
======================c^pq=ifdeq=dbkbo^qflk=rpfkd=d~^ä^ëLd~^ë=t^sbdrfab=================NT=

gìêå~ä=qÉâåçäçÖá, 57 (Sciences & Engineering) Suppl 1, March 2012: 17–23 
© Penerbit UTM Press, Universiti Teknologi Malaysia 

 

c^pq=ifdeq=dbkbo^qflk=rpfkd=d~^ä^ëLd~^ë==
t^sbdrfab=

 
^K=^collwbeNIOGI=jK=_^e^alo^kPI=fK=pK=^jfofQI=^K=oK=p^j^s^qfRI=

gK=^ifS=C=mK=mK=vrm^mfkT=

 

^Äëíê~Åí. Generation of fast light pulses through a nonlinear microring system is an attractive 
research challenge for high speed optical and quantum computer, optical communication networks 
and secured communication. In this paper generation of fast light through GaAlAs/GaAs 
waveguides with fabricated Micro Ring Resonator is reported. Using multistage system, the 
attosecond pulse can be generated. Simulation results obtained have shown that the generation of a 
very narrow full-width at half maximum (FWHM) line width and sharp tip is achieved. We 
propose a new system of multistage micro ring resonators consist of four rings for optical 
communication system. Here, pulse width of 15 attosecond can be obtained, using proper 
parameters of the proposed system. 
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Recently, microring resonators have been of interest in many applications of 
secured communication, mobile and networks.  The most important applications 
consist of store of light in optical buffers [1], electro-optical modulators [2], and 
polarization of signals [3, 4]. Conversion of frequency is applicable by varying the 
resonant frequency of a microring while a signal can be narrow inside [5, 6]. Several 
methods have been reported for using in the generation of attosecond pulses. 
Biegert and Keller showed that generation of sub femtosecond pulse can be done 
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In order to generate attosecond light pulse, the optical bright soliton is fed into the 
series of micro ring resonators. The input optical field in the form of bright soliton 
pulse can be expressed by Equation (2.1) [14]. 
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  where T is propagation time of soliton pulse, A and z are amplitude of the 
optical field and distance of propagation respectively. T is a soliton pulse 
propagation time, Ld is the length of dispersion for soliton pulse. Initial time of 
input soliton pulse during propagation is shown by T0 and t is the time for phase 
shift where the frequency shift of the soliton is 0ω . When the optical field input in 

the MRR’s, the relationship between the output and input optical field expressed 
by Equations (2.3) and (2.4). 
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  Here κ  is the coupling coefficient, and nK  shows the wave number in a vacuum. 

γ  is the fractional coupler intensity loss. L is circumference of ring, α and γ  are the 

absorption coefficient and intensity loss respectively. Exp (αL/2) is a roundtrip loss 
coefficient. 
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The GaAlAs/GaAs   can be used to make the micro ring resonators where, soliton 
pulse with centre wavelength of 1.33 μm, pulse width of 10 fs and power of 18 W 
is input into the proposed system as shown in Figure 2(a). The radii of the 
microrings have been chosen as, R1=7 μm, R2=7, R3 =7 μm, and R4=7 μm. Selected 
parameters of the system are fixed with n0 = 3.3, and the waveguide loss of 0.2 
dB/mm is noted. The coupler intensity loss is 0.1 and the nonlinear refractive 

index is
W
mn

2
12

2 104.1 −×= . The soliton pulse is coupled into the system where 

the coupling coefficient varies from 0.2 to 0.6. When a soliton pulse is input into 
the system, the chaotic and amplified signals can be generated. The roundtrip of 
20,000 times inside the system can be simulated. The input bright soliton pulse is 
sliced and amplified into the smaller signals over the spectrum shown in Fig. 2(b), 
2(c), 2(d). Filtering of the chaotic signals is shown in Figure 2(e). Output signals 
from the system are simulated using MATLAB programming. Figure (3) shows 
the expansion of Fig 2(e) for attosecond pulse generation which has pulse width of 
15as and output power is 1400 W. 
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cáÖìêÉ= O Result of the output signals from proposed system where (a) shows the input bright 

soliton pulse, (b) and (c) the chaotic signals generation, (d) the amplifying and filtering 
signals, (e) the attosecond pulse generation 

 
 

 
 

cáÖìêÉ=P Expansion of Fig 2(f) for attosecond pulse generation 
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Attosecond pulses have been the broad areas of investigation in many subjects, 
which is recognized as the important tool for fast improvement of frontier research 
in the areas. For example, areas of applications such as high small-scale lithography, 
high-density compact disk writing and reading, high-resolution interferometer and 
surface roughness, high-speed switching and communication, high-speed optical 
and quantum computer are included. In applications, the roundtrips time at the 
resonant peak power can be adjusted, where the required signal width can be 
selected and used. Further, the pulse width beyond the attosecond can be 
generated when the same principle is performing. Signal attosecond is available for 
the applications such as the new generation of ultrafast switching and lithography, 
high resolution image construction [16, 17]. One of the most interesting properties 
of attosecond pulses is that their short pulse duration allows us to measure both 
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phase and amplitude of an unknown wave function or wave packet by pump-probe 
interferometric methods [18, 19], giving us access to the temporal dynamics of the 
process that led to this wave-packet. In this study, we described some of these 
applications, and in particular recent results concerning measurement of single 
photo ionization dynamics using an attosecond pulse train [20].  
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We have proposed the novel system to generate interesting results of attosecond 
soliton pulse using multi-stage MRR’s. We have shown the results of attosecond 
generation from semiconductor materials which have been used to make MRR’s.  
Here extremely narrow soliton pulse in the range of 15 as could be generated 
using GaAlAs/GaAs material. Detection of narrow pulse is the problem in the 
realistic application due to the optical material bandwidth limitation. Therefore, 
the detection technique has become interesting subject of investigation. However, 
the attosecond pulse is useful for optical lithography, high-speed optical switching 
and communication.  
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