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Abstract 
 

This paper analyses an experimental path planning performance between the Iterative 

Equilateral Space Oriented Visibility Graph (IESOVG) and conventional Visibility Graph 

(VG) algorithms in terms of computation time and path length for an autonomous 

vehicle. IESOVG is a path planning algorithm that was proposed to overcome the 

limitations of VG which is slow in obstacle-rich environment. The performance 

assessment was done in several identical scenarios through simulation. The results 

showed that the proposed IESOVG algorithm was much faster in comparison to VG. In 

terms of path length, IESOVG was found to have almost similar performance with VG.  It 

was also found that IESOVG was complete as it could find a collision-free path in all 

scenarios.  

 

Keywords: Visibility graph, computionally efficient path planning, C-space, graph search 

algorithm, autonomous vehicle 

 

Abstrak 
 

Makalah ini membentangkan prestasi perancangan laluan secara eksperimen antara 

algoritma Iterative Equilateral Space Oriented Visibility Graph (IESOVG) dan Visibility 

Graph (VG) dari segi masa pengiraan dan panjang laluan untuk kenderaan autonomi. 

IESOVG adalah satu algorithm perancangan laluan yang dibangunkan bertujuan 

mengatasi kelemahan VG iaitu perlahan dalam senario yang mempunyai banyak 

halangan. Penilaian prestasi dilakukan dalam beberapa senario yang sama melalui 

simulasi. Hasil eksperimen menunjukkan bahawa IESOVG adalah sangat cepat 

berbanding VG. Dari segi panjang laluan, IESOVG mempunyai prestasi yang sama 

dengan VG. Didapati juga bahawa IESOVG adalah lengkap kerana ia dapat mencari 

laluan yang bebas perlanggaran dalam semua senario.  

 

Kata kunci: Graf penyambungan, perancangan laluan berkesan secara pengiraan, 

ruang konfigurasi, algoritma pencarian graf, kenderaan autonomi 

 

© 2021 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

Path planning is necessary to complete a given 

mission for an autonomous vehicle [1]. Autonomous 

vehicle aids human operators in dangerous 

circumstances during natural disasters and 

hazardous areas [2], such as collapse of  the World 

Trade Centre in 2001 [3], Hurricane Katrina in 2005, 

and the Tohoku tsunami and earthquake [4] in 2011. 

There are several types of path planning agorithms 

such as combinatorial, sampling based and bio-

inspired method as shown in Figure 1. Each path 

planning algorithm has its own benefits and 

drawbacks in terms of the resulting path length, 

computation time and completeness [6-10]. Besides 

that, a path planning method must be able to find 

collision-free path in real time where environment 

changes.  
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Figure 1 Planning algorithm based on classical taxonomy, 

adapted form [9] 

 

 

Among the biologically inspired methods, genetic 

algorithm(GA) is currently used for an energy efficient 

path planning but it cannot guarantee to produce 

optimal paths because the local minima may occur 

in narrow environments. Moreover, GA is 

computationally expensive and practically not 

complete. Particle swarm optimization (PSO) has real 

time effect but it can easily fall into the local optima 

in many optimization problems [21]. Ant colony 

optimization (ACO) does a blind search [22] and 

thus, it is not optimistic and suitable for energy saving 

path planning. Simulated Annealing (SA) is also not 

capable of finding an optimal path.  

In sampling based type, Rapidly Exploring 

Random Tree (RRT) does not always provide an 

optimal result. Probability Road Map (PRM) is 

expensive without any guarantee of finding the path. 

Combinatorial type consists of mainly 

configuration space (C-space) and graph search 

algorithm [9]. Furthermore, this type has two main 

phases, where C-space works with pre-processing 

stage and graph search is associated with query 

stage [26-27].  

