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EXACT SOLUTIONS FOR MHD NATURAL CONVECTION FLOW
NEAR AN OSCILLATING PLATE EMERGED IN
A POROUS MEDIUM

ABDULHAMEED MOHAMMED', ILYAS KHAN*
& SHARIDAN SHAFIE”

Abstract. Analytical investigation was conducted on the transient natural convection flow past
an oscillating infinite vertical plate in present of magnetic field and radiative heat transfer. The
classical solution of this problem for impulsively moving plate 1s given by Seth in [2] and is found
to be a special case of the solution to be presented. The governing model equations are solved
analytically with the help of Laplace transform technique. The results are expressed in terms of
the velocity and temperature profiles as well as the skin-friction and Nusselt number.
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Abstrak. Kajian secara analitik telah dilaksanakan ke atas aliran olakan bebas fana melepasi plat
menegak tak terhingga yang berayun dengan kehadiran medan magnetik dan pemindahan haba
beradiaktif. Penyelesaian klasik bagi masalah in1 bagi gerakan plat secara dedenyut telah diberikan
oleh Seth [2] dan penyelesaian in1 didapatt memjadi kes khas untuk penyelesaian yang akan
dibentangkan. Model persamaan menakluk diselesaikan secara analitik dengan menggunakan
kaedah penjelmaan Laplace. Keputusan-keputusan yang diperoleh dinyatakan dalam sebutan-
sebutan profil halaju dan suhu dan juga dalam sebutan-sebutan geseran kulit dan nombor Nusselt.

Kata kunci: Natural convection; MHD flow; porous medium; oscillating boundary; ramped wall

temperature; Laplace transform
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1.0 INTRODUCTION

The equations of natural convection governing the phenomena of heat transfer
fluid flow during natural convection tend to be complex because of the present of
buoyancy forces and the exact solutions are restricted to a particular combination
of simple geometry and boundary. Several authors mvestigated the solution of
such problem both analytically and numerically under different thermal conditions
at the bounding plate. In [1] the unsteady natural convection flow of a viscous
imncompressible fluid near a vertical plate with ramped wall temperature was
analysed, where the result of natural convection flow near a ramped temperature
plate 1s compared with constant temperature plate. Theoretical study on the flow
through a porous medium have wide variety of applications such as in petroleum
technology to study the movement of natural gas, in chemical engineering for
filtration and purification process as well as in agricultural engineering to study the
underground water. Among the research studies are [4], [5] and [6]. Research
works on the MHD natural convection flow in a porous media provide basic
knowledge for the development of several MHD devices such as MHD pumps,
generators, flow meters, nuclear reactor using liquid metal and geothermal energy
extraction. Most problems of natural convection flows occur at a high temperature
where the effect of radiation heat transfer on the flow become an important to
study and analysed. The knowledge of radiative heat transfer will help in designing
pertinent equipment In areas such as furnace design, missiles, nuclear power
plants, gas turbines, various propulsion devices for aircraft and satellites. MHD
natural convection flow past an impulsively moving vertical plate with ramped wall
temperature in the presence of thermal diffusion with heat absorption are studies
and analysed in [3] also [7] studied radiation effects on the flow an impulsively
vertical infinite plate. Recently, [2] investigated a theoretical study of unsteady
MHD natural convection flow of a viscous incompressible fluid with radiative heat
transfer near an mmpulsively moving vertical flat plate with ramped wall
temperature in a porous medium.

In this paper, exact solution of natural convecion MHD flows of an
mcompressible viscous fluid past an infinite vertical oscillating plate in porous

medium with ramped wall temperature was presented.
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2.0 MODEL EQUATIONS

The unsteady natural convection flow of a viscous incompressible electrically
conducting fluid past an mfinite vertical plate in porous medium 1s considered.
The fluid 1s assumed to be non-magnetic passing through uniform magnetic field

of strength BO. The flow is assumed to be in X -direction. The Y -axis is

taken to be normal to the plate. Initially, for time t <0, both the fluid and the

1 . ’
plate are assumed to be at the same temperature T . At time t >0, the plate

starts oscillations along the X direction with velocity Yo COS(a) t ) or o Sln(a) t )
e phic s i T )
and the temperature of the plate 1s increase or decrease to ° when

< . St . L .
t <t , and therefore, for t >, 1s maintained at uniform temperature T .

