulates the pros and corn of different

path planning methods.

Table 1 Properties of different path planning methods

Method Optimality Time Complete

VG   

VD   

RG   

ACD   

ECD   

PF   

DFS   

BFS   

Dijkstra’s   

Best First   

A*   

RRT   

PRM   

GA   

PSO   

ACO   

SA   

Some other methods in C-Space such as Potential

Field (PF) could not find the goal because of the

local minima issue [25]. The Cell Decomposition (CD)

approach also does not provide an acceptable

performance in a dynamic state and in real-time. For

a path planning using CD, although regular grid (RG)

is easy to apply, but the planner may not be

complete if the cell is too big. Adaptive cell

decomposition (ACD) needs to adjust with the

situation as required. Exact Cell Decomposition(ECD)

is complete but not suitable for outdoor environment

and hence, it is not optimal for path length [6, 16, 28].

VG is more energy efficient than Voronoi diagram

(VD) in combinatorial method under roadmap

technique [9]. The disadvantage of VD is that the

generated path is not optimal [18-20].

In query phase, a path will be planned after C-

space representation. A graph search algorithm is

applied to find a shortest collision-free path in the C-

space. Under graph search method, Depth Fist

Search (DFS) is good to pick up a solution among

135 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

Target
Point

many possibilities. DFS is good because a solution

can be found without considering all nodes [9].

Breadth-first Search (BFS) is suitable for the limited

available solutions that uses a comparatively small

number of steps. It is able to find a path if one exists

and does not get trapped in dead ends. BFS

algorithm does not assure to discover the shortest

path because it bypasses some branches in the

search tree. A-star (A*) is sub optimal because it

needs to be executed a number of times for each

target node to get them all. A* is complete because

it always finds a path if one exists. Dijkstra’s algorithm

is a systematic search algorithm and it gives the

shortest path between two nodes. In optimal cases,

when there is no prior knowledge of the graph, it

cannot estimate the distance between each node

and the target [9], [20].

The advantages of VG is that it is able to solve

path planning problem by finding the shortest

distance without the possibilities of the local minima

occurrance [13-15]. It also satisfies two criteria of

optimal path planning, i.e. complete path planning

and generation of shortest path [16]. Besides that,

VG is collision-free [24] and easy to be implemented

due to the simplification of equation [5, 13].

A conventional VG path planning is

demonstrated using MATLAB as shown in Figure 2.

When the number of obstacles in C-space increases,

the computation time is also increased. This is due to

the fact that VG finds a path by connecting all the

mutually visible edges and therefore, as the number

of obstacles rises, the computation time of VG also

increases.

Figure 2 VG calculates all obstacles inside the C-space

To overcome this problem, the Iterative Equilateral

Space Oriented Visibility Graph (IESOVG) was

proposed. IESOVG was developed based on the

conventional VG algorithm. It creates an equilateral

space depending on the density of obstacles

residing in the space. Then, it finds a path using

Dijkstra’s algorithm by ensuring that the produced

path is always (1) within the equilateral space, (2)

collision free, (3) complete and (4) minimum in

computation time compared to the the

conventional VG.

2.0 METHODOLOGY

2.1 Visibility Graph (VG)

This section describes how VG and Dijkstra’s

algorithm work for path planning. Figures 3(a) and

3(b) show the algorithm and the flowchart of the

conventional VG, respectively. In the algorithm, O

represents obstacles while Ws is the resulting path in

the form of waypoints.

Algorithm: VG

Input: O, Sp, Tp

Output: W

1 For all nodes NL of O

2 Create an edge e for each pair of nodes

3 Check the visibility of the edge

4 If ~= collision

5 Add e into cost matrix CM

6 End

7 Repeat Step 2

8 End

9 Find W from CM using Dijkstra’s algorithm

(a)

(b)

Figure 3 (a) The algorithm and (b) the flowchart of the VG

The inputs of the VG are the starting point Sp, the

target point Tp and the obstacles O in a configuration

space. All of the edges of obstacles and the edges

connecting the nodes including Sp and Tp are

available in the C-space and it is checked whether

collisions may happen. If there is a collision between

two nodes, the information of the nodes is updated

in the cost matrix, CM. Then Dijkstra’s algorithm is

Target Point

136 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

applied to find a collision free path. An illustration on

path planning is shown in Figure 4 by using VG.