The pre-processing phase specifies the 

environment of configuration spaces (C-spaces) 

while the query phase finds a collision-free path by 

using a graph search algorithm. In the pre-processing 

step, after specifying the C-Space, the nodes and 

the edges are built. In this phase, the starting point 

(Sp) and the target point (Tp) are defined. Then a 

map of the graph is generated [11]. C-space 

denotes the actual free space zone for a moving 

robot and also gives a guarantee that the vehicle or 

robot must not collide with any obstacle. However in 

dynamic and unknown environment, it is hard to find 

a collision-free path where information is uncertain 

[12]. Table 1 tabulates the pros and corn of different 

path planning methods. 

 
Table 1 Properties of different path planning methods  

 

Method Optimality Time Complete 

VG    

VD    

RG    

ACD    

ECD    

PF    

DFS    

BFS    

Dijkstra’s    

Best First    

A*    

RRT    

PRM    

GA    

PSO    

ACO    

SA    

 

 

Some other methods in C-Space such as Potential 

Field (PF) could not find the goal because of the 

local minima issue [25]. The Cell Decomposition (CD) 

approach also does not provide an acceptable 

performance in a dynamic state and in real-time. For 

a path planning using CD, although regular grid (RG) 

is easy to apply, but the planner may not be 

complete if the cell is too big. Adaptive cell 

decomposition (ACD) needs to adjust with the 

situation as required. Exact Cell Decomposition( ECD) 

is complete but not suitable for outdoor environment 

and hence, it is not optimal for path length [6, 16, 28]. 

VG is more energy efficient than Voronoi diagram 

(VD) in combinatorial method under roadmap 

technique [9]. The disadvantage of VD is that the 

generated path is not optimal [18-20]. 

In query phase, a path will be planned after C-

space representation. A graph search algorithm is 

applied to find a shortest collision-free path in the C-

space. Under graph search method, Depth Fist 

Search (DFS) is good to pick up a solution among 
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Target 
Point 

many possibilities. DFS is good because a solution 

can be found without considering all nodes [9]. 

Breadth-first Search (BFS) is suitable for the limited 

available solutions that uses a comparatively small 

number of steps. It is able to find a path if one exists 

and does not get trapped in dead ends. BFS 

algorithm does not assure to discover the shortest 

path because it bypasses some branches in the 

search tree. A-star (A*) is sub optimal because it 

needs to be executed a number of times for each 

target node to get them all. A* is complete because 

it always finds a path if one exists. Dijkstra’s algorithm 

is a systematic search algorithm and it gives the 

shortest path between two nodes. In optimal cases, 

when there is no prior knowledge of the graph, it 

cannot estimate the distance between each node 

and the target [9], [20]. 

The advantages of VG is that it is able to solve 

path planning problem by finding the shortest 

distance without the possibilities of the local minima 

occurrance [13-15]. It also satisfies two criteria of 

optimal path planning, i.e. complete path planning 

and generation of shortest path [16]. Besides that, 

VG is collision-free [24] and easy to be implemented 

due to the simplification of equation [5, 13].  

A conventional VG path planning is 

demonstrated using MATLAB as shown in Figure 2. 

When the number of obstacles in C-space increases, 

the computation time is also increased. This is due to 

the fact that VG finds a path by connecting all the 

mutually visible edges and therefore, as the number 

of obstacles rises, the computation time of VG also 

increases.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 VG calculates all obstacles inside the C-space 

 

 

To overcome this problem, the Iterative Equilateral 

Space Oriented Visibility Graph (IESOVG) was 

proposed. IESOVG was developed based on the 

conventional VG algorithm. It creates an equilateral 

space depending on the density of obstacles 

residing in the space. Then, it finds a path using 

Dijkstra’s algorithm by ensuring that the produced 

path is always (1) within the equilateral space, (2) 

collision free, (3) complete and (4) minimum in 

computation time compared to the the 

conventional VG.  

 

 

2.0 METHODOLOGY 
 

2.1 Visibility Graph (VG)  

 

This section describes how VG and Dijkstra’s 

algorithm work for path planning. Figures 3(a) and 

3(b) show the algorithm and the flowchart of the 

conventional VG, respectively. In the algorithm, O 

represents obstacles while Ws is the resulting path in 

the form of waypoints. 

