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Abstract 
 
An experimental work to investigate the swirl spray characteristics that emanates from hollow-cone and 
solid-cone spray simplex atomizers is presented. Main objective of the research is to investigate the spray 
characteristics, i.e. spray breakup length, discharge coefficient and spray cone angle at different nozzle 
orifice diameter and injection pressure. Discharge coefficient is almost uninfluenced by the operating 
Reynolds number. This test also reveals that both breakup length and spray cone angle increases as orifice 
diameter is increased. Higher injection pressure leads to shorter breakup length and wider spray cone 
angle. 
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1.0  INTRODUCTION 

 
Simplex nozzles have been applied in many areas including 
combustion, aerospace propulsion, landscape system, 
pharmaceutical, agricultural, mining, paint industries and spray 
flash desalination system. The common objective of the nozzles is 
to increase liquid surface area to enhance evaporation and 
distribute a liquid over an area. Simplex nozzles atomize fluid into 
a flow regime which has been disintegrated into single element in 
form of fine drop of the working fluid. Most of simplex nozzles 
work on the same principle; first the pressurized liquid will enter 
the nozzle at an inlet port. The liquid is then flow out through 
holes before being forced to flow through several numbers of 
annular helicoidal slots. The liquid swirls in the swirl chamber. 
The swirling liquid is finally discharged through a small orifice. 
The regime of liquid flow forms a cone shaped spray (refer Figure 
1). 
  The understanding of this spray characteristic is important to 
the revolution of technologies especially with the widespread 
application of this swirling spray in many areas. This paper 
summarizes series of simplex nozzle testing that evaluated the 
swirling spray characteristics with water as the working liquid.  
 
 

2.0  LITERATURE REVIEW 
 
Xue, Jog, Jeng, Steinthorsson and Benjamin (2004) had 
numerically investigated the effect of inlet slot angle on spray 
cone angle and discharge coefficient. They found that an increase 

in inlet slot angle results in lower discharge coefficient and higher 
spray cone angle. Other geometrical parameters that will influence 
the spray characteristics are swirl chamber diameter, inlet port 
depth, orifice diameter, orifice length and length of swirl 
chamber. Larger orifice diameter will increase the spray cone 
angle and lower discharge coefficient (Chu, Chou, Lin and Liann, 
2008; Maniarasan and Nicholas, 2006; Yule and Widger, 1996). 
Shorter orifice will also increase the discharge coefficient (Yule 
and Widger, 1996). The effect of swirl chamber diameter is 
contradicted with the orifice diameter where an increase in swirl 
chamber diameter decreases the spray cone angle (Yule and 
Widger, 1996). Furthermore, Maniarasan and Nicholas (2006) had 
found that a reduction in swirl chamber diameter increase the 
liquid film thickness. Other research concludes that an increase in 
swirl chamber convergence angle increases the discharge 
coefficient and decreases the spray cone angle (Xue et al., 2004).  
 

 
 

Figure 1  Liquid flow in simplex nozzle 
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4.0  RESULT AND DISCUSSION 
 
A total of 56 tests were performed with inlet pressure ranging 
from 100 – 700 kPa. The relationship between the breakup length 
and injection pressure is presented in Figure 5. 
  It was observed that all nozzles had similar trend; the 
breakup length decreased with an increase in injection pressure. 
This is due to the fact that higher injection pressure results in 
higher resultant axial velocity component, which increase the 
tendency of the liquid film to disintegrate earlier. It has also been 
observed that nozzle with larger orifice diameter produces longer 
liquid film. This observation possibly can be explained as follows; 
larger orifice tends to increase the spray film thickness, in which 
increase the resistance of spray to disintegrate earlier. The 
investigation also found that hollow-cone spray produced longer 
liquid film compared to solid-cone spray. This is because hollow-
cone spray has the highest azimuthal velocity component which 
tends to lengthen the liquid film. The solid-cone spray has less 
swirl strength as a result of axial velocity component from the 
central port.  
  Figure 6 compares the discharge coefficient of simulated 
flow with different orifice diameter. The discharge coefficient is 
calculated using the relation: 

PA
mCd
Δ

=

•

ρ2
                                   (1) 

where, ρ is the density of water and A is the orifice area. 
  Reynolds number is calculated using relation given by 
Halder et al., (2003): 

