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Abstract 
 

Perovskite photovoltaic cell is regarded as an alternative configuration for the 

conventional photovoltaic cells predominantly due to its high efficiency. In this 

paper, a predictive modeling using a hybrid L27 orthogonal array (OA) Taguchi-

based Grey relational analysis (GRA), multiple linear regression (MLR) and genetic 

algorithm (GA) was proposed to optimize the device parameters for better overall 

performance. The Perovskite photovoltaic cell model is initially constructed and 

simulated using solar cell capacitance simulator (SCAPS). The final results reveal 

that the proposed hybrid L27 OA Taguchi-based GRA-MLR-GA approach has 

effectively optimized the device parameters in which SnO2:F thickness, SnO2:F 

donor density, ZnO thickness, ZnO donor density, CH3NH3PbI3-xClx thickness, 

CH3NH3PbI3-xClx donor density, Spiro-OMeTAD thickness and Spiro-OMeTAD 

acceptor density are predictively tuned at 0.198 μm, 8.973 x 1018 cm-3, 0.039 μm, 

8.827 x 1017 cm-3, 0.386 μm, 1.929 x 1013 cm-3, 0.233 μm and 8.984 x 1018 cm-3 

respectively. After the predictive modeling, both FF and PCE of the perovskite 

photovoltaic cell have been improved for ~5.93% and ~5.78% respectively. 
 

Keywords: FF, genetic algorithm, PCE, Photovoltaic, Taguchi based GRA 

 

Abstrak 
 

Sel fotovoltaik perovskite ialah suatu konfigurasi alternatif kepada sel fotovoltaik 

konvensional kerana mempunyai kecekapan yang tinggi. Dalam kertas kerja ini, 

pemodelan prediktif menggunakan kaedah gabungan L27 tatasusunan ortogonal 

(OA) Taguchi berasaskan analisis perhubungan Grey (GRA), regresi linear 

berganda (MLR) dan algoritma genetik (GA) telah dicadangkan bagi 

mengoptimumkan parameter peranti dalam mencapai prestasi yang lebih baik. 

Model peranti mulanya dibina dan disimulasikan menggunakan simulator SCAPS.  

Hasil akhir menunjukkan bahawa pendekatan GRA-MLR-GA berasaskan L27 OA 

Taguchi hibrid yang dicadangkan telah mengoptimumkan parameter peranti 

dengan berkesan di mana ketebalan SnO2:F, ketumpatan penderma SnO2:F, 

ketebalan ZnO, ketumpatan penderma ZnO, ketebalan CH3NH3PbI3-xClx, 

ketumpatan penderma CH3NH3PbI3-xClx, ketebalan Spiro-OMeTAD dan 

ketumpatan penerima Spiro-OMeTAD telah dilaraskan secara prediktif kepada 

0.198 μm, 8.973 x 1018 cm-3, 0.039 μm, 8.827 x 1017 cm-3, 0.386 μm, 1.929 x 1013 cm-3, 

0.233 μm and 8.984 x 1018 cm-3. Selepas pemodelan prediktif, FF and PCE sel 

fotovoltaik perovskite telah dipertingkatkan sebanyak ~5.93% and ~5.78%. 
 

Kata kunci: Algoritma genetik, FF, PCE, Fotovoltaik, Taguchi berasaskan GRA 
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1.0 INTRODUCTION 
 

In the past years, numerous researches in mixed-

halide Perovskite photovoltaic cells have been 

actively conducted predominantly due to their 

process ability, reduced-weight and remarkable 

power conversion efficiency which are very crucial for 

low-cost thin-film photovoltaic industry. The mixed-

halide Perovskite technology offers the ease of 

fabrication process with low cost and energy 

payback time suitable for substituting current silicon-

based photovoltaic cells. The initial reported 

photovoltaic cell utilizing Perovskite (CH3NH3PbI3) 

gained power conversion efficiency (PCE) of 3.81% 

back in year 2009 [1] which then tremendously 

increased beyond 20% in recent days [2, 3, 4].  

The most important attribute of the mixed-halide 

Perovskite device is the fined-tuned energy band gap 

absorber layer which can be performed by tuning 

mixed-halide elements before undergoing photo 

activation. The most prevalent mixed-halide 

Perovskites used in photovoltaic cell are CH3NH3PbI3–

xClx and CH3NH3PbI3–xBrx which offers numerous 

advantages such as lesser carrier recombination, 

improved device stability, enhanced carrier transport, 

increased carrier diffusion length and wideband 

optical absorptions [5, 6].  

