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Graphical abstract 
 

 

Abstract 
 

The accuracy of sea surface heights (SSHs) estimation from satellite altimeters is 

strongly influenced by the microwave reflected signals (or waveforms). 

Waveforms in open oceans generally have ideal shapes following the Brown 

(1977) model. However, in coastal and shallow waters, the signals are disturbed 

by lands, thus resulting in complicated waveforms (non-Brown). Non-Brown 

waveforms produce inaccurate SSH estimations; therefore, specialized protocols 

such as waveform classification and retracking are crucial when attempting to 

produce accurate estimations. In this study, waveforms of Jason-2 and Jason-3 

satellite altimeters in the Halmahera were classified and retracked using several 

algorithms, such as Offset Centre of Gravity (OCOG), Ice, Threshold, and 

Improved Threshold. The results showed that waveforms in the Halmahera Sea had 

ten generic classes with dominant class of the Browns. The validation results 

showed that all retrackers (except OCOG) had the value of correlations 

exceeding 0.75, and Root Mean Square Error (RMSE) smaller than 25 cm at a 

distance of 5-20 km from the land. The Threshold 10% was the most common 

retracker that appeared with the highest improvement percentage (IMP), 

meanwhile the Ice retracker consistently produced the best correlation (0.86) and 

the lowest RMSE (16cm). The retracking results showed that waveform retracking 

generally can improve SSH estimation accuracy from ocean (standard) retracker.   
 

Keywords: Coastal altimetry, classification,  retracking, Jason-2, Jason-3 
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1.0 INTRODUCTION 
 

Indonesia is an archipelagic country, which contains 

of 17,504 islands and has long coastline of 99,093 km. 

Indonesia also has high variability of sea levels, thus 

making it vulnerable to sea level rise. The sea level rise 

in Indonesia is about 4.2 – 5.8 mm/year or higher up to 

twofold of the world sea level rise rate [1, 2, 3]. The 
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extreme sea level rise has negative impacts on the 

coastal environments and small islands, such as the 

possibility of flooding and inundation for coastal areas. 

Therefore, it is important to monitor the spatial and 

temporal dynamics of sea level there accurately. 

Many satellite altimeters have  been launched into 

space to measure sea surface heights (SSHs) that can 

support many oceanographic studies [4]. In terms of 

spatial and temporal coverages, satellite altimeters 

can provide more SSHs data than tide gauge 

measurements. Jason series is a satellite altimetry 

mission that has high temporal resolution (~10 day). 

The Jason-2 (launched in 2008) and Jason-3 

(launched in 2016) altimetric missions are capable of 

producing accurate SSHs estimations with high 

accuracy of up to 2.5 cm in the open ocean [5, 6]. 

In many cases, the accuracy of altimetric SSHs is 

influenced by the shape of waveforms. Waveform is a 

function of time and the power signals reflected from 

the earth's surface [7, 8]. In general, waveforms over 

homogeneous surface such as the open ocean have 

the ideal shape that can be described by the Brown 

model [9]. The Brown waveform has three main parts: 

thermal noise; leading edge; and trailing edge [8, 10]. 

Thermal noise has flat pattern and is the part when the 

time signals have not reached the sea surface. The 

leading edge is the part when the signals hit the sea 

surface (nadir), thus resulting in the ramp pattern with 

increasing power. The trailing edge is a reflection of 

wave energy around the nadir [8].  

SSHs estimation can be obtained by measuring the 

distance of satellites to the surface of the earth (or 

range) at the midpoint of the leading edge (or 

tracking point) [11]. However, in coastal waters, the 

waveform is contaminated by reflections on the land 

topography and the condition of the surrounding 

waters causing the waveform pattern to become 

complex (non-Brown waveform). This affects the 

leading edge position, which might shift  depending 

on the water’s condition, thus leading to a false SSHs 

estimation [10, 11, 12, 13, 14, 15, 16]. 

One of standard protocols to improve the 

accuracy of SSHs in coastal areas is waveform 

retracking [10, 11, 12, 14, 17]. This is a ground 

processing technique  to re-calculate the altimetric 

geophysical parameters, particularly the SSHs, by 

fitting and/or applying the waveforms to the 

appropriate retrackers [11]. Many studies have 

succeeded in increasing the accuracy of SSHs 

estimation in coastal areas with waveform retracking 

e.g., [11, 12, 16, 17, 18, 19, 20, 21]. [12] succeeded in 

increasing the accuracy of Geosat altimeter data 

waveform in Taiwan waters up to 20%. [15] retracked 

the Envisat waveforms in the Mediterranean sea with 

the highest improvement percentage of 59.8%. In 

2012, [19] increased the accuracy of Jason-1 and 

Jason-2 data in Australia around the Great Barrier Reef 

up to 86.96% with waveform retracking.  