Figure 4 Path planning using VG with graph search

algorithm

Hence, the relationship between the number of

obstacles and the computation time of VG is not

proportionally linear because VG considers all the

obstacles inside the C-space. To reduce the

computation time of VG, equilateral spaces-oriented

visibility graph (ESOVG) is proposed.

2.2 Equilateral Space Oriented Visibility Graph

(ESOVG)

ESOVG creates an equilateral space in the C-space

based on the Sp, Tp, input angle ρ and obstacles O.

Figure 5 illustrates the equilateral space represented

by the darker region.

Figure 5 The equilateral space

The space is enclosed by a couple of pairs of

imaginary lines that connect the Sp and Tp to both C1

and C2 as depicted in the Figure 5. The first pair of

lines emerges from Sp towards the mid-line,

separated by an input angle of ρ degrees while the

second pair emerges from Tp towards the midline with

identical ρ. Both pairs of lines intersect at the points

denoted by C1 and C2. Here Ω is to show the

orientation of reference angle. Also, to show the

relative orientation, xa and ya lines are drawn. The

ESOVG algorithm is described in Figure 6.

Algorithm: ESOVG

Input: O, Sp, Tp

Output: WS

1 Create a base line connecting Sp and Tp

2 Identify a mid-point between Sp and Tp

3 Create a mid-line passing through the mid-

point and perpendicular to the base line

4 From Sp and Tp, create a pair of imaginary

lines with an opening angle of ρ towards

the midline.

5 Create an equilateral space S from the

enclosed area by the four imaginary lines

drawn in step 4

6 Find obstacles Os located within S

7 For all nodes of Os

8 Create an edge eS for each pair of nodes

9 Check the visibility of the edge

10 if no collision

11 Add eS into cost matrix CMS

12 Repeat Step 8

13 end

 end

14 Find WS from CMS using Dijkstra’s algorithm

Figure 6 ESOVG algorithm

Through ESOVG algorithm, the size of the search

space is reduced from the entire workspace into the

equilateral space. The input angle ρ determines the

size of the space i.e., ρ is proportional to the size of

the space where a greater ρ produces a larger

space and vice versa. Therefore, ESOVG reduces the

obstacles number in such a way that only the

obstacles residing within and overlapping with the

equilateral space are considered for path planning.

As a result, ESOVG uses a reduced number of

obstacles and hence, it has a lower computation

time. The application of ESOVG for path planning is

illustrated in Figure 7(a).

ESOVG algorithm selects obstacles which are

shown in dark to be used for path planning. Note

that the area enclosed by the dotted lines represents

the equilateral space. Nonetheless, ESOVG has a

limitation as shown in Figure 7(b) where the resulting

path may not be collision-free. Therefore, IESOVG is

developed to overcome that limitation.

137 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

 (a)

(b)

Figure 7 (a) ESOVG identified obstacles within the

equilateral space and (b) failed to get collision free path

within an equilateral space

2.3 Iterative Equilateral Space Oriented Visibility

Graph (IESOVG)

An improvement in ESOVG is necessary because,

sometimes, a few segments of the path are outside

the space which may hit obstacles. To address this

problem, an improvement of ESOVG was proposed

where the resulting path is checked iteratively.

In the proposed algorithm, the planning stops

when the path is within the space. Otherwise, the

equilateral space will keep on expanding by a

certain amount of area through the increment in the

input angle ρ. Subsequently, the planning will

continue until the resulting collision-free path is

completely within the space.

The input angle ρ in IESOVG is used iteratively to

expand the area of the equilateral space. Figure 8

shows the IESOVG and Figure 9 illustrates its flowchart.

Finally, Figure 10 shows the details and complete

flowchart of IESOVG in which the ESOVG is

embedded.