For Perovskite-based structure, the absorber layer 

of CH3NH3PbI3–xClx is commonly stacked adjacent to 

electron material transport (ETM) and hole material 

transport (HTM). Most of the majority carriers either 

electrons or holes are generated after the event of 

light absorption in which the incident photon excites 

the electrons/holes propagate through the 

conducting path. This signifies the importance of 

carrier pathway from absorber to both cathode and 

anode, creating an enormous impact on Perovskite-

based devices [7, 8, 9]. Despite the continuous 

improvement of Perovskite photovoltaic cells, it is still 

necessary to further comprehend the interrelationship 

between the layer parameters and the output 

performances. Numerical simulation is one of the 

effective ways to conduct extensive investigation on 

each layer parameters of the Perovskite devices [10, 

11, 12].  

In addition, the numerical simulation could be 

combined with numerous statistical and machine 

learning approaches in identifying the optimal solution 

for better output performances [13, 14, 15]. The main 

advantage of these approaches is to provide 

predictive insight on the device performances before 

undergoing actual experimental and fabrication 

process which definitely saving a lot of time and cost 

[16, 17, 18]. This work will focus on the optimization of 

the mixed-halide Perovskite photovoltaic cell using 

numerical simulation with the aid of a hybrid L27 

orthogonal array (OA) Taguchi-based grey relational 

analysis (GRA), multiple linear regression (MLR) and 

genetic algorithm (GA). This approach is preferred 

over common optimization methods (response 

surface methodology (RSM), Taguchi method and 

etc.) primarily due to taking advantage on genetic 

algorithm which use objective function information, 

not derivatives. Furthermore, the utilization of grey 

relational analysis eases the computation process 

especially when it involves many responses and 

parameters that need to be analyzed simultaneously.  

 

 

2.0  METHODOLOGY 
 

The methodology of this current work consists of two 

primary stages which are device simulation and 

predictive modeling. The device simulation of the 

Perovskite photovoltaic cell is initially carried out using 

solar cell capacitance simulator (SCAPS) which is a 

well-known open source one-dimensional software 

developed by the Department of Electronics and 

Information Systems (ELIS) of the University of Gent, 

Belgium [19]. Predictive modeling is later conducted 

to further optimize multiple device parameters upon 

achieving much better FF and PCE. The detail 

information for both device simulation and predictive 

modeling will be explained in the following sub-

chapters. 

 

2.1 Device Simulation 

 

The simulation of Perovskite photovoltaic cell was 

performed using SCAPS (version 3.3.02) where its 

numerical computation is based on the fundamental 

semiconductor equations such as hole continuity, 

electron continuity and Poisson equations as can be 

mathematically described in (1), (2) and (3) 

respectively:         
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for which Na
-(x) and Nd

+(x) represent the ionized 

acceptor and donor doping density respectively, p(x), 

n(x), pt(x) and nt(x) denote free holes, free electrons, 

trapped holes and trapped electrons accordingly, G 

represents rate of generation, q represents electron 

charges, D represents diffusion coefficients, x 

represents the direction across device thickness, ψ 

represents electrostatic potential and ξ represents 

electric field. The recombination and current density-

voltage characteristic together with the magnitude of 

open circuit voltage (Voc), short circuit current density 

(Jsc), fill factor (FF) and power conversion efficiency 

(PCE) can be extracted by solving the 

aforementioned equations. 

The cell configuration constructed in this simulation 

is depicted in Figure 1 in which spray pyrolyzed 

fluorine-doped tin oxide (SnO2:F) and zinc oxide (ZnO) 
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were utilized as n-type transparent conducting oxide 

(TCO) and buffer layers respectively. Additionally, the 

metal work function for the front contact and back 

contact of the device were set at 4.4 eV and 5.1 eV 

respectively. Mixed Halide Perovskite (CH3NH3PbI3-xClx) 

was employed as the absorber layer to lightly harvest 

efficient electrons and holes transportation. Moreover, 

the Spiro-OMeTAD was used as hole transport material 

(HTM) mainly due to its efficient charge extraction and 

stability in photovoltaic cell configuration. 

Device parameters employed in this numerical 

simulation including the layer thickness and doping 

density are referred to previous works [7, 20, 21] as 

summarized in Table 1. The term χ, Ԑr, Eg, μn, μp, Nv, Nc, 

Na, Nd and Nt in Table 1 stand for electron affinity, 

relative permittivity, bandgap energy, electron 

mobility, hole mobility, effective valence band 

density, effective conduction band density, acceptor 

density, donor density and defect density 

respectively.  In this simulation, the effect of shunt and 

series resistance was not considered because it is 

typically caused by manufacturing defects, rather 

than poor photovoltaic design. The defects include 

the resistances of the top and rear metal contacts, as 

well as the contact resistance between the metal 

contact and the body. The defect density (Nt) of every 

layer except absorber layer were equally set at 1015 

cm-3. For the absorber layer (CH3NH3PbI3-xClx), the 

magnitude of Nt was set at 2.5x1013 cm-3. The 

simulations were constantly conducted under the 

standard AM 1.5 spectrum at 300 K of temperature. 

