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Abstract 
 

The Dual-Tree Complex Wavelet Packet Transform (DT-CWPT) has been 

successfully implemented in numerous field because it introduces limited 

redundancy, provides approximately shift-invariance and geometrically 

oriented signal in multiple dimensions where these properties are lacking in 

traditional wavelet transform. This paper investigates the performance of 

features extracted using DT-CWPT algorithms which are quantified using k-

Nearest Neighbors (k-NN) and Support Vector Machine (SVM) classifiers for 

detecting voice pathologies. Decomposition is done on the voice signals using 

Shannon and Approximate entropy (ApEn) to signify the complexity of voice 

signals in time and frequency domain. Feature selection methods using the 

ReliefF algorithm and Genetic algorithm (GA) are applied to obtain the 

optimum features for multiclass classification. It is observed that the best 

accuracies obtained using DT-CWPT with ApEn entropy are 91.15 % for k-NN and 

93.90 % for SVM classifiers. The proposed work provides a promising detection 

rate for multiple voice disorders and is useful for the development of computer-

based diagnostic tools for voice pathology screening in health care facilities. 
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Abstrak 
 

Kaedah Dual-Tree Complex Wavelet Transform (DT-CWPT) telah berjaya 

dilaksanakan dalam pelbagai bidang kerana ia menghadkan lelebihan, 

menyediakan anggaran peralihan anjakan dan isyarat berorientasikan 

geometri pelbagai dimensi di mana ciri-ciri ini kurang dalam transformasi 

wavelet yang tradisional. Artikel ini mengkaji prestasi kaedah pengekstrakan ciri 

dengan menggunakan algoritma DT-CWPT yang diklasifikasi menggunakan 

teknik k-Nearest Neighbors (k-NN) dan Support Vector Machine (SVM) untuk 

mengesan pathologi suara. Penghuraian komposisi suara dilakukan dengan 

menggunakan entropi Shannon dan Anggaran (ApEn) untuk mengurangkan 

kerumitan isyarat suara dalam domain masa dan frekuensi. Kaedah pemilihan 

ciri menggunakan algoritma ReliefF dan genetik (GA) digunakan untuk 

mendapatkan ciri-ciri optimum pelbagai kelas. Pengelasan terbaik yang 

diperoleh menggunakan DT-CWPT dengan entropi ApEn adalah 91.15% untuk k-

NN dan 93.90% untuk SVM. Kaedah yang dicadangkan ini memberikan kadar 

pengesanan pelbagai penyakit gangguan suara dan berguna untuk 

pembangunan alat diagnostik berasaskan komputer untuk pemeriksaan 

patologi suara di kemudahan penjagaan kesihatan. 

 

Kata kunci: DT-CWPT, Pengekstrakan Ciri, Pemilihan Ciri, Pathologi Suara 
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1.0 INTRODUCTION 
 
Feature extraction is a conversion sequence of 

speech samples process into observation vectors set 

which represent events in a probabilistic space over 

which classification is performed [1]. Numerous 

literatures have been published in voice pathology 

fields using acoustic parameters such as pitch, 

formants, jitter and shimmer, Noise-to-Harmonic 

Ratio, Soft Phonation Index, Relative Average 

Perturbation, glottal-to-noise excitation ratio, 

Amplitude Perturbation Quotient, Mel-Frequency 

Cepstral Coefficients (MFCC), modulation spectra, 

bicepstrum, inferior colliculus coefficients, sample 

and ApEn entropy and empirical mode 

decomposition [2, 3 and 4]. Recently, significant 

attention has been addressed to analyze signals in 

time-frequency domain analysis namely wavelet 

analysis. Wavelets provide a theory analogous to 

Fourier analysis and have been used for data 

compression in both image and sound processing 

applications. Since the voice signal is a highly non-

stationary signal, Fourier transform is not a very 

suitable tool to analyze non-stationary signal as the 

time-domain information is lost during the frequency 

transformation [5]. Since conventional wavelets 

based features have several drawbacks such as 

ringing, shift variance, aliasing and lack of 

directionality [6], wavelets have been evolved. 