Following [2] with above assumption, we have the following governing flow

equations
’ 2. 2 , o ,
au’ :va 92 _ %5 u-—2u +gﬂ(T —Tw)
ot oy P K 1)

oT kT 1 &,

ot A, y° P, by ©

where U s the fluid velocity in X direction, T is the temperature of the fluid,

9 is the acceleration due to gravity, p 1s the volumetric coefficient of thermal

expansion, YV is the kinematic coefficient of viscosity, @ 1is the electrical

conductivity, P the fluid density, K is the thermal conductivity, K is the
- . . C, . .

permeability of porous medium, P is the specific heat at constant pressure and

Ur is the radiative heat flux vector.
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With the following mitial and boundary conditions
u = uocos(a)'t/) or ugsin(wt) aty =0 for t >0
T =Fft )aty =0
u—>0T T, asy>wfort >0
u=0T =T _fory >0andt <0 3

where U0 is the maximum amplitude of wall velocity oscillation, @ is the

frequency of the wall velocity and

F(t’)= wa(TW—Tm)E—D O<,t <t,
T t >t

w

} the ramped wall temperature.
The local radiant 1s given by
40" oT !
3k* '
oy (4)

* *
where K™ is the mean absorption coefficients and 9 1s the Stefan-Boltzmann

r =

constant.

With small temperature difference between fluid temperature T and free
stream temperature T“;’ T* 1s expanded 1n Taylor series about a free stream
temperature T“; which after neglecting higher order terms we obtain the

following simple form

4 3 ‘4
T*=4T°T 3T, )

By using Eq. (4) and (5), Eq. (2) becomes
o __k T 1 1607T,°0T

8t’_PCp oy’ e, 3K gy’ (6)

Consider the set of non-dimensional variables:
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y=Y oyt 2t 7oL
U,t, U, t, T, -T,
K U2 olT, -T, e
K, =<0 Gr:gﬂ“(g w), pr = 2%
v Up K
' w3 2
w:ucz’ N:16a'l;m’ M:oBozz)
Ug 3kk pU; 7)
Using (7), Egs. (1) and (6) becomes:
2
N_0Y mu-L o
ot oy K, ®)
o _@en)eT
ot Proy®

)
where M is the magnetic parameter, K, 1s the permeability parameter, Gr is the

Grashof number, Pris the Prandt number and N is the radiation parameter.

With the characteristic time b defined by

1y
tO _F
0 (10)
Eq. (3), using Eq. (7) and (10) becomes
u=cos(wt) or u=sin(wt)aty=0fort>0
t forO<t<1
T= aty=0
1 for t>1
u—>0T-—>0asy—>wfort>0
u=0,T=0fory>0andt<0 (11)

3.0 SOLUTION FOR TRANSIENT FLOW IN CASE OF VARIABLE
TEMPERATURE

3.1 Cosine Oscillation

The non-dimensional governing equations (8) and (9), subject to the boundary
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conditions (1 l) are transformed by the Laplace Uan%form method to give

u(y,s)=— exp( y\/sT)+a1 e p [exp( y\/sT) exp( y\/_)]

(12)

T(y,s)= 1-expl-s) exi)(— S)exp(— v/ bs)
S (13)
where

Pr Gr i:M+i 5= A

RET)RNCENN K ong | (b-1)

By shifting and convolution theorems of Laplace transtorm we obtained
: y .
A t)erf c| 4= A t
u(yt)_eXp(iwt) exp(y ( +|a)))er c(2ﬁ+ (A+iw) j
4 . y .
+exp(-yvA+iw|erf c| —2=— /(A +iw)t
P2 io) (Z\E (A+ie) )
) exp(yﬂl(ﬂ—ia))t)erf 0[2— ( )t

exp (—iwt i//f Aot J
4 Zzl/f _mj

(14)

+exp(—yx/ﬁ
a[P(y,t)-H(t-1)P(y,t-1)]
T(y,t)=Qly.t)- H({t-1)Q(y,t-1) (15)
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where

exp(yw/ﬂ + )erf C(T + ﬂ + /3

+exp( YA+ S )erfc(z—— /1+ﬂ

_{2/13“%[%* 43//;]}%()/\/_ )erfc i/f J
[ vk b -

ool o 204 |

——

+ —erf c[ é://__J

e efsS) o)
{53 Bl

3.2 Sine Oscillaation

P(yt) - S22

_exp(pt)
232

Equations (8) and (9), subject to the boundary condition for sine oscillation in
(11), are transformed by the Laplace transform method to give