Algorithm: IESOVG

Input: Sp,Tp, O, ρ =14o

Output: WIE

1 Call ESOVG

2 While Ws is outside S

3 Increase ρ by 8o

4 Call ESOVG

5 If WS is inside S

6 Find obstacles Os located

within S

7 Break

8 WIE=WS

9 End

10 End

Figure 8 Iterative-ESOVG (IESOVG) algorithm

In order to determine the nominal value of ρ, a

simulation was performed. Figure 11 depicts the

computation time versus number of obstacles and

the resulting computation time is listed in Table 2. It is

found that the smallest average computation time

was obtained when the nominal value of ρ=14°.

Figure 9 IESOVG flowchart

Figure 10 IESOVG in which the ESOVG is embedded

138 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

Figure11 Simulation results of ESOVG with different nominal

value of 

Table 2 Computation times with different angle ρ and

number of obstacles

Obstacles no. ρ=10° ρ=12° ρ=14° ρ=15°

15 0.11s 0.13s 0.16s 0.17s

30 0.20s 0.23s 0.28s 0.30s

45 0.25s 0.32s 0.35s 0.33s

60 0.34s 0.38s 0.44s 0.47s

75 0.60s 0.52s 0.58s 0.69s

90 0.58s 0.57s 0.69s 0.69s

105 0.62s 0.68s 0.75s 0.79s

120 2.03s 0.81s 0.90s 0.97s

200 6.92s 8.05s 4.29s 4.50s

Average 1.29s 1.30s 0.94s 0.99s

In order to determine the increment angle of ρ, a

further analysis was done through a simulation. The

simulation results are listed in Table 3. In the

simulation, different incremental angle was applied,

i.e. 6º, 8 º and 10 º where the numbers of obstacles

were set to be higher than 100 to force the planned

path to be located outside the equilateral space.

Based on the previous findings, ρ was initialized to 14°

throughout the simulations.

Table 3 Findings of different incremental ρ

Obstacles no. ρ+6 ρ+8 ρ+10

120 0.85s 0.66s 0.87s

150 6.36s 2.34s 7.99s

165 10.65s 2.72s 8.86s

200 14.12s 3.38s 12.10s

Average 8.00s 2.26s 7.46s

It is evident from Table 3 that the increment of ρ

by 8° resulted in a lower computation time

compared with that of the other two. To get a

clearer picture on this, Figure 12 depicts the

simulation result for different incremental angles.

Figure12 ESOVG with different incremental values of 

3.0 RESULTS AND DISCUSSION

3.1 Performance of VG

As mentioned earlier, VG is slow especially in an

obstacle-rich environment. We evaluated the

performance of VG through a simulation in random

scenarios with different number of obstacles and the

outcomes are recorded in Table 4.

Table 4 Computation time of VG with different number of

obstacles

Obstacles no. Computation time (s)

15 0.88

30 1.74

45 3.92

60 7.25

75 11.08

90 15.86

105 20.41

120 27.16

135 33.63

150 40.33

From Table 4, it is observable that if the numbers

of obstacles are increased then the computation

time also increases drastically. For instance, when the

number of obstacles was 15, the computation time

was 0.88 s. With 150 obstacles, the recorded

computation time was 40.33 s.

It clearly shows that the increase in the

computation time is not linearly proportional with the

number of obstacles, but almost exponential as

visualized in Figure 13.

Different angle ρ=10

Different angle ρ=12

Different angle ρ=14

Different angle ρ=15

139 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

Figure 13 VG Computional time Increases exponentially as

the number of obstacles increases

3.2 Performance of ESOVG

ESOVG generates equilateral space depending on

the input angle ρ that limits the area in C-Space.

Whereas in VG, all the area in C-Space was

calculated as elaborated in Table 5.

Table 5 Improvement rate of ESOVG

 VG ESOVG

O
b

st
a

c
le

s
n

o
.