 

 
Figure 1 Cross-sectional structure of Perovskite photovoltaic cell 

 

 

 

Table 1 Baseline Parameters for Perovskite Photovoltaic Cell 
 

Parameters SnO2:F 

(TCO) 

ZnO 

(Buffer) 

CH3NH3PbI3-

xClx 

(Absorber) 

Spiro-

OMeTAD 

(HTM) 

Thickness 

(μm) 

0.2 0.04 0.4 0.25 

χ (eV) 4 3.9 3.9 2.45 

Ԑr  9 9 6.5 3 

Eg (eV) 3.5 3.3 1.55 3.0 

μn (cm2/Vs) 20 50 2 2x10-4 

μp (cm2/Vs) 10 5 2 2x10-4 

Nv (cm-3) 1.8x1019 1×1019 1.8×1019 1.8×1019 

Nc (cm-3) 2.2×1018 1×1019 2.2×1018 2.2×1018 

Na (cm-3) - - - 2×1018 

Nd (cm-3) 1×1018 5×1017 1013 - 

Nt (cm-3) 1015 1015 2.5×1013 1015 

 

 

2.1  Predictive Modeling 

 

In this section, a description of the proposed 

predictive modeling approach used for optimizing the 

Perovskite photovoltaic cell will be discussed in detail. 

In this simulation work, the device was predictively 

modeled via a combination of L27 orthogonal array 

(OA) Taguchi-based Grey relational analysis-multiple 

linear regression-genetic algorithm (GRA-MLR-GA) 

approach. Figure 2 depicts the overall flowchart of the 

predictive modeling using L27 OA Taguchi-based GRA-

MLR-GA approach. 

The predictive modeling initiated with the design of 

experiment (DoE) based on L27 OA of Taguchi 

method. The design parameters were orthogonally 

divided into low (L), medium (M) and high (H) level as 

clearly shown in Table 2. There were 27 individual 

experiments conducted according to the allocated 

level in each experimental rows and columns as 

shown in Table 3. The magnitudes of the output 

responses, FF and PCE for each experimental row 

were computed using (4) and (5) respectively as 

recorded in Table 4.  
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where Vmp and Jmp stand for voltage and current 

density at maximum power point respectively. Since FF 

and PCE were desired to be as large as possible, their 

respective magnitudes in each experimental row 

were required to be normalized based on larger-the-

better objective problem formulated as: 
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where xi*(k), xi(k), min xi(k) and max xi(k) are the 

normalized data for each experimental row, the 

magnitude of output data for a certain experimental 

row, the minimum magnitude of the output data and 

the maximum magnitude of the output data 

respectively. The data normalization was then 

followed by computing the deviation sequences, ∆oi 

(k) for every experimental row as: 

                                                                 

                           () 

 

Design of Experiment 

(DoE) based on L27 OA 

Taguchi Method

Normalize the FF and 

PCE based on the 

larger-the-better 

problem

START

Convergence 

criterion satisfied

END

Determine the 

deviation sequences

Compute the Grey 

relational coefficients 

(GRCs)

Compute the Grey 

relational grades 

(GRGs)

Derive objective 

function via multiple 

linear regression 

(MLR)

Fitness Scaling Selection

Crossover

Mutation
No

Yes

 
 

Figure 2 Flowchart of the predictive modeling using L27 OA 

Taguchi-based GRA-MLR-GA approach 

 

Table 2 Levels of Design Parameters 
 

Sym. Parameter Units Level 

Low 

(L) 

Medium 

(M) 

High 

(H) 

A SnO2:F 

thickness 

μm 0.2 0.4 0.6 

B SnO2:F 

donor 

density 

cm-3 1×1018 5×1018 9×1018 

C ZnO 

thickness 

μm 0.04 0.06 0.08 

D ZnO donor 

density 

cm-3 1x1017 5x1017 9x1017 

E CH3NH3PbI3-

xClx 

thickness 

μm 0.4 0.6 0.8 

F CH3NH3PbI3-

xClx donor 

density 

cm-3 1x1013 5x1013 9x1013 

G Spiro-

OMeTAD 

thickness 

μm 0.25 0.35 0.45 

H Spiro-

OMeTAD 

acceptor 

density 

cm-3 1x1018 5x1018 9x1018 

 

 

Table 3 DoE based on L27 OA Taguchi 
 

Exp

. no. 