Although various studies have been conducted to 

evaluate the performance of waveform retracking 

worldwide, their performance varies depending on 

water conditions and coastal topographies [15, 22]. 

Therefore, it was necessary to identify waveform types, 

retrack waveforms, and validate the waveform 

retracking results with local tide gauge data.  

Across Southeast Asia, several studies have been 

conducted to assess the retracking performance over 

the marginal seas [11, 20, 23, 24, 25, 26, 27, 28, 29]. The 

performance can be determined by comparing with 

geoidal height data and tide gauge data.  

Over the Indonesian seas, previous studies (e.g., 

[23, 25, 28, 29]) reported the performance of several 

retrackers using the geoidal height data, which 

highlighting the precision of retracked SSHs. While the 

accuracy of the retrackers is also valuable, such 

studies are yet to be done, thus becoming the 

motivation of this study.    

In this study, the regional performance of Jason-2 

and Jason-3 altimetric data over the complicated 

oceans at Halmahera Sea, Indonesia were assessed. 

This included the analysis of waveform classes, 

waveform retracking, and local accuracy assessment 

by comparing the retracking results with both geoid 

and tide gauge data. The focus of waveform 

classification in this study was to determine the 

changes in water conditions (i.e. distance from 

coastal areas and water depth) on the shape of the 

altimetry signal. The waveform classification was then 

useful for statistically describing the predominance of 

waveform shape in a particular area [8]. This study also 

intended to find the reliability of altimetric data, both 

without and with waveform retracking, over the 

complicated experimental regions, thus enabling 

operational studies such as sea level rise and coastal 

management. 

 

 

2.0 STUDY SITE AND DATA 

 

The study site was over Halmahera Sea, Indonesia at 

127°24'59.38"E-130°24'40.22"E and 2°29'35.84"N-

1°57'24.89"S (Figure 1). The Halmahera Sea has 

complex topography with varying depths from 

shallow (depth <200 m) to deep sea (depth >200 m). 

It is directly related to the Pacific Ocean, and crossed 

by the Indonesian throughflow. The existence of 

several bays and small islands in the Halmahera Sea 

further adds to the complexity of the water dynamics, 

which affect the signal reflections received by the 

satellite altimeter. 

This study utilized the satellite altimetry data from 

sensor geophysical data record (SGDR) type-D of 

Jason-2 (passes 75 and 164) from October 2016 to 

June 2017, and of Jason-3 (passes 164 and 253) from 

September 2016 to December 2018. They were high 

resolution (20Hz) data comprising of waveforms with 1-

104 gates.  

Bathymetry data were obtained from the National 

Bathymetry (BATNAS) published by National 

Geospatial and Information Agency of Indonesia 

(BIG) with a resolution of 6". The bathymetry data were 

used in the analysis of waveform classes. 
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For validation purpose, data from geoid model and 

tide gauge were used. The geoid data were based on 

the global geoid undulation model of Earth 

Gravitational Model 2008 (EGM08). It referred to the 

Geodetic System 1984 (WGS84) as the description of 

the earth's surface topography. The hourly tide gauge 

data were acquired from the Gebe port (TG Gebe) 

station recorded by BIG located about 30 km from 

track 164 of Jason-3.  

 

 
 

Figure 1 The study site over Halmahera Sea. Grey color is the 

land and shaded blue colors are sea depths. The black lines 

indicate tracks from Jason-2 (J2) and Jason-3 (J3). The 

location of Gebe tide gauge station is shown in red point 

 

 

3.0 METHODOLOGY 

 

3.1 Waveform Classification  

 

The Jason-2 and Jason-3 waveforms were classified 

using Support Vector Machine (SVM), a supervised 

learning machine technique that had a non-

parametric algorithm and was based on statistical 

learning theory. The objective of the SVM algorithm 

was to find the location of decision boundaries that 

produce the optimal grouping of classes. SVM built an 

optimal hyperplane as a decision surface based on 

the greatest margin between the classes [30].  

Classification using SVM involved two important 

steps: 1) the training mode using selective waveform 

samples; and 2) the simulating mode in which the 

trained SVM was applied to the remaining waveforms. 