C
o

m
p

u
ta

ti
o

n

ti
m

e
 (

s)

P
a

th
 l
e

n
g

th

(u
n

it
)

C
o

m
p

u
ta

ti
o

n

ti
m

e
 (

s)

P
a

th
 l
e

n
g

th

(u
n

it
)

Im
p

ro
v
e

m
e

n
t

R
a

te
 (

%
)

15 0.1861 520.1342 0.0678 520.1342 63.5

30 0.6522 520.1342 0.1310 520.1342 79.9

45 1.4569 627.4493 0.1609 627.4493 89.0

60 2.2356 631.0025 0.2439 631.0025 89.0

75 3.2086 645.6740 0.3541 645.6740 89.0

90 4.4142 645.6751 0.3880 645.6751 91.2

105 6.0464 645.6751 0.4545 645.6751 92.5

120 7.3872 750.2257 0.6156 750.2257 91.7

150 11.8672 910.8724 1.0334 910.8724 91.3

When the number of obstacles was 15, the

computation time for finding a path by conventional

VG was 0.1861 s, and by ESOVG was 0.0678 s. When

the number of obstacles was 150, the computation

time by conventional VG and ESOVG were 11.8672 s

and 1.0334 s, respectively. The improvement

recorded by ESOVG was 63.5 %-91.3 %.

Figure 14 clearly shows the trends of computation

times for both the conventional VG and ESOVG

which indicate that when the number of obstacles

escalates, the computation time of conventional VG

increases exponentially, whereas it rises almost

linearly for ESOVG.

Figure 14 computation times of VG and ESOVG

Table 5 reveals that both VG and ESOVG produce

paths of identical lengths. This proves that while

ESOVG reduces the computation time, it maintains

the optimality of the resulting path in terms of length.

3.3 Performance of IESOVG

Simulation results for both VG and IESOVG in an

identical random scenario with 30, 75 and 110

obstacles are shown in Figure15 (a)-(f). Note that, the

red colored obstacles were used for path

calculation. Figure 15(a) depicts the simulation for

VG where 30 obstacles were used whereas in the

same scenario shown in Figure 15(b), IESOVG used

only 4 obstacles to calculate a collision-free path.

When the numbers of obstacles were increased to 75

in 15(c), it was only 9 obstacles used by IESOVG as

shown in Figure 15(d). In Figure 15(e), 15 obstacles

were used by IESOVG. Table 6 shows the comparison

of the computation time and path length of the

conventional VG and IESOVG. It reveals that IESOVG

is relatively faster compared to the VG in terms of

computation time.

From the table, in a scenario with 30 obstacles,

the computation time by conventional VG was 1.74

s, and 0.16 s by IESOVG. IESOVG improved the

computation time up to 90.8 % and the path length

for both IESOVG and conventional VG were identical

at 990.86 m. As the number of the obstacle increased

to 75, the computation time of conventional VG was

11.08 s while the IESOVG’s was 0.3 s, which improved

the VG computation time by 97.9 %. In this case, the

path length for both IESOVG and VG were again

identical, i.e. 992.08 m. When the number of the

obstacle was further increased to 135, the

improvement rate recorded was the highest which

was 97.77 %, where the computation times for

conventional VG and IESOVG were 33.63 s and 0.75

s, respectively. Simulation results with 135 and 150

obstacles can be observed in Table 6.

Please note that the scenarios used in both

performance comparisons i.e., ESOVG Vs VG and

12

10

8

6

4

2

0
0 50 100 150

No of obstacles

T
im

e
(s

)

140 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

IESOVG Vs VG are different hence they produced

different results.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15 IESOVG Simulation at different scenarios

141 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

Table 6 Improvement rate of IESOVG

 VG IESOVG IMPROVEMENT

O
b

st
a

c
le

s
n

o
.

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

P
a

th
 l
e

n
g

th
 (

m
)

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

P
a

th
 l
e

n
g

th
(m

)

C
o

m
p

u
ta

ti
o

n
 t

im
e

e
ff

ic
ie

n
c

y
 (

%
)

P
a

th
 l
e

n
g

th

d
if
fe

re
n

c
e

 (
%

)