Hariharan et al. [5] proposed the Wavelet Packet 

Transform (WPT) and singular value decomposition 

for normal or pathological vocal fold pathology 

detection. The proposed weighted features using k-

means clustering-based gives a promising result of 

almost 100% accuracy. This work involved 57 normal 

and 173 pathological signals from Massachusetts Eye 

and Ear Infirmary (MEEI) voice disorders database 

whilst 24 normal and 24 pathological voices from 

MAPACI speech pathology database. Saidi and 

Almasganj [7] classified the normal or pathological 

voice using a five-band wavelet system employing a 

GA to determine the optimal wavelet parameters 

and shown good performance close to 100%. 

Different samples containing 57 normal and 653 

pathological signals from MEEI database were used. 

Wavelet Packet Decomposition (WPD) combined 

with MFCC as feature extraction introduced by 

Majidnezhad [8] developed a higher accuracy of 

94.24% and lower response time with reduced 

feature vector from 139 to 30 features. This 

approached were based on the hybrid of GA as 

feature reduction and artificial neural network as the 

classifier using MEEI database. 

A four-class classification of voice disorders has 

been studied by Akbari and Arjmandi [9] using 

Discrete Wavelet Packet Transform (DWPT) tested on 

the MEEI database with 53 normal voice samples, 72 

A–P squeezing samples, 85 hyperfunction samples 

and 48 samples from gastric reflux. The use of 

Shannon entropy and energy features was able to 

provide the precision of 93.33% and 94.67%, 

respectively. These best rates achieved by level 

eighth of DWPT using Multi-class Linear Discriminant 

Analysis (MC-LDA), with 256 coefficients classified by 

the multi-layer neural network. Che Kassim et al. [10] 

reported the use of DT-CWPT based features gave 

99.43% accuracy for pairwise classification tested 

using 53 normal and 106 abnormal samples from 

MEEI database. The abnormal samples were further 

studied in multiclass classification where the highest 

achievement reported from DT-CWPT with entropy 

features was 78.21% and 94.09% using k-NN and SVM 

classifier respectively. To overcome the low 

performances in multiclass analysis obtained from full 

64 features produced by DT-CWPT, feature selection 

using ReliefF was proposed by the same authors [11]. 

However, a small increased in accuracy and 

reduced classification time with the selected 30 

features acquired. 
A binary classification deals with two classes 

(abnormal and normal) while multiclass handles 

more than two classes of vocal fold pathology which 

means a sample needs to be determined between 

more query instances, therefore problem becomes 

more complex and need more features. More 

features leads to higher computation as dimension 

of features are higher. Therefore, there is a need to 

reduce the feature dimension, either by feature 

reduction or selection methods that can reduce 

complexity and improved accuracy. Selection of 

salient features from the whole features is needed to 

reduce the misclassification error rate [8]. Some of 

the popular techniques for dimensional reduction 

are GA, Principal Component Analysis, ReliefF, Linear 

Discriminant Analysis, Higher-Order Singular Value 

Decomposition, Fisher Discrimination Ratio and 

Minimum Redundancy Maximum Relevance [12]. 

According to Roffo [13], the overfitting chances 

increase with the number of features, therefore, 

feature selection can improve algorithms 

performance and classification accuracy. These 

methods deal with selecting the best feature set and 

reducing correlation between features which speeds 

up training time and as well as improved model’s 

performance to develop an efficient analysis tool. 

Extracting distinct quality features from pathologic 

voices appears to have the best outcome in the 

voice disorders classification [9]. 