According to [31], sufficient amount of training data 

are needed when training the SVM. It was stated that 

70 training data in each class might produce 

accurate classification results; however, larger size of 

training data can provide more accurate results. In 

the training mode, the SVM was fed with samples from 

waveform.  It consisted of 1,000 samples comprising of 

500 Brown waveforms and 500 non-Brown waveforms. 

The training mode generated a model from SVM 

algorithm that contained optimized parameters. In 

the simulating mode, the classes of the remaining 

waveforms were predicted based on the trained 

model. 

In this study, SVM were used to classify waveforms 

into two main classes, Brown and non-Brown. The 

dominant waveform classes in Halmahera were then 

identified visually (or manually). Identification of 

dominant classes was conducted by grouping 

waveforms based on the shape and positon of the 

leading edge. The shapes were categorized based on 

the modification of the waveform shape classes 

made by [8]. The classes were then analyzed by water 

depth and distance from the coast.  

 

3.2 Waveform Retracking 

 

In attempting to produce accurate SSHs, several 

retracking algorithms were performed. They were 

based on the freely available Ocean (or Maximum 

Likelihood Estimator-4, MLE4)[32] and Ice [33] 

retrackers from SGDR-D data, and the retrackers of 

Offset Center of Gravity (OCOG) [34], Threshold 

[35,36], and Improved Threshold [12]. The Threshold 

and Improved Threshold algorithms were implement-

ted with threshold values of 10%, 20%, and 50%. 

Detailed descriptions about the retracking algorithms 

were available from [12, 32, 33, 34, 35, 36].  

Retracking with several algorithms optimized the 

mid-point gate of the leading edge (related to the 

range and SSHs). This can be applied in Eq.1 to correct 

the midpoint gate estimated by the on-board tracker 

[15, 37, 38]:  

 

 

dr = 
c × ∆Ga

2
 × (Gr - G0)  (1) 

where, dr is the retracked range correction (m), c is 

the speed of light (299792458 m/s), ∆Ga is the time 

interval for one gate, Gr is the gate number of 

midpoint leading edge resulted from retracking (i.e. 

Ice, OCOG, Threshold, and Improved Threshold), and 

G0 is the nominal tracking gate (31 for J2 and J3).  

The retracked range (Rr) were obtained by adding 

the on-board tracker range (R) with the range 

correction (dr).  
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𝑅𝑟 = R + dr     (2) 

 

The SSH estimation resulting from retracking can be 

calculated using the following equation [13, 39]): 

 

SSH = H - Rr - ∆hdry - ∆hwet - ∆hiono - ∆hssb - htides - hatm

      (3) 

 

where, H is satellite altitude and h corrections are 

sea surface height corrections (e.g., ∆hdry  = – ∆hdry ). 

In producing accurate SSH, the range should be 

corrected from the atmosphere and ocean 

geophysical effects. This includes the dry tropospheric 

correction (∆hdry ) and inverted barometric height 

correction combined with high-frequency fluctuations 

(hatm ) from the European Centre for Medium-Range 

Weather Forecasts (ECMWF), the wet tropospheric 

correction (∆hwet) from the advanced microwave 

radiometric (AMR) detector, ionospheric correction 

(∆hiono) from the Poseidon-3B on Jason satellite, and 

sea state bias correction ( ∆hssb) based on empirical 

solution on GDR data [40].  

The oceanographic signals, such as tidal signals, 

also need to correct in order to avoid significant 

aliasing errors. There are several tide corrections (htides) 

need to be removed i.e., pole tide, solid earth tide 

and geocentric tide. In this study, the pole tide and 

solid tide used were from GDR data, while the 

geocentric tide was corrected by using the harmonic 

analysis from t-tide technique [41].  

 

3.3 Accuracy Assessment 

 

The quality of altimetric data was assessed by 

comparing with quasi-independent geoid height 

data and tide gauge. Comparison with geoid heights 

was intended to finding the data precision, 

meanwhile comparison with tide gauge was aimed to 

find both the precision and accuracy. 

  

3.3.1 Comparison with Geoid Data 

 

The performance of the waveform retracking against 

geoid data was calculating using the Improvement 

Percentage (IMP). From there, the best retracker can 

be identified. The IMP of several retracking algorithms 

were calculated by finding the standard deviation 

(SD) of the difference between SSHs and geoid [12,38] 

using the following equations: 

𝜎Ocean (or Retracking) = (
1

N
∑ (𝑥𝑖 − 𝑥̅)2N

𝑖=1 )

1

2
 (5) 

IMP = 
σOcean- σRetracking

σOcean
 ×100% (6) 

where, σOcean is the SD of the difference between 

the SSHs from ocean retracker and geoid height, and 

σRetracking is the SD of the difference between the SSHs 

from the retracking and geoid height. xi is value of the 

ith point in SSHs data set (from respective retracker), 𝑥̅ 

is the mean value of SSH data set, and N is the number 

of data points in the SSHs data set. 

