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^Äëíê~ÅíK Forecasting is very important in many types of organizations since predictions of 
future events must be incorporated into the decision-making process. In the case of tourism 
demand, better forecast would help directors and investors make operational, tactical, and 
strategic decisions. Generally, in time series we can divide forecasting method into classical 
method and modern methods. Although recent studies show that the newer and more advanced 
forecasting techniques tend to result in improved forecast accuracy under certain circumstances, 
no clear-cut evidence shows that any one model can consistently outperform other models in the 
forecasting competition [1]. In this study, the forecasting performance between Box–Jenkins 
approaches of seasonal autoregressive integrated moving average (SARIMA) and four models of 
fuzzy time series has been compared by using MAPE, MAD and RMSE as the forecast measures 
of accuracy. The empirical results show that Chen’s fuzzy time series model outperforms the 
SARIMA and the other fuzzy time series models.  
 

hÉóïçêÇëW Fuzzy time series; SARIMA 
 

^Äëíê~âK Peramalan adalah amat penting dalam kebanyakan jenis organisasi memandangkan 
peramalan kejadian masa hadapan berkait rapat dengan proses membuat keputusan. Dalam kes 
permintaan pelancongan, peramalan yang baik dapat membantu pengarah dan pelabur membuat 
keputusan dalam operasi, tektik dan keputusan strategi. Secara amnya, siri masa dapat 
dibahagikan kepada kaedah klasik dan kaedah moden. Walaupun kajian terkini menunjukkan 
teknik peramalan yang lebih baru dan lebih canggih memberikan keputusan peramalan yang lebih 
tepat, tiada bukti yang kukuh menunjukkan sesuatu model dapat menandingi model yang lain 
secara konsisten dalam saingan peramalan [1]. Dalam kajian ini, pencapaian peramalan di antara 
kaedah pendekatan Box-Jenkins ëÉ~ëçå~ä=~ìíç�êÉÖêÉëëáîÉ=áåíÉÖê~íÉÇ=ãçîáåÖ=~îÉê~ÖÉ=Ep^ofj^F=
dan empat model Ñìòòó= íáãÉ= ëÉêáÉë telah dibandingkan dengan menggunakan j^mbI= j^a dan 
RMSE  sebagai pengukuran ketepatan peramalan. Keputusan emperikal menunjukkan model 
`ÜÉå∞ë=Ñìòòó=íáãÉ=ëÉêáÉë menandingi SARIMA dan model-model Ñìòòó=íáãÉ=ëÉêáÉë yang lain. 
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NKM fkqolar`qflk=
 
Forecasting is very important in many types of organizations since predictions of 
future events must be incorporated into the decision-making process. In the case 
of tourism demand, better forecast would help directors and investors make 
operational, tactical, and strategic decisions. Besides that, government bodies need 
accurate tourism demand forecasts to plan required tourism infrastructures, such 
as accommodation site planning and transportation development, among other 
needs. There are many types of forecasting methods. Generally, in time series we 
can divide forecasting method into classical or traditional method and modern 
methods. Although recent studies show that the newer and more advanced 
forecasting techniques tend to result in improved forecast accuracy under certain 
circumstances, no clear-cut evidence shows that any one model can consistently 
outperform other models in the forecasting competition[1]. 
  The time series forecasting methods have found applications in very wide areas 
including but not limited to finance and business, computer science, all branches 
of engineering, medicine, physics, chemistry and many interdisciplinary fields. 
Conventionally, researchers have employed traditional methods of time series 
analysis, modeling, and forecasting. Some of mainly been used that will discuss in 
this paper are Box–Jenkins methods seasonal auto-regressive integrated moving 
average (SARIMA), Holt Winters and time series regression. The conventional 
time series modeling methods have served the scientific community for a long 
time; however, they provide only reasonable accuracy and suffer from the 
assumptions of stationarity and linearity. Due to these constrains, comes the idea 
of alternative solution that is fuzzy time series method. In this study, the 
performance of forecasting between classical Box–Jenkins methods seasonal auto-
regressive integrated moving average (SARIMA) and fuzzy time series has been 
compared 
  [2, 3]first introduced the definitions of fuzzy time series, and developed their 
model by using fuzzy relation equations and approximate reasoning. Since that, 
fuzzy time series has gains much attention from researchers in many fields and the 
methods have been developed rapidly. In forecasting time series, [4] proposed a 
first order fuzzy time series used simplified arithmetic operations and fuzzy logical 
relationship groups to forecast the enrollments of the University of Alabama. 
Then, [5] developed a high-order fuzzy time series model by extending Chen’s 
first-order model [6]. [7] improved the forecasting accuracy of Chen’s model [4] 
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by properly defining the number of linguistic variables. In order to overcome  
recurrence and weighting problems in fuzzy time series forecasting, [8] developed 
the weighted fuzzy time series models. Recently, in tourism demand forecasting [9] 
developed adaptive fuzzy time series model to forecast Taiwan’s tourism demand.  
  In this study we used data of tourist arrivals to Bali in Indonesia are considered 
as case-study. The data were taken from the Indonesia Central Bureau of 
Statistics. All the dataset contain monthly data from January 1989 to December 
1997. We only consider the data until 1997 to anticipate extreme data. For the 
estimation (in-sample) purpose, data are taken from January 1989 to December 
1996. Meanwhile, data from January 1997 to December 1997 are considered for 
the testing or evaluation (out-sample) purpose. 
  This paper was organized as follows. Section 2 contains brief explanation on 
methodology and application procedure of fuzzy time series. Statistics to evaluate 
the accuracy of forecasting performance are presented in Section 3 followed by the 
results in Section 4. Finally, the conclusions contained in Section 5.   
 