30 1.74 990.86 0.16 990.86 90.80 0.00

45 3.92 992.08 0.21 992.08 94.64 0.00

60 7.25 992.08 0.25 992.08 96.55 0.00

75 11.08 992.08 0.30 992.08 97.29 0.00

90 15.86 992.12 0.39 992.12 97.54 0.00

105 20.41 992.17 0.50 992.17 97.55 0.00

120 27.16 992.17 0.66 992.17 97.57 0.00

135 33.63 992.49 0.75 992.51 97.77 2×10-3

150 40.33 994.81 2.34 994.83 94.20 2×10-3

Figure16 Path length of VG and IESOVG

The path lengths obtained by VG and IESOVG are

tabulated in Table 6 and plotted in Figure 16. It is

clear that the path generated by the IESOVG was

almost identical to the conventional VG. The largest

path length difference between VG and IESOVG was

0.02 %, which is insignificant. Therefore, IESOVG is

considered as an optimal path planner.

Figure17 shows the improvement made by the

IESOVG for the computation time. Here, the graph

indicates that the IESOVG managed to produce a

path more than 90 % faster than that of VG

throughout different numbers of obstacles. It also

shows that the computation time was increased

exponentially with the increment of the obstacles’

numbers for VG, while the computation time of

IESOVG was increased almost linearly.

In Table 5 and in Table 6, the path length and the

random distribution number of obstacles are not

same. Thus, computation time and path length are

different in both scenarios. In both setups, the

developed algorithm worked successfully.

Figure17 Average Computational time comparison

between VG and IESOVG

Finally, we will discuss about the completeness of

IESOVG. Completeness is an important criterion of

any path planning algorithm. An algorithm that holds

this criterion has the capability to find a path in any

scenario and it also reports if no path exists there.

Simulation to test the completeness of IESOVG

algorithm was run in 100 random scenarios with 50

obstacles in the C-spaces. From the findings, it can

be concluded that IESOVG is a complete algorithm

since it is able to find a path in every scenario. Figure

18(a) – 18(d) illustrate some of the simulation results of

finding paths using IESOVG in random scenarios.

(a)

142 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

(b)

(c)

(d)

Figure 18 IESOVG found complete paths

4.0 CONCLUSION

The performance of IESOVG and conventional VG in

terms of path length and computation time was

compared and analyzed in this work. The obtained

results prove that the IESOVG is relatively faster than

the conventional VG and it is also capable to

produce optimal paths. IESOVG connects a line

between the starting point and the target point of

shortest path lengths to form an equilateral space

and hence, it is complete. The angle of equilateral

space was initially set to ρ=14°. When a path is not

found within the equilateral spaces, the angle is

expanded by 8º. IESOVG manages to reduce the

computation time than the conventional VG while

maintaining the shortest distance. This is because the

IESOVG only considers few numbers of obstacles in a

C-space covered within an enclosed area and it

results in less complex visibility graphs. Regarding

computation time, the IESOVG provided improved

result of 97.77 % in comparison with VG. In average,

the IESOVG performed above 90 % better

computation time while path length was kept almost

the same.

Acknowledgement

This research is supported by grant TIER-1 VOT-H131.

The authors fully acknowledged Universiti Tun Hussein

Onn Malaysia (UTHM).

References

[1] Mueggler, E., Faessler, M., Fontana, F., & Scaramuzza, D.

2014. Aerial-guided Navigation of a Ground Robot

Among Movable Obstacles. 2014 IEEE International

Symposium on Safety, Security, and Rescue Robotics. 1-8.

DOI: 10.1109/SSRR.2014.7017662.

[2] Nikolic, J., Burri, M., Rehder, J., Leutenegger, S., Huerzeler,

C., & Siegwart, R. 2013. A UAV System for Inspection of

Industrial Facilities. Aerospace Conference. 2013 IEEE. 1-8.

DOI: 10.1109/AERO.2013.6496959.

[3] Murphy, R. R. 2004. Trial by Fire [Rescue Robots]. IEEE

Robotics & Automation Magazine. 11(3): 50-61. DOI:

10.1109/MRA.2004.1337826.

[4] Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P.,

Choset, H., & Erkmen, A. M. 2008. Search and Rescue

Robotics. In B. Siciliano and K. Oussama (Editors).

Handbook of Robotics. Springer Verlag. 1151-1173.

DOI: 10.1007/978-3-540-30301-5_51.