3.3.2 Comparison/Validation with Tide Gauge 

 

For validation, the sea level anomalies (SLAs) resulting 

from waveform retracking were compared to the tide 

gauge data. The retracked SLAs were obtained by 

subtracting SSHs from mean sea surface (MSS). MSS 

data were based on MSS_CNES-CLS11 model 

provided in SGDR-D data. SLAs was calculated using 

the following equation: 

 

SLA = SSH – MSS    (7) 

 

To ensure consistency between altimetric retracked 

SLAs and tide gauge, the mean value of SLA time 

series from tide gauge was computed, and 

subsequently subtracted from the tide gauge SLAs to 

obtain the anomaly. Then, the t-tide technique [41] 

was applied to produce non-tidal SLAs from tide 

gauge. This technique was applied to get better tidal 

signals model [42], particularly for coastal oceans with 

varying geophysical processes [43].  

Concerning the temporal differences between 

both datasets (i.e., altimetry is every 9.999 days, and 

tide gauge is an hourly data), the hourly tide gauge 

data was searched at the closest time as the altimetry 

data. This is to enable comparison between them. 

The retracked SLAs were statistically analyzed by 

computing the correlation (r) and root-mean-square 

error (RMSE) using the following equation [44]: 

 

r =
cx,y

2

(SxSy)
 (8) 

RMSE = (
1

N
∑ (xi – y

i
)

2N
i=1 )

1

2
 (9) 

where, x is the SLAs resulting from waveform 

retracking, y is the tide gauge data, cx,y
2  is co-variant, 

Sx and Sy are the standard deviations and N is the 

number of data. 

 

 

4.0 RESULTS AND DISCUSSIONS 

 

This section described the results of waveform 

classification (Section 4.1) and the waveform 

retracking (Section 4.2 and 4.3). In Section 4.1, the 

percentage of waveform classes were computed 

and the dominant waveform classes were performed. 

In Section 4.2 and Section 4.3, the retracked SSHs and 

SLAs were evaluated using geoid height and tide 

gauge, respectively. 

 

4.1 Waveform Classes in Halmahera Sea 

 

The SVM classifier produced two classes of waveforms: 

1) Brown; and 2) non-Brown. Table 1 summarizes the 

findings by showing the percentage of waveform 

classes for the four satellite tracks. In general, the 

mean percentage of Brown class was larger (56%) to 

that of the non-Brown class (44%). However, it seemed 
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that the percentage of Brown class over the study site 

was extremely lower when compared to other study 

regions in Southeast Asia. For example, the 

percentage of Brown waveforms >90% [24] over the 

South China Sea, ~94% [25] over Java Sea, and 95% 

[29] over Natuna Sea. Furthermore, [45] found 91% 

non-ocean like waveforms of Sentinel-3A Synthetic 

Aperture Radar (SAR) altimetry over the marginal seas 

at Southeast Asia. 

 

Table 1 Mean percentage of Brown and non-Brown 

waveforms in the Halmahera Sea. The number of cycles are 

indicated as superscript letters a, b, c, and d 

 

 a20 cycles, b21 cycles, c85 cycles, d84 cycles 
 

 

The percentage of Jason-2 Brown class (>60%) was 

found superior to that of non-Brown class (<40%). 

Opposite findings were reported for Jason-3, in which 

the percentage of non-Brown (>51%) was always 

higher to that the Brown class (<50%). It was also seen 

that the percentage of both classes along track 164 

of Jason-3 were nearly equal (~50%). The high 

percentage of non-Brown class in this area was mainly 

due to the existence of North Maluku mainland and 

small islands (e.g., Ju Island, Gebe Island, Sajang 

Island, Gag Island, Boo Island, Obira Island, and 

Gumumu Island). These influenced and contamina-

ted the waveforms, thus creating the non-Brown 

pattern. Since the area had a steep contour 

topography (Figure 2), non-Brown waveforms were still 

found at deep water (>200 m). For instance, over 

Jason-3 pass 253, non-Brown waveforms were found 

at waters depth of 1071 m with a distance of 7.2 km 

from the land. 