exp( Y+ A )+ ats 1-exp(-s) [exp( y/s+ 7 )-expl- y/sb |

G(y, S): (

(16)
T(y,s)= l_%g(_s)exp(— y\/E) W

Using shifting and the convolution theorems of the Laplace transform we have
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exp(— yﬂ)erf c[i —-JA-iw t]

iexp(—iwt) 24t
oy = L0 it
4 . y .
+ exp(yM)erf c(m + (2 -io)t j
expl— y+ +ia)ercL— +iw
_iexp(iot) p( WA ) ' ( Jt 4 tJ
4 + exp(y«/l + |a))erf C(L\/_ (A+ ia))tj
+a[P(y,t)- H(t-1)P(y,t -1)] (18)
T(y,)=Q(y,t)-H({t-1)Q(y,t -1) (19)

4.0 LIMITING CASES FOR VARIABLE TEMPERATURE PLATE

Consider special cases where the plate presents no oscillatory motion. The plate

moves with constant longitudinal velocity. This situation 1s a special case of Eq.

(14) and (18) whenW = 0 , so that we have U= 1, limiting solutions are obtained as

u(y,t)= %[exp(yﬂ)erf C(L + \/ﬂj + exp(— yﬂ)erf C(L + \/ﬂﬂ

2t 24t
+a[P(y,t)-H(t-1)P(y,t -1)] (20)
u(y,t)=a[P(y,t)-H(t-1)P(y,t -1)] 1)

Eq. (20) is exactly, the same as presented in [2] while Eq. (21) is the first proposed
solution of the present problem when sine oscillatory motion was considered in

the bounding plate.

5.0 SOLUTION FOR TRANSIENT FLOW IN CASE OF
CONSTANT TEMPERATURE

5.1 Cosine Oscillation

The governing equations (8) and (9), subject to the boundary conditions (11), in
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case of constant temperature are transformed by the Laplace transform method to

give

u(y, 5)=+
T(y.s)= %exp(— ysb)

By shifting and convolution theorems of Laplace transform we obtain
exp(y\/i + ia))erf c(# +J+ ia))tj
t

+ exp(— yVA + ia))erf C(Z_i//f ~J(A+ ico)t]

exp(y\//l - ia))erf c[ﬁ +J(2 - ia)it]
+ exp(— YA - ia))erf C(z_i//fﬂ/u - ia)itj
exp(y\/z )erf c[ﬁ +AJat )

2p + exp(— y\/f )erf c[% —Jat j

exp(yWM +ﬂ)erf c[%h/iﬂ +,6’itJ
+exp(— y1//1+,6’)erf c(%—ﬂluﬂb’itj

+%erfc(%\/g] aezz [expyrerfc[ \f \/_ﬂ

vool-Bkrd L7 7|

T(y,t)=erf C[%\/gj

exp( y/s+ 4 ) [exp( ys+4 ) exp( y/'sb )]

(22)

(23)

u(yt) = expgia)t)

s exp(—iawt)
4

L aexp(A)
2p
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5.2 Sine Oscillation

The governing equations (8) and (9), subject to the boundary conditions (11), in
case of constant temperature plate are transformed by the Laplace transform

method to give

u(y,s)=—

exp( y/s+ 4 ) [exp( yvs+ 1 ) exp( y/sb )]

(26)
— 1
T(y,s)= gexp(— y«/sb)

By shifting and convolution theorems of Laplace transform we obtained

Xpl— yvA—iw A —iw
00— iexpg—ia)t) e p( yv A )erfc(zﬁ J itj
+exp(y\/ —|a))erf c(% 1/(&—iw)t}
_iexp(ia)t) exp(— y«//1+ia>)erfc z_i//f_’/i;wriwit]
4 +exp(y«//1+ia))erfc FJF /1+|a) J

—%{exp(yﬁ )erf c(i +At |+ exp Y\/_ erf c

(27)

y
7—@

24t 2
. exp(ﬂt) exp(wa + )erf C[—\/_ + ﬂ + /3 }

2p +exp( YA+ S )erfc(z—— /1+ﬂ

+%erfc[%\/?J “ex'; [expy\/%erfc \f \/_
+expl- y\//0 )erfC[ >R ]

(28)
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b
T(y,t)=erfc l‘/—
2\t

5.3 Limiting Cases for Constant Temperature

(29)

Consider a special cases of Eq. (24) and (28) whenW = 0, 50 that U=1, we have

the following limiting solutions

exp(y\/z )erf C(Z_i//f + At }
+ exp(— y\/z )erf c(% + \/ﬁ j
exp(y\/z )erf c(ﬁ +AJat )