[5] R. Latip, N. B. A., Omar, R., & Debnath, S. K. 2017. Optimal

Path Planning using Equilateral Spaces Oriented Visibility

Graph Method. International Journal of Electrical &

Computer Engineering. 7(6): 2088-8708.

DOI: 10.11591/ijece.v7i6.pp3046-3051.

[6] Giesbrecht, J. and Defence R&D Canada. 2004. Path

Planning for Unmanned Ground Vehicles. Technical

Memorandum DRDC Suffield-TM 2004-272.

[7] LaValle, S. M. 2006. Planning Algorithms. Cambridge

University, Press. http://planning.cs.uiuc.edu/.

[8] Hu, L., Liu, Y., Peng, C., Tang, W., Tang, R., & Tiwari, A. 2018.

Minimising the Energy Consumption of Tool Change and

Tool Path of Machining by Sequencing the Features.

Energy. 147: 390-402.

https://doi.org/10.1109/SSRR.2014.7017662
https://doi.org/10.1109/AERO.2013.6496959
https://doi.org/10.1109/MRA.2004.1337826
http://doi.org/10.11591/ijece.v7i6.pp3046-3051

143 Sanjoy Kumar Debnath et al. / Jurnal Teknologi (Sciences & Engineering) 83:1 (2021) 133–143

https://doi.org/10.1016/j.energy.2018.01.046.

[9] Debnath, S. K., Omar, R. and Latip, N. B. A. 2019. A Review

on Energy Efficient Path Planning Algorithms for

Unmanned Air Vehicles. Computational Science and

Technology. Springer, Singapore. 523-532.

DOI.org/10.1007/978-981-13-2622-6_56.

[10] Moore, E. F. 1957. The Shortest Path through a Maze.

Proceedings of an International Symposium on the Theory

of Switching. Cambridge: Harvard University Press. 285-292.

[11] Švestka, P., & Overmars, M. H. 1998. Probabilistic Path

Planning. Int. Robot Motion Planning and Control.

Springer. 255-304.

DOI: 10.1007/bfb0036074.

[12] Li, G., Yamashita, A., Asama, H., & Tamura, Y. 2012. An

Efficient Improved Artificial Potential Field-based

Regression Search Method for Robot Path Planning. Int.

Conf. on Mechatronics and Automation, IEEE. 1227-1232.

DOI: 10.1109/ICMA.2012.6283526.

[13] Ma, Y., Zheng, G., & Perruquetti, W. 2013. Cooperative

Path Planning for Mobile Robots Based on Visibility Graph.

Int. Control Conference (CCC), IEEE. 4915-4920.

[14] Debnath, S. K., Omar, R., & Latip, N. A. 2019. Comparison

of Different Configuration Space Representations for Path

Planning Under Combinatorial Method. Indonesian

Journal of Electrical Engineering and Computer Science

1(1): 401-408.

DOI: 10.11591/ijeecs.v10.i1.pp401-408.

[15] Tran, N., Nguyen, D. T., Vu, D. L., & Truong, N. V. 2013.

Global Path Planning for Autonomous Robots using

Modified Visibility-graph. Int Control, Automation, and

Information Sciences (ICCAIS), IEEE. 317-321.

DOI: 10.1109/ICCAIS.2013.6720575.

[16] Debnath, S. K., Omar, R., Ibrahim, B. S. S. K., Bagchi, S.,

Nadira, E., Amin, F., & Muhammad, B. B. 2020. Flight Cost

Calculation for Unmanned Air Vehicle Based on Path

Length and Heading Angle Change. International Journal

of Power Electronics and Drive Systems. 11(1): 382-389.

DOI: 10.11591/ijpeds. v11.i1. pp382-389.

[17] Mac, T. T., Copot, C., Tran, D. T., De Keyser, R. 2016.

Heuristic Approaches in Robot Path Planning: A Survey.

Robotics and Autonomous Systems. 1(86): 13-28.

DOI.org/10.1016/j.robot.2016.08.001.

[18] Marbate, P., & Jaini, P. 2013. Role of Voronoi Diagram

Approach in Path Planning. International Journal of

Engineering Science and Technology. 5(3): 527.