Waveforms in different water depth  and distances 

to coastline (Figure 2 and Table 2) had different 

shapes due to varying combination of both land and 

sea bottom topography. These produced different 

noise levels in the waveform. Previous results in the 

Java Sea [25] showed that the higher the complexity 

of coastline topography, the more complicated the 

waveform shapes. [22] also reported that altimetry 

waveform depends on the distance between the 

altimeter footprint and the coastline, the type of the 

coastal terrains, and the shape of shorelines. 

 

 
 

Figure 2 Echogram of Jason-3 pass 253 waveforms in the 

Halmahera Sea (top). The associated latitude (in degree) 

and depth (in m) are also shown (bottom). Red box indicates 

the non-Brown waveform at the steep contour waters 

 

 

When the waveforms were further analyzed 

visually (or manually), the results showed that the 

waveforms over the Halmahera Sea have ten generic 

classes (Figure 3). Table 2 summarizes the waveform 

classes with their characteristics, distance to coastline, 

water depth, the coastal topography and 

percentage. 

Off the ten classes, eight classes (Class 1-8) were 

the non-Brown waveform and two classes (Class 9-10) 

were the Brown.  In general, classes 1-4 tend to be 

peaky patterns, either single peak or multi peak 

(Figure 3(a-d)), because they have a great influence 

from the land and sea bottom. They were found in 

near bay and small islands that had shallow waters 

(<200 m) and were close to the coastline (<17 km). 

Several studies in other regions reported similar 

findings, in which the peaky waveforms were found 

near to the coastline [8, 25, 29, 46, 47]. [8] also found 

that the highest percentage of peaky waveform was 

onshore, 5-6 km from the coastline. 

Classes 5-8 (Figure 3(e-h)) were the waveforms with 

disturbed trailing edge. They generally had either 

additional peaks (with increased power) or strong 

decreased power at the trailing edge. These classes 

were mostly found at deep water (>200 m) and were 

close to the coastline (up to 86 km). The classes 

correspond to waveforms with a hyperbolic (class 5 

and 6), a rise (class 7), and a fall (class 8) trailing edge. 

[8, 48] reported that the changes in the trailing edge 

could be defined by the changes in sea state in the 

littoral band. It indicated mostly reflection on specular 

surfaces in regions of weak winds and weak waves 

(sigma0 bloom events). The other factors, such as 

surface slicks, rain cells and cloud effects could also 

lead to the trailing edge changes [48]. 
 

 

 

 

Track 
Number of 

waveforms 

Percentage (%) 

Brown non-Brown 

J2-P075a 31822 75 25 

J2-P164b 25905  60 40 

J3-P164c 142834 49 51 

J3-P253d 122683 40 60 

Mean 56 44 



112                                  Sinurat et al. / Jurnal Teknologi (Sciences & Engineering) 83:3 (2021) 107–117 

 

 

Table 2 Generic classes in Halmahera Sea 
 

Generic Class Class characteristics 
Distance to 

coastline (km) 
Depth (m) Coastal topography 

Percentage 

(%) 

Class 1 Quasi-specular shape 0.3 - 4.7 1 - 307 Bay and small strait 1.1 

Class 2 
Peaky with noise on 

decreasing part 
0.3 - 16.6 2 - 200 

Bay and small islands 

waters 
2.3 

Class 3 
Peaky with noise on 

leading edge 
0.3 - 5.8 2 -149 

Bay and small islands 

waters 
0.1 

Class 4 

Peaky with noise on 

leading edge and 

decreasing part 

0.3 - 8.6 5 - 522 
Bay and waters near 

to mainland 
2.8 

Class 5 
Brown with noise echoes 

on trailing edge 
0.6 – 86 19 - 3100 

Wide bay and small 

islands waters 
6.7 

Class 6 
Brown with peak on 

trailing edge 
0.3 - 11.4 1 - 2377 

Bay, strait, and small 

islands waters 
4.9 

Class 7 
Brown with increasing 

trailing edge 
2.8 - 12.2 114 - 840 

Bay and small islands 

waters 
1.0 

Class 8 
Brown with strong 

decreasing plateau 
0.3 - 21.4 17 - 2377 Bay and strait 0.7 

Class 9 
Brown with shifted 

midpoint of leading edge  
1.1 - 128.5 38 - 4367 

Bay, small islands 

waters, waters near 

mainland, and 

offshore 

62.9 

Class 10 Ideal Brown 4.4 - 137.6 4 - 3034 Offshore 17.6 
 

 

 
 

Figure 3 The Jason-2 and Jason-3 waveform classes in the 

Halmahera Sea (the red line is the tracking gate). (a) Class 1, 

(b) Class 2, (c) Class 3, (d) Class 4, (e) Class 5, (f) Class 6, (g) 

Class 7, (h) Class 8, (i) Class 9, (j) Class10 

 

 

In general, the deeper and farther the waters from 

the land, the waveform pattern received by the 

satellite altimeter was getting closer to the ideal Brown 

pattern (class 10). However, due to the variability of 

sea states (e.g. surface roughness, wave, and rain), 

Brown waveforms with shifted mid-point of leading 

edge (class 9) might be observed. Class 9 and 10 

could be found both onshore and offshore up to 138 

km.    