 
OKM jbqelap=
=
OKN qÜÉ=p^ofj^=jçÇÉä==
 
The Box-Jenkins approach to modelling autoregressive integrated moving average 
(ARIMA) processes involved an iterative three-stage process of model selection or 
identification, parameter estimation and model checking. 
  Since the tourist arrivals data that we used in were measured at regular calendar 
intervals within a year, it may exhibit periodic behaviour. Hence, the general Box-
Jenkins model which allocates seasonality with P seasonal autoregressive terms, D 
seasonal differences and Q seasonal moving average terms (refer [10]) is given as 
follows: 
 
߶ሺܤሻΦሺܤ௦ሻௗ௦

ݖ௧ ൌ ௦ሻܽ௧ܤሻΘொሺܤሺߠ       
   
where 
 
ൌ ଵൌ 1 െ  ܤ
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߶ሺܤሻ ൌ 1 െ ߶ଵܤ െ ߶ଶܤଶ െ ڮ െ  ߶ܤ
 

Φሺܤ௦ሻ ൌ 1 െ Φଵܤௌ െ Φଶܤଶௌ െ ڮ െ Φܤௌ 
ሻܤሺߠ ൌ 1 െ ܤଵߠ െ ଶܤଶߠ െ ڮ െ ܤߠ

 

Θொሺܤ௦ሻ ൌ 1 െ Θଵܤௌ െ Θଶܤଶௌ െ ڮ െ Θொܤொௌ 
 
 
OKO cìòòó=qáãÉ=pÉêáÉë=
 
[11] and [12]first introduced the definitions of fuzzy time series, and developed 
their model by using fuzzy relation equations and approximate reasoning. General 
definitions of fuzzy time series are given as follows: 
  Let ܷ be the universe of discourse, whereܷ ൌ ሼݑଵ, ,ଶݑ … ,  ܣ ሽ. A fuzzy setݑ
of ܷ is defined asܣ ൌ ݂ሺݑଵሻ/ݑଵ  ݂ሺݑଶሻ/ݑଶ  ڮ  ݂ሺݑሻ/ݑ, where ݂  is 

the membership function of the fuzzy set ܣ; ݂: ܷ ՜ ሾ0,1ሿ ݑ . is a generic 

element of fuzzy set ܣ; ݂
ሺݑሻ  is the degree of belongingness of ݑ  to 

;ܣ ݂ሺݑሻ א ሾ0,1ሿ and 1  ܽ  ܾ.  

aÉÑáåáíáçå= NK Fuzzy time series. Let ܻሺݐሻሺݐ ൌ  … ,0, 1, 2, … ሻ, a subset of real 

numbers ܴ, be the universe of discourse by which fuzzy sets ݂ሺݐሻ are defined. If 

ሻݐሺܨ  is a collection of ଵ݂ሺݐሻ, ଶ݂ሺݐሻ, …  then ܨሺݐሻ  is called a fuzzy time series 
defined on ܻሺݐሻ. 