 
Algorithm: VG 

Input: O, Sp, Tp 

Output: W 

1 For all nodes NL of O 

2 Create an edge e for each pair of nodes 

3 Check the visibility of the edge 

4 If ~= collision 

5 Add e into cost matrix CM 

6 End 

7 Repeat Step 2 

8 End 

9 Find W from CM using Dijkstra’s algorithm 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b) 
 

Figure 3 (a) The algorithm and (b) the flowchart of the VG 

 

 

The inputs of the VG are the starting point Sp, the 

target point Tp and the obstacles O in a configuration 

space. All of the edges of obstacles and the edges 

connecting the nodes including Sp and Tp are 

available in the C-space and it is checked whether 

collisions may happen. If there is a collision between 

two nodes, the information of the nodes is updated 

in the cost matrix, CM. Then Dijkstra’s algorithm is 

 

Target Point 
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applied to find a collision free path. An illustration on 

path planning is shown in Figure 4 by using VG. 

 

 
Figure 4 Path planning using VG with graph search 

algorithm 

 

 

Hence, the relationship between the number of 

obstacles and the computation time of VG is not 

proportionally linear because VG considers all the 

obstacles inside the C-space. To reduce the 

computation time of VG, equilateral spaces-oriented 

visibility graph (ESOVG) is proposed. 

 

2.2 Equilateral Space Oriented Visibility Graph 

(ESOVG) 

 

ESOVG creates an equilateral space in the C-space 

based on the Sp, Tp, input angle ρ and obstacles O. 

Figure 5 illustrates the equilateral space represented 

by the darker region. 

 

 

Figure 5 The equilateral space 

 

 

The space is enclosed by a couple of pairs of 

imaginary lines that connect the Sp and Tp to both C1 

and C2 as depicted in the Figure 5. The first pair of 

lines emerges from Sp towards the mid-line, 

separated by an input angle of ρ degrees while the 

second pair emerges from Tp towards the midline with 

identical ρ. Both pairs of lines intersect at the points 

denoted by C1 and C2. Here Ω is to show the 

orientation of reference angle. Also, to show the 

relative orientation, xa and ya lines are drawn. The 

ESOVG algorithm is described in Figure 6. 

 

Algorithm: ESOVG 

Input: O, Sp, Tp 

Output: WS 

1 Create a base line connecting Sp and Tp 

2 Identify a mid-point between Sp and Tp 

3 Create a mid-line passing through the mid-

point and perpendicular to the base line 

4 From Sp and Tp, create a pair of imaginary 

lines with an opening angle of ρ towards 

the midline. 

5 Create an equilateral space S from the 

enclosed area by the four imaginary lines 

drawn in step 4 

6 Find obstacles Os located within S 

7 For all nodes of Os 

8    Create an edge eS for each pair of nodes 

9    Check the visibility of the edge 

10    if no collision 

11    Add eS into cost matrix CMS 

12    Repeat Step 8 

13    end 

 end 

14 Find WS from CMS using Dijkstra’s algorithm 

 

Figure 6 ESOVG algorithm 

 

 

Through ESOVG algorithm, the size of the search 

space is reduced from the entire workspace into the 

equilateral space. The input angle ρ determines the 

size of the space i.e., ρ is proportional to the size of 

the space where a greater ρ produces a larger 

space and vice versa. Therefore, ESOVG reduces the 

obstacles number in such a way that only the 

obstacles residing within and overlapping with the 

equilateral space are considered for path planning. 

As a result, ESOVG uses a reduced number of 

obstacles and hence, it has a lower computation 

time. The application of ESOVG for path planning is 

illustrated in Figure 7(a).  