The finding in Table 2 showed that the ideal Brown 

waveform has a small percentage. Instead, the 

dominant class in the Halmahera Sea was class 9 

(Figure 3i). In addition, the percentage of classes 1-8 is 

also quite high (>15 %) that are non-Brown. This 

indicated that more than 50% of the estimated SSHs in 

the Halmahera Sea was suspected to be inaccurate. 

The finding from this section alerted the need of 

waveform retracking to optimize the estimation of 

SSHs. 

 

4.2 Evaluation of Waveform Retracking Performance 

against Geoid Height  

 

The results of waveform retracking showed that each 

retracker had different performance, both spatially 

and temporally. Waveform retracking results on the 

same track but different periods gave different 

performances. For example, temporal retracking 

result of Jason-3 pass 164 showed that all retrackers 

applied in Halmahera Sea produced a low IMP in 

November 2016 (<20%), produced varying IMPs 

(ranging from 3% to 73%) in May 2017, and equally 

produced a high IMP in September 2017 (> 45%). 

Waveform retracking results on different tracks also 

gave different performances. The performance 

difference was due to the power and shape 

difference of the waveform, which was affected by 

the water surface roughness at different times or 

seasons. [28] reported that the retracking results in the 

shallow and narrow bay waters were better 

compared to the deep and wide bay waters and 

small islands waters. 
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Table 3 Mean IMP of waveform retracking results in all 

observation cycles in the Halmahera Sea. The highest IMPs 

are shown in bold 

a20 cycles, b21 cycles, c85 cycles, d84 cycles 

 

 

Table 3 summarizes the temporal mean of IMPs on 

each track. The mean of IMPs on each track shows 

that all retrackers had good results except OCOG, 

which had negative IMPs, showing that the retracked 

SSHs were unreliable. Instead, in two out of four cases, 

Threshold 20% retracker was superior to those of other 

retrackers, suggesting that they can produce precise 

SSHs. This was because the small threshold was the 

recommended algorithm for waveforms not 

dominated by surface scattering [35] while OCOG 

was only based on a statistical approach by 

calculating the gate width and the amplitude of 

waveform [17]. In the other regions of Indonesia e.g., 

Java Sea [23, 25] and Natuna Sea [29], OCOG also 

showed poor performance and was estimated to be 

less accurate. 

The overall waveform retracking performance 

analysis, both spatially and temporally, showed that 

each retracker was always the highest IMP except 

OCOG (Table 4). However, the algorithm that most 

often presented the highest IMP was the Threshold 

10%. The finding in the Java Sea also showed that 

Threshold 10 was one of the best retrackers [23, 25]. 

Conversely, in Natuna Sea, which was shallow water, 

Threshold 10 gave poor performance [29]. 

The IMP of the other retrackers, i.e., Threshold 10%, 

Improved Threshold 20%, and Ice had a performance 

that was not significantly different and also gave a 

good performance. Thus, they were still reliable and 

suitable to be applied in the Halmahera Sea with 

adjustments to water conditions and time (season) 

that affect the surface roughness of the sea. 

 

Table 4 The occurrences percentage of retracker as the 

highest IMP on all tracks and all observation cycles  

 

a20 cycles, b21 cycles, c85 cycles, d84 cycles 

 

 

4.3 Evaluation of Waveform Retracking Performance 

against tide gauge  

 

The results of validation against tide gauge were 

indicated in Tables 5 and 6. The mean value of 

correlation and RMSE were computed within 5 km 

bands up to 20 km. In general, the means of 

correlation and RMSE were reasonably good for all 

retrackers with correlation >0.5 and RMSE <40 cm, 

except for OCOG where the correlation and RMSE 

were bad (<0.47 and >48 cm). This suggest the 

estimated SSHs from OCOG were unreliable.  