1

2Re
R
V

πμ
ρ

•

=                                            (2) 

 
where ρ and μ are water density and viscosity respectively and R1 
is swirl chamber radius. 
  Nozzles 3S, 4H and 4S shows an approximate direct 
proportion between Reynolds number and discharge coefficient 
for Reynolds number above 4000. However, discharge coefficient 
of other nozzles remains almost constant with only little 
fluctuation within the tested range of inlet flow’s Reynolds 
number. It can be said that the discharge coefficient is almost 
uninfluenced by the injection pressure for all nozzles. This is 
because high Reynolds number implies an increase in the flow 
through the annular swirler which gives rise to the counter 
weighing effects of increased strength of swirl and its subsequent 
decay due to friction in the injector, which in turn results in 
almost constant values of discharge coefficient with respect to 
Reynolds number.  
  It has been observed for both hollow-cone and solid-cone 
spray nozzles that the nozzle with largest orifice diameter has the 
lowest discharge coefficient, which confirms previous observation 
by Chu, Chou, Lin and Liann (2008), Maniarasan and Nicholas 
(2006) and Yule and Widger (1996). This is because larger orifice 
diameter increases the swirling motion inside the swirl chamber 
and hence the air core which finally results in low discharge 
coefficient.  
  Spray cone angle is another studied parameter and the effect 
on injection pressure is shown in Figure 7. It can be concluded 
that the increase in injection pressure increased the spray angle, 
irrespective of the shape of the sprays. The major reason is that 
the angular velocity increases with pressure difference which 
tends to widen the liquid film at the nozzle outlet. However, 
nozzles 2H, 3H, 3S and 4S experience slight decreases in spray 

angle as the injection pressure reach 6 bar. The explanation to this 
observation is that higher pressure leads to lower radial velocity 
component, and hence the resulting liquid film at the injector 
outlet contracted. It is also found that nozzle with largest orifice 
produces widest spray. This observation is in agreement with 
previous research done by Maniarasan et al. (2006). 
  Figure 7 also shows that hollow-cone spray nozzles produce 
wider spray cone angle compared to solid-cone spray nozzles. 
This trend of variation can be attributed to the fact that the stream 
from the central port for solid-cone spray nozzles increase the 
resistance offered by the injector to the swirling motion inside it 
and finally results in lower value of spray cone angle. The same 
argument may be used to explain why hollow-cone spray nozzles 
produce highest spray angle. The liquid enters the swirl chamber 
only through helicoidal slots, hence the axial velocity component 
is only from one source (instead of two sources for solid-cone 
spray nozzles) which tends to widen the liquid film at the nozzle 
outlet. 
 

 
(a) 

 

 
(b) 

Figure 5  Effects of injection pressure on breakup length, (a) hollow-cone 
spray nozzles and (b) solid-cone spray nozzles 
 

 
(a) 
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(b) 

Figure 6  Effects of inlet Reynolds number on discharge coefficient, (a) 
hollow-cone spray nozzles and (b) solid-cone spray nozzles 
 

 
(a) 

 
(b) 

Figure 7  Effects of injection pressure on spray angle, (a) hollow-cone 
spray nozzles and (b) solid-cone spray nozzles 
 
 

5.0  CONCLUSION 
 
Experimental work was conducted to evaluate the characteristics 
of swirl spray that emanates from nozzles with different orifice 
diameter. Those characteristics were based upon calculated values 

of breakup length, discharge coefficient and spray cone angle and 
as a function of injection pressure and Reynolds number. In 
summary, the conclusions are listed as below. 
 

(1) The spray cone angle and breakup length is affected by 
the injection pressure. Higher injection pressure leads to 
shorter breakup length and wider spray angle 

(2) Nozzle with largest orifice diameter produces longest 
breakup length and widest spray cone angle. 

(3) Discharge coefficient of tested nozzles is almost 
uninfluenced by the inlet flow’s Reynolds number. The 
nozzle with largest orifice diameter has the lowest 
discharge coefficient. 

(4) Hollow-cone spray nozzles produced longer liquid film 
and wider spray cone angle compared to solid-cone 
spray nozzles. 
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