Voice pathology database has a limited number 

of pathology available with unevenly distributed 

number of samples from different sets of 

pathological voice. These limitation number and 

sample differences contribute to the performances 

of multiclass classification. It is known that the 

classification accuracy of voice pathology 

detection systems extremely depends on the 

dataset and its characteristics such as the volume of 

dataset [8]. From the previous works discussed, it is 

observed that the wavelet packet method produce 

more features number from its subbands depends on 

chosen decomposition levels. DT-CWPT 

decomposition produces complex coefficients by 

using a dual-tree of wavelet filters to obtain real and 

imaginary coefficients. Thus, introduces good 

properties such as limited redundancy, provides 

approximately shift-invariance and geometrically 

oriented signal in multiple dimensions [14] which 

were lacking in conventional wavelet transform. Its 

multi-resolution feature extraction break a signal into 

sine waves of various frequencies capable of 

extracting local and global information revealing 

important aspects like trends, breakdown points, 
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discontinuities in higher derivatives, and self-similarity 

which characterizes a signal [15]. The transform is 

approximately shift-invariant meaning if the input 

sequence is changed by an arbitrary number of 

samples; the energy in each subband is preserved. 

The DT-CWPT is approximately analytic which results 

in the multi-dimensional form of the transform will be 

geometrically oriented in two or more dimensions.  

With those properties mentioned, the complex 

coefficients obtained from the DT-CWPT 

decomposition give more advantages in good time-

frequency resolution information. This would be 

useful as an effort to extract better quality features 

that can contribute to the overall best performance 

for detecting the multiple voice pathology. Also with 

features optimization, it demonstrates better 

performances as an efficient tool for vocal fold 

analysis. Hence, this motivates us to explore the DT-

CWPT based features for multiple voice pathology 

detection with the optimized features from ReliefF 

and GA algorithms quantified using k-NN and SVM 

classifiers. The proposed work is expected to be 

useful for the development of computer-based 

diagnostic tools for voice pathology detection. 

 

 

2.0 METHODOLOGY 
 

Voice pathologies detection system was developed 

to distinguish between normal person and patient 

who have voice pathologies. The overall block 

diagram for the proposed voice pathology analysis is 

shown in Figure 1.  

 

 
 

Figure 1 Proposed voice pathology analysis block diagram 
 

 

MEEI voice disorder database is used for the 

experiments to evaluate the proposed method. MEEI 

database is the only commercially available 

database used in most studies of voice pathology 

detection and classification [16]. A total of 106 voice 

samples containing three types of pathological 

voice are used as shown in Table 1. It’s difficult to 

compare the performance due to the different 

dataset and uneven numbers of samples chosen 

from different databases. Therefore, the data were 

selected as to standardize the samples and 

benchmark with existing works in [10] and [11]. The 

voice samples are sustained vowel /a/ produced at 

normal pitch sampled with a 25 or 50 kHz sampling 

rate in a controlled environment. All files were 

downsampled to 25 kHz to have a uniform sampling 

frequency [2, 17]. 

 
Table 1 Voice samples used in multiclass pathology analysis 

 

Pathology Class MEEI Database 

1 Vocal Nodules 19 

2 Vocal Paralysis 67 

3 Vocal Polyp 20 

Total Samples  106 

 

 

2.1 Feature Extraction 

 

The extraction of feature is to initially parameterize 

the voice signal to acquire the best-voiced sound 

representation for a specific class. WPT presents a 

time-frequency analysis based on quantifying cross-

correlation between a mother wavelet and 

analyzed signal. The energy compaction and 

decorrelation properties of WPT, make the wavelet 

domain useful for signal processing especially in the 

parameterization of pathologic speech. 