aÉÑáåáíáçå= OK If there exists a fuzzy relationship ܴሺݐ െ 1, ሻݐሺܨ ሻ, such thatݐ ൌ
ݐሺܨ െ 1ሻ°ܴሺݐ െ 1,  ሻ is said to beݐሺܨ ሻ, where ° is an arithmetic operator, thenݐ
caused by ܨሺݐ െ 1ሻ. The relationship between ܨሺݐሻ and ܨሺݐ െ 1ሻ can be denoted 
by ܨሺݐ െ 1ሻ ՜  .ሻݐሺܨ

aÉÑáåáíáçå= PK Suppose ܨሺݐሻ  is calculated by ܨሺݐ െ 1ሻ  only, and ሺݐሻ ൌ
ݐሺܨ െ 1ሻ°ܴሺݐ െ 1, ݐif ܴሺ ,ݐ ሻ. For anyݐ െ 1,  ሻ isݐሺܨ then ,ݐ ሻ is independent ofݐ
considered as a time-invariant fuzzy time series. Otherwise, ܨሺݐሻ is time-variant. 

aÉÑáåáíáçå= QK Suppose ܨሺݐ െ 1ሻ ൌ ሻݐሺܨ andܣ ൌ  , a fuzzy logical relationshipܣ
can be defined as 

ܣ ՜  , ܣ
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whereܣand ܣ are called the left-hand side (LHS) and right-hand side (RHS) of 
the fuzzy logical relationship, respectively.The definition of the first order seasonal 
fuzzy time series model for forecasting proposed by Song (1999) is given as 
follows: 

aÉÑáåáíáçå= RK Let ܨሺݐሻ be a fuzzy time series. Assume there exists seasonality in 

ሼܨሺݐሻሽ, first order seasonal fuzzy time series forecasting model: 

ݐሺܨ െ ݉ሻ ՜  ሻݐሺܨ

where ݉ denotes the period. 

The high order fuzzy time series model proposed by[5] is given as follows: 

aÉÑáåáíáçå= SK Let ܨሺݐሻ  be a fuzzy time series. If ܨሺݐሻ  is caused by ܨሺݐ െ
1ሻ, ݐሺܨ െ 2ሻ, …,and ܨሺݐ െ ݊ሻ, then this fuzzy logical relationship is represented by 

ݐሺܨ െ ݊ሻ, … , ݐሺܨ െ 2ሻ, ݐሺܨ െ 1ሻ ՜  ሻݐሺܨ

and it is called the ݊th order fuzzy time series forecasting model. 

Initially, the repeated FLRs were simply ignored when fuzzy relationships were 
established. In many previous studies, each FLR was treated as if it was of equal 
importance, which may not have reflected the real world situation ([11], [12], [4], 
[13], [14]). In this scenario, the occurrences of the same FLRs are regarded as if 
there were only one occurrence. In other words, the recent identical FLRs are 
simply ignored. To explain this, suppose there are FLRs in chronological order 
that have the same LHS, ܣଵ, as follows: 

 

ሺݐ ൌ 1ሻܣଵ ՜  ଶܣ
ሺݐ ൌ 2ሻܣଵ ՜  ଵܣ
ሺݐ ൌ 3ሻܣଵ ՜  ଵܣ
ሺݐ ൌ 4ሻܣଵ ՜  ଷܣ
ሺݐ ൌ 5ሻܣଵ ՜  ଵ.           (1)ܣ
 
Following [6], these FLRs in Eq. (1) are used to establish an FLRG as  
 
Aଵ ՜ Aଵ, Aଶ, Aଷ .                         (2) 
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The ignoring of recurrence, however, is questionable. [14]argued that the 
occurrence of a particular FLR represents the number of its appearances in the 
past. For instance, in Eq. (1), ܣଵ ՜ ଵܣ  appears three times, both ܣଵ ՜ ଶܣ  and 
ଵܣ ՜  ଷ only once. The recurrence can be used to indicate how the FLR mayܣ
appear in the future. 