ESOVG algorithm selects obstacles which are 

shown in dark to be used for path planning. Note 

that the area enclosed by the dotted lines represents 

the equilateral space. Nonetheless, ESOVG has a 

limitation as shown in Figure 7(b) where the resulting 

path may not be collision-free. Therefore, IESOVG is 

developed to overcome that limitation. 
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 (a) 
 

(b) 

Figure 7 (a) ESOVG identified obstacles within the 

equilateral space and (b) failed to get collision free path 

within an equilateral space 
 

 

2.3 Iterative Equilateral Space Oriented Visibility 

Graph (IESOVG) 
 

An improvement in ESOVG is necessary because, 

sometimes, a few segments of the path are outside 

the space which may hit obstacles. To address this 

problem, an improvement of ESOVG was proposed 

where the resulting path is checked iteratively.  

In the proposed algorithm, the planning stops 

when the path is within the space. Otherwise, the 

equilateral space will keep on expanding by a 

certain amount of area through the increment in the 

input angle ρ. Subsequently, the planning will 

continue until the resulting collision-free path is 

completely within the space. 

The input angle ρ in IESOVG is used iteratively to 

expand the area of the equilateral space. Figure 8 

shows the IESOVG and Figure 9 illustrates its flowchart. 

Finally, Figure 10 shows the details and complete 

flowchart of IESOVG in which the ESOVG is 

embedded.  
 

Algorithm: IESOVG 

Input: Sp,Tp, O, ρ =14o 

Output: WIE 

1 Call ESOVG 

2 While Ws is outside S 

3 Increase ρ by 8o 

4 Call ESOVG 

5 If WS is inside S 

6 Find obstacles Os located 

within S 

7 Break 

8 WIE=WS 

9 End 

10 End 
 

Figure 8 Iterative-ESOVG (IESOVG) algorithm 

 

 

In order to determine the nominal value of ρ, a 

simulation was performed. Figure 11 depicts the 

computation time versus number of obstacles and 

the resulting computation time is listed in Table 2. It is 

found that the smallest average computation time 

was obtained when the nominal value of ρ=14°. 

 
Figure 9 IESOVG flowchart 

 

 

 
 

Figure 10 IESOVG in which the ESOVG is embedded 
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Figure11 Simulation results of ESOVG with different nominal 

value of  

 

Table 2 Computation times with different angle ρ and 

number of obstacles 

 

Obstacles no. ρ=10° ρ=12° ρ=14° ρ=15° 

15 0.11s 0.13s 0.16s 0.17s 

30 0.20s 0.23s 0.28s 0.30s 

45 0.25s 0.32s 0.35s 0.33s 

60 0.34s 0.38s 0.44s 0.47s 

75 0.60s 0.52s 0.58s 0.69s 

90 0.58s 0.57s 0.69s 0.69s 

105 0.62s 0.68s 0.75s 0.79s 

120 2.03s 0.81s 0.90s 0.97s 

200 6.92s 8.05s 4.29s 4.50s 

Average 1.29s 1.30s 0.94s 0.99s 

 

 

In order to determine the increment angle of ρ, a 

further analysis was done through a simulation. The 

simulation results are listed in Table 3. In the 

simulation, different incremental angle was applied, 

i.e. 6º, 8 º and 10 º where the numbers of obstacles 

were set to be higher than 100 to force the planned 

path to be located outside the equilateral space. 

Based on the previous findings, ρ was initialized to 14° 

throughout the simulations.  
 

Table 3 Findings of different incremental ρ 

 

Obstacles no. ρ+6 ρ+8 ρ+10 

120 0.85s 0.66s 0.87s 

150 6.36s 2.34s 7.99s 

165 10.65s 2.72s 8.86s 

200 14.12s 3.38s 12.10s 

Average 8.00s 2.26s 7.46s 

 

 

It is evident from Table 3 that the increment of ρ 

by 8° resulted in a lower computation time 

compared with that of the other two. To get a 

clearer picture on this, Figure 12 depicts the 

simulation result for different incremental angles. 

 
 

Figure12 ESOVG with different incremental values of  

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Performance of VG 

 

As mentioned earlier, VG is slow especially in an 

obstacle-rich environment. We evaluated the 

performance of VG through a simulation in random 

scenarios with different number of obstacles and the 

outcomes are recorded in Table 4.  