DT-CWPT is an extension to the Dual-Tree 

Complex Wavelet Transform (DT-CWT) algorithm. It is 

constructed by decomposing both sub-bands of first 

and second filter-bank repeatedly in the real and 

imaginary tree using low or high-pass perfect 

reconstruction filter-banks. The filter-banks used in the 

first decomposition should also be used to 

decompose the second filter-bank of the DT-CWT in 

order to preserve the Hilbert transform relationship of 

those branches. The first stage high-pass 

branch,h1
(1)(n) and h’1(1)(n) satisfy h’1(1)(n) = h1

(1)(n-1) 

.This is exactly the same relationship satisfied by the 

first stage low-pass filters, h’0(1)(n) = h0
(1)(n-1). The 

second wavelet packet filter-bank is obtained by 

replacing the first stage filters hi
(1)(n) by hi

(1)(n-1) and 

by replacing hi(n) by h’i(n) for  i∈ {0,1}. This process 

generates two wavelet packet filter-banks of DT-

CWPT operating in parallel. Some filters are the same 

in the first and second wavelet packet filter-bank. 

Figure 2 below represented a four-level DT-CWPT for 

the first wavelet packet filter-bank. DT-CWPT 

possessed the same properties as DT-CWT such as 

shift-invariance and good directional selectivity but 

with fewer energy leakages into its negative 

frequency bands [14]. 

 

Voice Database 

(Input Signal) 

DT-CWPT based on  

ApEn and Shannon entropy 

Feature Selection 

 (ReliefF / GA) 

Classification 

 (k-NN / SVM) 

Vocal Paralysis 

 

Vocal Polyp 

 

Vocal Nodules 
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Figure 2 Four-level DT-CWPT for the first wavelet packet 

filter-bank [14] 

 

 

The decomposition level employed to the 

wavelets determines the frequency intervals for 

decomposing the original signal. For j levels of 

decomposition, the wavelet packets produce 2j sub-

bands consisting of different coefficients sets. Several 

levels were investigated and it is observed that the 

best precision obtained from the fifth level of the 

wavelet decomposition. In this paper, the 5th level 

DT-CWPT yields 64 sub-bands (25 x 2 wavelet packet 

filter-banks) and further calculated based on 

entropy measures, ApEn and Shannon entropy. The 

entropies were used to characterize the rate of 

creation of information from the extracted feature in 

the sub-bands and to signify the complexity of voice 

signal in both time and frequency domain. 

Shannon entropy averaged the unpredictability 

and irregularities information that has been hidden in 

a pathologic speech signal within the WPD sub-

bands. Shannon entropy is capable to model 

abnormalities appropriately in the vocal folds that 

result in local discontinuities, uncertain high random 

property series of events, quasi-noise components, 

signal sudden variations and distorted spectrum for 

analyzed speech [9]. The Shannon entropy is defined 

by the following equation (Equation 1).  

𝑆ℎ𝐸𝑛 =  − ∑ 𝐶𝑗,𝑘 log(𝐶𝑗,𝑘)

𝑗,𝑘

           (1) 

Where 

j decomposition level number  

k wavelet packet coefficient number in the 

respective sub-band. 

 

ApEn is a measure of regularity of data and 

complexity that evaluate efficiently even over 

relatively short time series which is well-suited for the 

pathological voice analysis. It measures the 

differences between the two time-series probabilities 

of m length templates that are close to each other 

and m+1 length templates that are close to each 

other. Therefore, ApEn shows the probability of 

creating a new pattern with increasing of the 

dimension template. The greater the probability 

values described more complex time series. ApEn 

introduced by Pincus et al. [18] is defined as in 

equation (Equation 2). 

 

ApEn (𝑚, 𝑟, 𝑁)  =  𝛷𝑚 (𝑟)  −  𝛷𝑚 + 1(𝑟)            (2) ,  

for an N-dimensional time series: 

𝛷𝑚(𝑟) =  (𝑁 − 𝑚 + 1)−1  ∑ 𝑙𝑛

𝑁−𝑚+1

𝑖=1

𝐶𝑖 
𝑚(𝑟) 

Where: 

𝑙𝑛 the natural logarithm 

m the embedding dimension 

r the threshold (filtering level) 

 

2.2 Feature Selection 

 

In this approach, the feature selection method using 

the ReliefF algorithm and GA was added to select 

the most relevant features while reducing 

redundancy for multiclass classification. Feature 

selection methods reduce the dimensions of features 

without much loss of the total information. The ReliefF 

is extended from Relief to support multiclass 

classification, supervised filter algorithms that select 

features to isolate instances from different classes. 