  Later,[14]proposed the chronological weights to deal with recurrent fuzzy 
relationships and their importance. To illustrate it, suppose there are FLRs in 
chronological order as in Eq. (1), and then the weights are as follows: 

ሺݐ ൌ 1ሻܣଵ ՜  ,ଶ with weight 1ܣ

ሺݐ ൌ 2ሻܣଵ ՜  ,ଵ with weight 2ܣ

ሺݐ ൌ 3ሻܣଵ ՜  ,ଵ with weight 3ܣ

ሺݐ ൌ 4ሻܣଵ ՜  ,ଷ with weight 4ܣ

ሺݐ ൌ 5ሻܣଵ ՜  .ଵ with weight 5ܣ

As a result, the most recent FLR ሺݐ ൌ 5ሻ is assigned the highest weight of 5, which 
means that the probability of its appearance in the near future is higher than in the 
case of the others. On the other hand, the most aged FLR ሺݐ ൌ 1ሻ is assigned the 
lowest weight of 1, which means that the probability of its appearance in the near 
future is lower than in the case of the others. 

  Recently,[15] proposed the weights focused on the probability of its appearance 
and their importance of chronological FLR for the same recent identical FLRs. To 
explain it, suppose there are FLRs in chronological order as in Eq. (1), and then 
the weights are as follows: 

 
ሺݐ ൌ 1ሻܣଵ ՜  ,ଶ with weight 1ܣ
ሺݐ ൌ 2ሻܣଵ ՜  ,ଵ with weight 1ܣ

ሺݐ ൌ 3ሻܣଵ ՜  ,ଵ with weight 2ܣ

ሺݐ ൌ 4ሻܣଵ ՜  ,ଷ with weight 1ܣ

ሺݐ ൌ 5ሻܣଵ ՜                  .ଵ with weight 3ܣ

In this study, we applied the FTS according to the following procedures: 
píÉé=NW= The data are not stationary, hence data preprocessing has been 

carried out by taking transformation according to [16]: 
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ܼ௧ ൌ ሺ ௧ܻ
ఒ െ 1ሻ/ߣ 

  
Where ߣ is the coefficient from Box-Cox Transformation. 

píÉéOW= Fuzzy relationship was determined according to SARIMA model for 
the data set. This procedure also has been done by [17]in order to 
select neural network input variable.  Due to limitation of considered 
methods, we have to ignore the lag from MA and SMA. For instance 
SARIMA model for Bali is ( 0,1,1ሻሺ0,1,1ሻଵଶ . Hence the fuzzy 
relationship can be denoted by: 
ݐሺܨ െ 13ሻ, ݐሺܨ െ 12ሻ, ݐሺܨ െ 1ሻ ՜  .ሻݐሺܨ

píÉé=PW= In order to select input and fuzzy time series order, firstly we try to 
input all the three input from fuzzy relationship that obtained in step 2. 
To experiment the selection of input, we try all the possible 
combination of two input from the three inputs and single input as 
well. So all possible input are: 

1. Lag 1,12, 13 
2. Lag 1, 12 
3. Lag 1, 13 
4. Lag 12, 13 
5. Lag 1 
6. Lag 12 
7. Lag 13 

píÉé=QW= The optimum length of intervals was calculated following average-
based length. Huang (2001) 

píÉé=RW= Forecast. Four different FTS methods was used: 
(a) [5] 
(b) [15] 
(c) [8] 

píÉé=SW= Forecast data were transformed back and the forecast accuracy were 
calculated. 

 
 
PKM jb^probp=lc=^``ro^`v=
 
In order to evaluate the accuracy of forecast data by the six methods, we computed 
mean absolute percentage error (MAPE), mean absolute deviation (MAD), mean 
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square error (MSE) and root mean square error (RMSE). For all three measures, 
the smaller the value, the better the fit of the model. These statistics are compute 
as follows:  
 

MAPE ൌ
∑|ሺݕ௧ െ |௧ݕ/ො௧ሻݕ

݊
ሺ100ሻ     ; ௧ݕ   ് 0 

 

MAD ൌ
∑|ሺݕ௧ െ |ො௧ሻݕ

݊  

 

MSE ൌ
∑ሺݕ௧ െ ො௧ሻଶݕ

݊  

 
 ො௧ is the fitted value.For in sample,n is theݕ  ௧is the actual value at time t, andݕ
number of observations (degree of freedom in case of SARIMA). Meanwhile, for 
out sample, n is the number of forecast data which is 12 in this study. 
 