2p + exp(— y\/f )erf c[% —Jat j

exp(yw/ﬂ + ,B)erf C[ﬁ*"” +ﬂit}
+exp(— Y/ A +ﬂ)erf c(%—qlu +ﬂit}

{1} k-]

voolBkrd L7 7|

u(y,t)=

N |-

, aexp(f)
2p

(30)
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exp(y\/I )erf c(z—fﬁ +/at ]

u(y,t)=-—
+ exp(— y\/Z)erf C{L - \/EJ

2B
2t

exp(yql/l + ,H)erf c(% +4(A+ ﬂit]
+ exp(— YA +ﬂ)erf c{#—qlu + ﬂit]

ssond 32|« coly e {1 oo |

ol 1513

aexplpt)
2p

@31

The result (30) 1s in agreement with the result presented in [2] while in the
absence of magnetic field and radiative heat transfer, the result has the same form
with the one obtained i [1] in non-porous medium. The result (31) 1s the exact
solutions for the fluid behaviour in a case of sine oscillation for constant
temperature plate.

6.0 SKIN FRICTION AND NUSSELT NUMBER

We now study Skin friction denoted by 7 and Nusselt number denoted by Nu
associated with cosine and sine oscillation for both variable and constant bounding
plate temperature.

6.1 Variable Temperature Plate

Considering result of Eqs. (14), (18) and (19) respectively we have:



EXACT SOLUTIONS FOR MHD NATURAL CONVECTION 13

r= %uyo - M{m(ﬂf c(\//l +iat )—1)—%exp(— (A+ ia)t))}

+ M{M(erf c(\/ﬂ. —iot )—1)— %exp(— (2- iwt))}

+aW(t)-H(t-1w(t-1)] (32)

N

7= %uy_o _ %;ia’t){«u - ia)(erf C(M)—l)—%exp(— (1- ia)t))}

_‘e‘%(‘a’t){\m violerf Vi iwt)—l)—%exp(— (2+ iwt))}

+a[W(t)-H({t-1)W(t-1)]

(33)
and
= - 2\/5[\/?—& —1H(t —1)]
¥y V7 (34)
where

W(t)= ex’;(f[) {m(erf c(m )—1)— +exp(-(2+ ﬂ)t)}
T (1— erf c(\/ﬂ)ﬁ %(t + %)W(l— erf c(\/ﬂ»+ Lexp(- /It)}

— st [ ferf ol /t)-1)- 5 exp(- A) 3 2 (2vE + 2 )

Equations (32) and (33) represent Skin friction for cosine and sine oscillation

respectively, while (34) represent Nusselt number.

6.2 Constant Temperature Plate

To compute the Skin friction and Nusselt number for cosine and sine oscillation
in the bounding plate we consider Eqs. (24), (28) and (29) and we obtain
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m(erf c(m)—l)]

_ou_expi a)t){ |
Yy 2 |- Tz exp(— (4 +iat))

t M(erf c(\/m)—l)}

o
2 - ﬁexp(— (A -iat))

a 1
_E{ﬁ(erf C(\/ﬂ)—l)—ﬁe)(p( /“)}

. 1/(/1+ﬂ)(erfc( (A+p) t) 1)
o) —%exp (A+p)t)- \/E(erfc(\/_) )

ou _iexp(-iat)
8y y=0 2

{M(erf c(m )—1)}

T =

NA - ia)(erf c(«//l — ia)t)—l)
—%exp(— (A—iat))

_iexp(iat)
2

——exp(— (A +iat))

N

a 1
_E{ﬁ(erf C(\/ﬂ)—l)—ﬁe)(p( /“)}

[ ety
o) —%exp (A+p)t)- \/E(erfc(\/_) )

(36)

(37)
Equations (35) and (36) represent Skin friction for cosine and sine oscillation

respectively, while (37) represent Nusselt number.
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7.0 SUMMARY AND CONCLUSION

In this paper we presented the exact solutions for the transient MHD natural
convection flow exposed m a porous medium with oscillating boundary. The
bounding plate has a variable and constant temperature. The governing flow
models equations are solved using Laplace transform technique. The results are
presented m terms of velocity and temperature fields as well as the Shear stress
and Nusselt number are expressed for two cases, variable temperature and
constant wall temperature respectively. Limiting cases are considered for no
oscillation, absence of magnetic field and radiative heat transfer. The solution
agreed favourably with related published articles.
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