Euclidean distance is taken as correlation index and 

then features are weights according to how well 

they differentiate instances of different classes. 

ReliefF selects an instance (Ri) randomly then 

searches for k from the same class of its nearest 

neighbours, called nearest hits (Hj). k nearest 

neighbours from each of the different classes also 

been searched called nearest misses (Mj(C)). 

Depending on their values for Ri, Hj and Mj(C), It 

updates the quality estimation W[A] for all attributes 

A. Then it averages the contribution of all the hits 

and all the misses as in equation (Equation 3). Each 

class of the misses contribution is weighted with a 

prior probability of that class P(C) which is predicted 

from the training set. Based on preliminary empirical 

testing, the value of k=10 was suggested and has 

been widely accepted as the default setting [19]. 

The best features ranking based on the weights of 

the features were then quantified by classifiers. 

 

W[A]≔W[A]- ∑
diff(A,Ri,Hj)

(m.k)
+

k

j=1

∑ [
[P(C)]

1-P(class(Ri))
  ∑ diff (A,Ri,Mj(C))

k

j=1

] /(m.k)

C≠class(Ri)

       (3) 

 

GA introduced by Holland [20] is inspired by 

Charles Darwin’s natural evolution theory that 

reflects natural selection process where the fittest 

individuals are chosen for reproduction in order to 

generate next-generation offspring . It is a stochastic 

approach which studies environment nature and 

picks up the best solution among a potential 

solutions population [8, 21]. It considers as robust 

optimization and search methods that use some 

mechanisms such as initial population, natural 

selection, fitness function, reproduction, crossover, 

mutation and then chooses the optimal solution. The 

values of GA’s parameters were adjusted 

experimentally to achieve a better performances 

where some parameters are also mentioned by 

Majidnezhad [8] and Oluleye et al. [22]. The 

suggested parameters used in this paper for the GA 

algorithm were 0.5 for the arithmetic crossover using 

a uniform mutation of 0.05 for 100 populations set as 

binary strings. A fitness function, fit in equation 
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(Equation 4) is defined to evaluate the features 

discriminative potential in each subset. 

𝑓𝑖𝑡 =
𝛼

𝑁𝑓
+ 𝑒𝑥𝑝 (

−1

𝑁𝑓
)            (4) 

Where: 

α the k-NN based classification error 

Nf cardinality of the selected features 
 

Lower fitness individuals have a better survival 

chance into the mating pool or next generation. The 

algebraic structure of this equation ensures the 

learning of the GA reduced number of features 

selected and minimized error [22]. 
 

2.3 Classification 
 

The voice pathology classification can be seen as 

pattern recognition and are an important tool to 

discriminate between normal and pathological 

voice or to know the disease from a speech signal 

[23]. The selected features become the input to k-NN 

and SVM classifier aiming at identifying the three 

types of voice pathologies which are vocal nodules, 

paralysis and polyp in this study. A 10-fold cross-

validation classification scheme is used to prove the 

reliability of the results for both classifiers. The data 

are divided equally into 10 segments where 10 

repetitions of training and testing are performed in 

which; a different segment of data is used to avoid 

the overlap. 

In k-NN, an object is classified by a majority vote 

of its neighbour, with the object being assigned to 

the class most common amongst its k-nearest 

neighbours. The number of neighbours, k is a positive 

integer varied between 1 and 10 for a given training 

and test data. The Euclidean distance measure is 

used to locate the nearest neighbour and find the 

closest members of the training set to the test class 

being examined. Equation 5 calculated the 

Euclidean distance metrics d(x,y) between two 

points x and y.   