 
QKM obpriqp=^ka=afp`rppflkp=
=
QKN p^ofj^=
 
In this study we used MINITAB version 14 to analyze SARIMA model. In model 
identification stage, firstly we used time series plot to see briefly whether the data 
have seasonal and trend patterns.  Fig. 1 shows clearly that the data sets have trend 
patterns; hence the assumption of stationary condition in mean is not satisfied. 
Yet, we validate this assumption by using autocorrelation function (ACF) and 
partial autocorrelation (PACF) plot and from the results ACF plot for all data only 
dies down until first differencing both in non-seasonal and seasonal (S=12).  From 
box-cox plot, we found out that both data are not stationary in variance.  
  Data transformation were made according to [18]. Fig. 2 shows the data has 
been detrended and deseasonalised after transformation and differencing for both 
non-seasonal and seasonal order. ACF and PACF were plotted again in order to 
identify the model and took a few possible models. The best model was chosen 
among these competitive models base on the smallest RMSE value. The model 
parameters were estimated by using least squares estimation. Models with 
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insignificant parameters (exclude constant) were eliminated. Remaining models 
then proceed to the diagnostic checking step to see whether the models adequate 
by using Ljung-Box statistics.  
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cáÖìêÉ=N Time series plot for number of tourist arrivals to Bali 
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cáÖìêÉ= O Time series plot for number of tourist arrivals to Bali after data transformation and 

differencing 
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According to RMSE value, the best SARIMA model for Bali is 
SARIMAሺ0,1,1ሻሺ0,1,1ሻଵଶ . Therefore, the models to forecast tourist arrivals to 
Bali after taking the parameter estimation from MINITAB output are following 
the below equation: 
 
ܼ௧ ൌ ܼ௧ିଵ  ܼ௧ିଵଶ െ ܼ௧ିଵଷ   ܽ௧ െ 0.6489ܽ௧ିଵ  0.8160ܽ௧ିଵଶ െ 0.5295ܽ௧ିଵଷ 
 

where ܼ௧ ൌ ሺ ௧ܻ
ఒ െ 1ሻ/ߣ . 

 
 
QKO cìòòó=qáãÉ=pÉêáÉë=
 
All the four methods of FTS were implemented by using Matlab 2008a.  The 
selection of the best FTS input is according RMSE. We choose only lag 13 for 
Bali and in case of Chen’s method for Bali, since only one lag was chosen, hence 
it follows Chen’s first order method (refer [6]). The number of intervals for Bali is 
26 (calculated following average-based length procedure). 
 
 
QKP `çãé~êáëçå=çÑ=cçêÉÅ~ëíáåÖ=mÉêÑçêã~åÅÉ==
 
The forecasting of tourist arrivals to Bali gate in testing period are done using four 
different approaches (total seven methods). From the results in Table 1, it is 
clearly shows that FTS Chen’s method outperformed the Box-Jenkins method and 
all others FTS methods. FTS Chen’s method gives the most accurate forecast 
according to MAPE, MAD and RMSE. It seems that all the three accuracy 
measurement give consistent ranking, except for RMSE for second, third and 
fourth ranking. 
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q~ÄäÉ=N Comparison of forecast performance by different forecasting methods 

 
jÉíÜçÇ= j^mb= ê~åâ j^a= ê~åâ ojpb= ê~åâ=

F.T.S Chen's 7.265 (1)  8100.7 (1)  10136.0 (1) 

F.T.S Yu's 7.518 (2)  8329.2 (2)  10203.3 (2) 

F.T.S Cheng's 7.677 (3)  8473.6 (3)  10262.8 (3) 

SARIMA 8.395 (4)  8684.5 (4)  10601.6 (4) 
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cáÖìêÉ=P= Forecasts of tourist arrivals in Bali (1997) 

 
 
RKM= `lk`irpflkp=

 
It is found that the best method to forecast the tourist arrivals to Bali is to be the 
FTS i.e [6]. Although this method known to be the simplest or conventional 
methods of FTS, yet this result should not be odd since several previous studies 
also have shown that simple method could outperform more advance or 
complicated methods (see e.g [20], [21], [22]). According to [22] many simple 
methods, such as a random-walk model, for example, offer adaptability to 
structural change, in that the model immediately adapts to the latest level of the 
series. 
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Generally, we can conclude that FTS (especially Chen’s method) is good to 
predict fluctuating series as tourist arrivals. Though, future research could be done 
by using FTS that can consider MA terms in input lag in order to improve the 
forecast accuracy. More advance accuracy measurement such as statistical test also 
can be applied to evaluate the forecast accuracy among competition models. 
Besides, turning points and directional change errors also will be useful since they 
can give better information on tourism growth cycles instead of just forecast error 
magnitude.  
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