 

Table 4 Computation time of VG with different number of 

obstacles 

 

Obstacles no. Computation time (s) 

15 0.88 

30 1.74 

45 3.92 

60 7.25 

75 11.08 

90 15.86 

105 20.41 

120 27.16 

135 33.63 

150 40.33 

 

 

From Table 4, it is observable that if the numbers 

of obstacles are increased then the computation 

time also increases drastically. For instance, when the 

number of obstacles was 15, the computation time 

was 0.88 s. With 150 obstacles, the recorded 

computation time was 40.33 s.  

It clearly shows that the increase in the 

computation time is not linearly proportional with the 

number of obstacles, but almost exponential as 

visualized in Figure 13. 

 

Different angle ρ=10 

Different angle ρ=12 

Different angle ρ=14 

Different angle ρ=15 
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Figure 13 VG Computional time Increases exponentially as 

the number of obstacles increases 

 

 

3.2 Performance of ESOVG  
 

ESOVG generates equilateral space depending on 

the input angle ρ that limits the area in C-Space. 

Whereas in VG, all the area in C-Space was 

calculated as elaborated in Table 5. 

  
Table 5 Improvement rate of ESOVG 

 

 VG ESOVG  

O
b
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a

c
le

s 
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(u
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v
e

m
e

n
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R
a

te
 (

%
) 

15 0.1861 520.1342 0.0678 520.1342 63.5 

30 0.6522 520.1342 0.1310 520.1342 79.9 

45 1.4569 627.4493 0.1609 627.4493 89.0 

60 2.2356 631.0025 0.2439 631.0025 89.0 

75 3.2086 645.6740 0.3541 645.6740 89.0 

90 4.4142 645.6751 0.3880 645.6751 91.2 

105 6.0464 645.6751 0.4545 645.6751 92.5 

120 7.3872 750.2257 0.6156 750.2257 91.7 

150 11.8672 910.8724 1.0334 910.8724 91.3 

 

 

When the number of obstacles was 15, the 

computation time for finding a path by conventional 

VG was 0.1861 s, and by ESOVG was 0.0678 s. When 

the number of obstacles was 150, the computation 

time by conventional VG and ESOVG were 11.8672 s 

and 1.0334 s, respectively. The improvement 

recorded by ESOVG was 63.5 %-91.3 %.  

Figure 14 clearly shows the trends of computation 

times for both the conventional VG and ESOVG 

which indicate that when the number of obstacles 

escalates, the computation time of conventional VG 

increases exponentially, whereas it rises almost 

linearly for ESOVG.  
 

 

Figure 14 computation times of VG and ESOVG 

 

 

Table 5 reveals that both VG and ESOVG produce 

paths of identical lengths. This proves that while 

ESOVG reduces the computation time, it maintains 

the optimality of the resulting path in terms of length. 

 

3.3 Performance of IESOVG 

 

Simulation results for both VG and IESOVG in an 

identical random scenario with 30, 75 and 110 

obstacles are shown in Figure15 (a)-(f). Note that, the 

red colored obstacles were used for path 

calculation. Figure 15(a) depicts the simulation for 

VG where 30 obstacles were used whereas in the 

same scenario shown in Figure 15(b), IESOVG used 

only 4 obstacles to calculate a collision-free path. 

When the numbers of obstacles were increased to 75 

in 15(c), it was only 9 obstacles used by IESOVG as 

shown in Figure 15(d). In Figure 15(e), 15 obstacles 

were used by IESOVG. Table 6 shows the comparison 

of the computation time and path length of the 

conventional VG and IESOVG. It reveals that IESOVG 

is relatively faster compared to the VG in terms of 

computation time. 

From the table, in a scenario with 30 obstacles, 

the computation time by conventional VG was 1.74 

s, and 0.16 s by IESOVG. IESOVG improved the 

computation time up to 90.8 % and the path length 

for both IESOVG and conventional VG were identical 

at 990.86 m. As the number of the obstacle increased 

to 75, the computation time of conventional VG was 

11.08 s while the IESOVG’s was 0.3 s, which improved 

the VG computation time by 97.9 %. In this case, the 

path length for both IESOVG and VG were again 

identical, i.e. 992.08 m. When the number of the 

obstacle was further increased to 135, the 

improvement rate recorded was the highest which 

was 97.77 %, where the computation times for 

conventional VG and IESOVG were 33.63 s and 0.75 

s, respectively. Simulation results with 135 and 150 

obstacles can be observed in Table 6.  