𝑑(𝑥, 𝑦) =  ∑ √𝑥𝑖
2 − 𝑦𝑖

2
𝑁

𝑖=1
             (5) 

The SVM builds a model, specifies the hyperplane 

that separates the different classes and maps the 

decision boundary for each class. The SVM with 

radial basis function as a kernel was utilized because 

it has less restriction on the data volume and number 

of features, more general than the linear kernels and 

it produces better accuracy compared to other 

kernel functions [24,25]. Intuitively, a good separation 

is achieved by the hyperplane that has the largest 

distance to the nearest training data point of any 

class (so-called functional margin), since in general 

the larger the margin the lower the generalization 

error of the classifier [26]. The best combination of 

two SVM parameters; cost (c) and gamma (γ) were 

obtained using LIBSVM selection tool which has been 

implemented by Chang and Lin [27]. 
 

 

3.0 RESULTS AND DISCUSSION 
 

In this paper, several experiments were made by 

taking into account the number of features 

produced and classification time taken before and 

after feature selection. Comparison of average 

multiclass performances using features produced by 

DT-CWPT based on ApEn and Shannon entropy with 

and without feature selection is shown in Figure 3. DT-

CWPT produced 64 coefficients from 5th level and it 

can be seen that not all features are informative and 

useful. Overall results show the performance of 

features increased between 2 to 11% using GA with 

a reduced number of features. For k-NN classifier, DT-

CWPT based on ApEn with GA gives the accuracy of 

91.15 % and 87.51% for Shannon entropy. For each 

entropy mentioned earlier, a higher performance of 

93.90% and 92.23% is obtained from SVM. The 

accuracy with ReliefF algorithm just gave a slight 

improvement about ±1-2% accuracy with reducing 

half of the DT-CWPT full features. 

 
 

Figure 3 Performances of features produced by DT-CWPT 

before and after feature selection 

 

 

Performances were comparable with Akbari and 

Arjmandi [9] using MC-LDA with wavelet packet-

based energy and Shannon entropy which gave the 

accuracy of 93.33% and 94.67%, respectively. The 

work was selected as an ideal opportunity for 

comparison because they had used the same 

database with a conventional wavelet type. 

However, their work utilized a different size of the 

dataset, numbers of features extracted from a 

different type of voice pathologies using different 

classification methods. Further investigations were 

made and compared with 5th level WPT with the 

same feature selection and classifiers method. The 

details are as shown in Table 2 and Table 3 for each 

wavelet-based on ApEn using k-NN and SVM 

classifiers respectively. GA performed well in both 

wavelets as it increases the accuracy with reducing 

features to 7 out of 32 features for WPT and 18 

features for DT-CWPT as well as decreased 

classification time. 

Table 4 and Table 5 compare classification results 

of WPT and DT-CWPT based on Shannon entropy 

before and after feature selection using k-NN and 

SVM classifier. Again, GA performed well in both 

wavelets as it increases the accuracy with reducing 

features to 6 out of 32 features for WPT and 14 

features for DT-CWPT. Overall, SVM shows better 

improvement in accuracy with reduced features 

and better classification time. Using all features it 

takes almost 20 seconds compared to after applying 

the feature reduction which takes only about 10 

ApEn/k-NN ApEn/SVM Shannon/k-NN Shannon/SVM

GA 91.15 93.90 87.51 92.23

ReliefF 80.35 90.40 79.24 87.77

Full Features (64) 79.80 92.00 78.73 89.19
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seconds while k-NN produced whether the same or 

a slightly improved in accuracy and time.  