Within 0-5km from the land where the waveforms 

were usually highly corrupted, the mean correlation 

(0.17-0.71) of retracked SLAs to TG Gebe was the 

smallest when compared to other distance bands 

(Table 5). Although they were small, several algorithms 

(i.e., Th 20%, ITh 20%, and Ice) recorded reasonably 

good performance with mean correlation of 0.71. This 

indicated that, on average, those three retrackers 

explained >70% of tide gauge total variance while the 

Track Retracker IMP(%) 

J2-P75 a 

OCOG -158 

Threshold 10% 57 

Threshold 20% 52 

Threshold 50% 8 

Improved Threshold 10% 51 

Improved Threshold 20% 49 

Improved Threshold 50% 7 

Ice 48 

J2-P164 b 

OCOG -105 

Threshold 10% 59 

Threshold 20% 60 

Threshold 50% 27 

Improved Threshold 10% 53 

Improved Threshold 20% 53 

Improved Threshold 50% 30 

Ice 59 

J3-P164 c 

OCOG -240 

Threshold 10% 46 

Threshold 20% 52 

Threshold 50% 8 

Improved Threshold 10% 45 

Improved Threshold 20% 50 

Improved Threshold 50% 10 

Ice 47 

J3-P253 d 

OCOG -192 

Threshold 10% 31 

Threshold 20% 39 

Threshold 50% 3 

Improved Threshold 10% 44 

Improved Threshold 20% 40 

Improved Threshold 50% 2 

Ice 30 

Retracker  Occurrences Percentage (%) 

OCOG 0 

Threshold 10%  27 

Threshold 20%  18 

Threshold 50%  7 

Improved Threshold 10%  14 

Improved Threshold 20%  15 

Improved Threshold 50%  4 

Ice 15 
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other retrackers described only <70%. It was also seen 

that the mean correlation of Th 20% and ITh 20% were 

similar for those four distance bands, suggesting that 

their performances were equal. 

 

Table 5 Mean of correlation at any distance from land. The 

best mean of correlations are shown in bold 

Th is Threshold and ITh is Improved Threshold 

 

 

Similar findings were reported by [27] where the 

performance of Ice retracker was found excellent 

within 0-5 km over the Ko Taphao Noi tide gauge in 

Thailand. It showed the average correlation of 0.78 

[27]. This was presumably because the Gebe tide 

gauge station and Taphao Noi station were in the 

same waters condition (small islands waters). 

 

Table 6 Mean of RMSE at several distance bands from 

coastline 

Th is Threshold and ITh is Improved Threshold 

 

 

The SLAs correlation of Ice and Improved Threshold 

algorithm at Gebe station within of 0 – 5 km from the 

land was higher than the retracking result on the 

Croatian coast and the Italian coast by [16]. The 

results of the SLAs correlation of the Ice and Improved 

Threshold algorithm on the Croatian coast reached 

only 0.5 at a distance of 3 km from the land and 0.2 on 

the Italian coast within 4-5 km from the land [16]. The 

difference was due to the water condition difference 

of the tide gauge stations, which affect the shape of 

the waveform and produce different SLAs estimates. It 

also attested the statement of [13] and [15] that the 

performance of each retracker differs depending on 

water conditions [13, 15]. 

The difference level in retracked SLAs to TG data in 

this study was shown by the value of Root Mean 

Square Error (RMSE). The results of waveform retracking 

in the Halmahera Sea showed a good mean RMSE 

(<30 cm) within 20 km from the land (Table 6). This 

result was similar to the results of the validation of the 

Ice algorithm conducted by Abdullah et al. (2017) in 

several areas of the TG station around the South China 

Sea within 30 km from the mainland [24].  

Different results were found on the OCOG 

algorithm, which gives poor results on RMSE 

calculations. OCOG algorithm was only able to 

achieve the best mean RMSE at a distance of 10-15 

km from the land (48 cm). These results were better 

than Ocean retracker results which had a lot of empty 

data within 0-20 km from the land (Figure 4), thus the 

mean of correlation and RMSE could not be 

calculated. 
 

 

Figure 4 Spatial plot of temporal correlation and RMSE near 

Gebe tide gauge (TG Gebe) from retrackers: Ocean (a,b); 

OCOG (c, d); and Ice (e, f) 

 

 

 

 

Retracker  
Mean of Correlation 

0 - 5 km 5 - 10 km 10 - 15 km 15 - 20 km 

OCOG 0.17 0.31 0.42 0.47 

Th 10%  0.69 0.75 0.77 0.78 

Th 20%  0.71 0.78 0.80 0.79 

Th 50%  0.51 0.78 0.81 0.76 

ITh 10% 0.69 0.76 0.78 0.78 

ITh 20%  0.71 0.78 0.80 0.79 

ITh 50%  0.50 0.78 0.82 0.76 

Ice 0.71 0.79 0.81 0.79 

Retracker  
Mean of RMSE (cm) 