Please note that the scenarios used in both 

performance comparisons i.e., ESOVG Vs VG and 
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IESOVG Vs VG are different hence they produced 

different results.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 
Figure 15 IESOVG Simulation at different scenarios 
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Table 6 Improvement rate of IESOVG 

 
 VG IESOVG  IMPROVEMENT 
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%
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30 1.74 990.86 0.16 990.86 90.80 0.00 

45 3.92 992.08 0.21 992.08 94.64 0.00 

60 7.25 992.08 0.25 992.08 96.55 0.00 

75 11.08 992.08 0.30 992.08 97.29 0.00 

90 15.86 992.12 0.39 992.12 97.54 0.00 

105 20.41 992.17 0.50 992.17 97.55 0.00 

120 27.16 992.17 0.66 992.17 97.57 0.00 

135 33.63 992.49 0.75 992.51 97.77 2×10-3  

150 40.33 994.81 2.34 994.83 94.20 2×10-3  

 

 

 

 
 

Figure16 Path length of VG and IESOVG 

 

 

The path lengths obtained by VG and IESOVG are 

tabulated in Table 6 and plotted in Figure 16. It is 

clear that the path generated by the IESOVG was 

almost identical to the conventional VG. The largest 

path length difference between VG and IESOVG was 

0.02 %, which is insignificant. Therefore, IESOVG is 

considered as an optimal path planner.  

Figure17 shows the improvement made by the 

IESOVG for the computation time. Here, the graph 

indicates that the IESOVG managed to produce a 

path more than 90 % faster than that of VG 

throughout different numbers of obstacles. It also 

shows that the computation time was increased 

exponentially with the increment of the obstacles’ 

numbers for VG, while the computation time of 

IESOVG was increased almost linearly.  

In Table 5 and in Table 6, the path length and the 

random distribution number of obstacles are not 

same. Thus, computation time and path length are 

different in both scenarios. In both setups, the 

developed algorithm worked successfully. 

 

 
 

Figure17 Average Computational time comparison 

between VG and IESOVG 

 

 

Finally, we will discuss about the completeness of 

IESOVG. Completeness is an important criterion of 

any path planning algorithm. An algorithm that holds 

this criterion has the capability to find a path in any 

scenario and it also reports if no path exists there. 

Simulation to test the completeness of IESOVG 

algorithm was run in 100 random scenarios with 50 

obstacles in the C-spaces. From the findings, it can 

be concluded that IESOVG is a complete algorithm 

since it is able to find a path in every scenario. Figure 

18(a) – 18(d) illustrate some of the simulation results of 

finding paths using IESOVG in random scenarios. 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 

Figure 18 IESOVG found complete paths 

 

 

 

4.0 CONCLUSION 
 

The performance of IESOVG and conventional VG in 

terms of path length and computation time was 

compared and analyzed in this work. The obtained 

results prove that the IESOVG is relatively faster than 

the conventional VG and it is also capable to 

produce optimal paths. IESOVG connects a line 

between the starting point and the target point of 

shortest path lengths to form an equilateral space 

and hence, it is complete. The angle of equilateral 

space was initially set to ρ=14°. When a path is not 

found within the equilateral spaces, the angle is 

expanded by 8º. IESOVG manages to reduce the 

computation time than the conventional VG while 

maintaining the shortest distance. This is because the 

IESOVG only considers few numbers of obstacles in a 

C-space covered within an enclosed area and it 

results in less complex visibility graphs. Regarding 

computation time, the IESOVG provided improved 

result of 97.77 % in comparison with VG. In average, 

the IESOVG performed above 90 % better 

computation time while path length was kept almost 

the same.  
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