[19] Niu, H., Lu, Y., Savvaris, A., & Tsourdos, A. 2018. An Energy-

efficient Path Planning Algorithm for Unmanned Surface

Vehicles. Ocean Engineering. 161: 308-321.

DOI: org/10.1016/j.oceaneng.2018.01.025.

[20] Zear, A., & Ranga, V. 2020. Path Planning of Unmanned

Aerial Vehicles: Current State and Future Challenges. First

International Conference on Sustainable Technologies for

Computational Intelligence. Springer, Singapore. 409-419.

DOI: org/10.1007/978-981-15-0029-9.

[21] Patley, A., Bhatt, A., Maity, A., Das, K., & Ranjan Kumar, S.

2019. Modified Particle Swarm Optimization based Path

Planning for Multi-Uav Formation. AIAA Scitech 2019

Forum. 1167.

[22] Mirjalili, S., Dong, J. S., & Lewis, A. 2019. Ant Colony

Optimizer: Theory, Literature Review, and Application in

AUV Path Planning. Nature-Inspired Optimizers. Springer,

Cham. 7-21.

DOI: org/10.2514/6.2019-1167.

[23] Debnath, S. K., Omar, R., Latip, N. B. A., Shelyna, S., Nadira,

E., Melor, C. K. N. C. K., Chakraborty, T. K. and Natarajan,

E. 2019. A Review on Graph Search Algorithms for Optimal

Energy Efficient Path Planning for an Unmanned Air

Vehicle. Indonesian Journal of Electrical Engineering and

Computer Science. 15(2): 743-749.

DOI: 10.11591/ijeecs. v15.i2. pp743-749.

[24] Lee, H. Y., Shin, H., & Chae, J. 2018. Path Planning for

Mobile Agents Using a Genetic Algorithm with a Direction

Guided Factor. Electronics. 7(10): 212.

DOI: org/10.3390/electronics7100212.

[25] Sabudin, E. N., Omar, R., Joret, A., Ponniran, A., Sulong, M.

S., Kadir, H. A., & Debnath, S. K. 2020. Improved Potential

Field Method for Robot Path Planning with Path Pruning.

Proceedings of the 11th National Technical Seminar on

Unmanned System Technology 2019. 113-127.

DOI: https://doi.org/10.1007/978-981-15-5281-6_9

[26] Debnath, S. K., Omar, R., Bagchi, S., Nafea, M., Naha, R.

K., & Sabudin, E. N. 2020. Energy Efficient Elliptical

Concave Visibility Graph Algorithm for Unmanned Aerial

Vehicle in an Obstacle-rich Environment. 2020 IEEE

International Conference on Automatic Control and

Intelligent Systems (I2CACIS). 129-134.

DOI: 10.1109/I2CACIS49202.2020.9140112.

[27] Sharma, K., & Doriya, R. 2019. Reducing Traverse Space in

Path Planning using Snake Model for Robots. 2019 4th

International Conference on Computing,

Communications and Security (ICCCS), IEEE. 1-4.

DOI: 10.1109/CCCS.2019.8888083.

[28] Debnath, S. K., Omar, R., Bagchi, S., Sabudin, E. N.,

Kandar, M. H. A. S., Foysol, K., & Chakraborty, T. K. 2020.

Different Cell Decomposition Path Planning Methods for

Unmanned Air Vehicles-A Review. Proceedings of the 11th

National Technical Seminar on Unmanned System

Technology. 99-111.

DOI: 10.1007/978-981-15-5281-6_8.

https://doi.org/10.1016/j.energy.2018.01.046
https://doi.org/10.1109/ICMA.2012.6283526
https://doi.org/10.1109/ICCAIS.2013.6720575
http://ijpeds.iaescore.com/index.php/IJPEDS/issue/view/554
https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.1016/j.oceaneng.2018.01.025
https://doi.org/10.2514/6.2019-1167
https://doi.org/10.3390/electronics7100212
https://doi.org/10.1109/I2CACIS49202.2020.9140112
https://doi.org/10.1109/CCCS.2019.8888083