0 - 5 km 5 - 10 km 10 - 15 km 15 - 20 km 

OCOG 156 105 48 63 

Th 10%  24 22 23 23 

Th 20%  23 21 21 22 

Th 50%  37 20 20 27 

ITh 10% 24 22 22 23 

ITh 20%  23 21 21 22 

ITh 50%  40 20 20 26 

Ice 23 20 20 23 
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The spatial plot of temporal correlation and RMSE SLAs 

from Ocean retracker, OCOG, and Ice algorithm near 

TG Gebe station are shown in Figure 4. In general, the 

farther from the land, the higher the correlation and 

RMSE of those retrackers even though the Ocean 

retracker result had a vacancy data. This is indicated 

by the darker color at a distance further from the land, 

both in the correlation and RMSE figures. These results 

were consistent with the correlation and RMSE results 

obtained by Idris (2019) [27].  

 

Figure 5 Time series of SLAs from different retrackers at 

different distance from the coastline. a) 5 km from the land, 

(b) 10 km from the land¸ (c) 15 km from the land, (d) 20 km 

from the land  
 

 

SLAs produced by OCOG retrackers showed varying 

correlations within 0-20 km from the land even though 

they were dominated by correlations below 0.4 

(Figure 4c). This variation was not apparent in the 

RMSE produced by OCOG, which mostly had RMSE 

above 35 cm (Figure 5d). This was in contrast to the 

results of the Ice retracker which had good correlation 

and RMSE results (Figure 4e and Figure 4f). The Ice 

retracker recorded the correlation between 0.6 and 1 

and RMSE within15-25 cm. 

The temporal SLAs of the Ocean retracker and the 

results of the Ice retracker at different distances are 

shown in Figure 5. The SLAs of Ice retracker appeared 

to have a pattern similar to the SLAs of TG Gebe at 

distances of 5 km, 10 km, 15 km and 20 km. This was 

supported by a high correlation value up to 0.86 and 

a low RMSE up to 16 cm at a distance of 10 km from 

the land. The results of Ice retracker were able to 

improve and provide better data than the standard 

Ocean algorithm at close distances to the land. 

Ocean SLAs had fluctuating pattern characterized by 

sharp valleys and produced a low correlation and a 

high RMSE to TG Gebe. The lowest results of the Ocean 

algorithm were located at a distance of 5 km from the 

land with a correlation of 0.08 and RMSE of 93 cm. In 

addition, within 10 km from the land invalid 

measurements were founds, which was nearly similar 

to the diameter of the Jason altimeter footprint (~7 

km) [43].  

In other different region, [49] reported better 

correlation and RMSE (up to 0.92 and 4.5 cm, 

respectively) between coastal altimetry product and 

tide gauge measurement over the Gulf of Genoa, 

Italy. This different result could be directly linked to 

local topography and environmental conditions, 

which have a strong influence on local sea level 

variability. Furthermore, differences in algorithms, 

corrections used, and the tide gauge distance to the 

altimetry track all had a significant impact on the 

result. 

Based on the results from this study, the waveforms 

in the Halmahera Sea were very complex and vary 

depending on water conditions, so no one has as yet 

found the best retracker. In other words, the 

performance difference of each retracker in 

Halmahera Sea was generally not significant. Further 

research using a system that could classify waveform 

and automatically choose the appropriate retracker 

will provide the best SSHs in every water condition. 

 

 

4.0 CONCLUSION 
 

Waveforms of Jason-2 and Jason-3 in Halmahera 

waters had 10 dominant waveform classes that were 

influenced by the complexity of depth and distance 

from land. The waveforms in shallow water and near 

to the land were dominated by the peaky pattern 

while the waveforms in deep waters, but close to the 

land, had the perturbation trailing edge. Furthermore, 

waveforms in deep waters and far from land were 

dominated by Brown pattern. The highest waveform 
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percentage in Halmahera was the Brown waveform 

with shifted center point of leading edge.  

The retracking results showed that all retrackers 

provided significant improvement in SSHs estimations 

except OCOG. The validation results also showed that 

all retrackers except OCOG had an average 

correlation above 0.75 and RMSE below 25 cm at a 

distance of 5-20 km from the land. However, the 

Threshold 10% was the most common retracker that 

appeared with the highest IMP, while Ice consistently 

produced the best correlation and RMSE the highest 

correlation of 0.86 and the lowest RMSE of 16 cm. 
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