 
Table 2 Comparison of wavelet analysis based on ApEn 

entropy using k-NN classification 
 

Wavelet 

Analysis 

No. of 

Features 

Accuracy (% ± sd) 
Time 

(s) Average 
Class 

1 

Class 

2 

Class 

3 

WPT ApEn entropy 

GA 7 
81.60  

± 1.05 

90.62  

± 1.14 

69.55  

± 1.89 

84.80 

± 1.97 
0.65 

ReliefF 30 
79.95  

± 0.83 

92.00  

± 1.41 

52.09  

± 1.31 

95.88  

± 1.35 
0.65 

Full 

Features 
32 

80.15  

± 0.47 

92.00  

± 1.41 

52.84  

± 1.44 

95.74  

± 0.83 
0.69 

DT-CWPT ApEn entropy 

GA 18 
91.15  

± 0.71 

95.29 

± 1.16 

84.48 

± 1.60 

93.69 

± 1.35 
0.62 

ReliefF 30 
80.35  

± 1.63 

95.15 

± 1.21 

55.97 

± 2.56 

90.00 

± 3.18 
0.63 

Full 

Features 
64 

79.80  

± 0.92 

96.62 

± 0.99 

51.04 

± 2.20 

91.85 

± 1.27 
0.71 

 

 
Table 3 Comparison of wavelet analysis based on ApEn 

entropy using SVM classification 
 

Wavelet 

Analysis 

No. of 

Features 

Accuracy (% ± sd) 
Time 

(s) Average 
Class 

1 

Class 

2 

Class 

3 

WPT ApEn entropy 

GA 7 
86.20  

± 1.16 

91.69 

± 1.30 

77.76 

± 2.48 

89.26 

± 1.21 
8.30 

ReliefF 30 
89.65  

± 0.82 

94.15 

± 1.75 

79.85 

± 2.14 

95.00 

± 1.99 
13.59 

Full 

Features 
32 

91.20  

± 1.36 

92.15 

± 1.98 

88.66 

± 2.83 

92.79 

± 1.76 
13.61 

DT-CWPT ApEn entropy 

GA 18 
93.90  

± 0.61 

95.88 

± 1.67 

91.04 

± 0.00 

94.77 

± 1.49 
11.18 

ReliefF 30 
90.40  

± 0.57 

97.94 

± 1.03 

78.66 

± 1.58 

94.62 

± 1.66 
13.32 

Full 

Features 
64 

92.00  

± 1.15 

96.47 

± 1.24 

89.55 

± 1.57 

89.85 

± 2.63 
18.58 

 

 
Table 4 Comparison of wavelet analysis based on Shannon 

entropy using k-NN classification 
 

Wavelet 

Analysis 

No. of 

Features 

Accuracy (% ± sd) 
Time 

(s) Average 
Class 

1 

Class 

2 

Class 

3 

WPT Shannon entropy 

GA 6 
81.11  

± 1.74 

88.94 

± 1.44 

68.06 

± 3.39 

86.52 

± 2.52 
0.61 

ReliefF 30 
79.40  

± 0.71 

94.09 

± 0.86 

52.09 

± 1.79 

92.42 

± 1.43 
0.63 

Full 

Features 
32 

78.89  

± 0.95 

94.70 

± 0.80 

51.19 

± 2.34 

91.21 

± 1.56 
0.71 

DT-CWPT Shannon entropy 

GA 14 
87.51  

± 1.64 

96.25 

± 1.68 

72.84 

± 2.88 

93.94 

± 1.24 
0.56 

ReliefF 30 
79.24  

± 0.88 

93.75 

± 1.65 

48.51 

± 1.06 

96.36 

± 1.28 
0.62 

Full 

Features 
64 

78.73  

± 1.00 

94.84 

± 1.48 

45.97 

± 1.37 

96.36 

± 1.78 
0.71 

 

 
Table 5 Comparison of wavelet analysis based on Shannon 

entropy using SVM classification 
 

Wavelet 

Analysis 

No. of 

Features 

Accuracy (% ± sd) 
Time 

(s) Average 
Class 

1 

Class 

2 

Class 

3 

WPT Shannon entropy 

GA 6 
85.38  

± 0.77 

90.00 

± 1.63 

80.00 

± 1.60 

86.21 

± 2.31 
9.02 

ReliefF 30 
85.53  

± 1.46 

87.27 

± 2.87 

82.09 

± 1.86 

87.27 

± 2.28 
14.23 

Full 

Features 
32 

85.93  

± 1.52 

87.88 

± 2.37 

81.79 

± 1.37 

88.18 

± 3.56 
14.63 

DT-CWPT Shannon entropy 

GA 14 
92.23  

± 1.17 

95.31 

± 2.76 

90.45 

± 1.60 

91.06 

± 1.81 
10.96 

ReliefF 30 
87.77  

± 0.91 

82.34 

± 1.96 

95.07 

± 0.72 

85.61 

± 1.79 
14.38 

Full 

Features 
64 

89.19  

± 1.35 

84.38 

± 2.76 

97.01 

± 0.00 

85.91 

± 2.86 
19.89 

 

 

The best-achieved accuracy, 90.40% obtained 

from the combination of DT-CWPT based on ApEn 

and ReliefF (30 out of 64 features) using SVM. From 

observation for both wavelet methods, reducing 

features after the ReliefF algorithm gave the 

advantages in classification time (reduced 1-5s) with 

a little change in performances. As compared to 

GA, ReliefF method has a low computational burden 

in selection techniques because it evaluates and 

selects the feature subsets by focusing on the 

general characteristics without the chosen learning 

algorithm or the classifier been involved. It utilizes 

correlation and information techniques to search for 

the most pertaining features sets. ReliefF will not 

discriminate among the existing redundant features 

as it assembles the features by importance. 

 

 
 

Figure 4 Performances of the WPT and DT-CWPT analysis of 

3 voice pathologies after GA 

 

 

DT-CWPT after GA also shows a better accuracy 

within classes than WPT as summarizes in Figure 4 for 

the respective entropies and classifiers. The features 

produced from the proposed method are more 

detail and relevant compared to WPT since the 

algorithm used both real and imaginary tree. In 

comparison to k-NN, the SVM classifier has achieved 

better performance of 95.88 %, 91.04% and 94.77% 

for vocal nodules, paralysis and polyp accordingly. 

SVM provides a good out-of-sample generalization 

with proper parameters to achieve a flexible 

threshold in separating the classes. It can produce a 

unique solution, unlike neural networks as also 

discovered by Muhammad [28]. 

Amongst all the analysis, DT-CWPT achieved the 

best result with the selected number of features by 

GA. Performance amongst each class and 

misclassification seems to distribute evenly using the 

combination of these feature methods. As mention 

by Bayram and Selesnick [14], the best basis for the 

DT-CWPT are more stable compared to the best 

basis for the WPT when the input signal is shifted. GA 

find a set of feature subsets that minimize the 

misclassification rate [29] and provide significant 

advantages in generalization, at the expense of a 
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considerable computational cost and a certain bias 

to the classifier that is used [30]. GA use the chosen 

learning algorithm or the classifier performance 

feedbacks for each candidate feature subset 

evaluation which has a better fit for the chosen 

learning algorithm or the classifier. These promising 

results show the reliability of feature extraction and 

selection method combination in multiclass voice 

pathology analysis. 

 

 

4.0 CONCLUSION 
 

Feature extraction using the proposed DT-CWPT 

based entropies with GA seems to have a good 

potential in finding optimized features for multiclass 

voice pathology analysis. It is observed that the best 

achieved overall accuracy obtained from DT-CWPT 

with ApEn entropy, 91.15 % for k-NN and 93.90 % for 

SVM classifier. Both results show improvement in 

accuracy obtained after GA algorithms been 

applied. The feature selection techniques select the 

optimum features in DT-CWPT to achieve better 

performances. This new implementation of feature 

extraction using DT-CWPT could lead to better 

classification rates aimed at identifying the particular 

type of voice pathology. In future, more than one 

database can be used as a possible way to prove 

the reliability of the proposed wavelet feature 

extraction with feature selection and classification 

methods. 
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