A B C D E F G H FF  

(%) 

PCE 

(%) 

1 L L L L L L L L 73.11 19.41 

2 L L L L M M M M 75.18 20.86 

3 L L L L H H H H 74.59 20.9 

4 L M M M L L L M 76.71 20.43 

5 L M M M M M M H 76.3 21.21 

6 L M M M H H H L 69.15 19.38 

7 L H H H L L L H 77.63 20.69 

8 L H H H M M M L 71.31 19.81 

9 L H H H H H H M 73.78 20.7 

10 M L M H L M H L 72.08 19.13 

11 M L M H M H L M 75.42 20.86 

12 M L M H H L M H 74.99 20.94 

13 M M H L L M H M 76.38 20.24 

14 M M H L M H L H 76.25 21.1 

15 M M H L H L M L 69.85 19.5 

16 M H L M L M H H 77.48 20.58 

17 M H L M M H L L 71.9 19.91 

18 M H L M H L M M 74.07 20.72 

19 H L H M L H M L 72.64 19.23 

20 H L H M M L H H 75.2 20.79 

21 H L H M H M L M 74.95 20.92 

22 H M L H L H M M 76.62 20.31 

23 H M L H M L H H 76.29 21.11 

24 H M L H H M L L 70.54 19.69 

25 H H M L L H M H 77.45 20.48 

26 H H M L M L H L 70.61 19.49 

27 H H M L H M L M 74 20.63 

 

 

where xo*(k) is the sequence referred to the unity 

which is normally set to 1. The deviation sequences for 

all the 27 experimental rows were then used in 

computing the grey relational coefficient (GRC), ξ(k) 

formulated as: 
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where ξ is the distinguishing  coefficient in the range of 

0≤ ξ≤1. However, this particular study considered 0.5 as 

a magnitude of ξ because it offered moderate 

distinguishing effect and stability. Mathematically, any 

variation in the GRC would not contribute any 

changes in the overall rank of the grade. Based on 

Equation (8), the ∆max and ∆min are the maximum 

deviation magnitude and the minimum deviation 

magnitude respectively across the allocated columns. 

The average of the computed GRC for each 

experimental row were then measured based on the 

number of the involved output parameters. Since this 

case only involved two output parameters which were 

FF and PCE, the Grey relational grade (GRG), γi can 

be calculated as: 
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Based on the interrelationship between eight input 

material parameters and the calculated GRGs, the 

objective function of the problem was derived via 

multiple linear regression (MLR) approach. 

Relationally, the MLR model for this particular study 

involving eight inputs and an output can be 

statistically expressed as: 

               
eHbGbFbEbDbCbBbAbbY +++++++++= 876543210
 () 

  
where A, B, C, D, E, F, G and H are the investigated 

material parameters (SnO2:F thickness, SnO2:F donor 

density, ZnO thickness, ZnO donor density, CH3NH3PbI3-

xClx thickness, CH3NH3PbI3-xClx donor density, Spiro-

OMeTAD thickness and Spiro-OMeTAD acceptor 

density respectively), b0 is the intercept, 

b1b2b3b4b5b6b7b8 are the regression coefficients and 

e is the error term. For the estimation of the regression 

coefficients, the error terms will be neglected in which 

the objective function of the current problem can be 

simplified as: 

     

HbGbFbEbDbCbBbAbbY 876543210

' ++++++++=  () 

 

After identifying the objective function that 

summed up all the related problems, a well-known 

machine learning approach called Genetic Algorithm 

(GA) was employed to find the local optimal point of 

the objective function. The starting population for the 

problem is apparently the low level of the eight 

material parameters as tabulated in Table 3. The 

derived objective function was measurably scaled in 

the range of the pre-determined upper and lower 

boundaries so-called the fitness function (fi). The 

Rastringin function was utilized as a test function to 

evaluate the optimization algorithm due to multiple 

local minima type of problem which can be 

mathematically expressed as: 

                                                                          

         
=

−+=
n

i

ii xxnxRas
1

2 )}2cos(1010)(           () 

 
where n is a total number of the input material 

parameters and xi is the output parameter (GRG). The 

Rastringin function is appraised based on the 

hypercube xi ∈ [-5.12, 5.12] for all i = 1, 2, 3, 4, 5, 6, 7 

and 8. Since this function was originally designed for 

finding the local minima of the curve, it was instead 

inverted to find the local maxima of the objective 

curve. Hence, the fitness function (fi) for this case study 

(larger-the-better problem) can be mathematically 

formulated as listed in Table 4.   

After repeating the process of selection, crossover 

and mutation, the best magnitude of the fitness 

function would be eventually identified. For adequate 

number of generations, those processes were iterated 

until no significant improvement detected in the 

fitness magnitude. At this point, the best magnitude of 

the fitness function was regarded as the new 

emerging populations of parameter A (SnO2:F 

thickness), parameter B (SnO2:F donor density), 

parameter C (ZnO thickness), parameter D (ZnO 

donor density), parameter E (CH3NH3PbI3-xClx 

thickness), parameter F (CH3NH3PbI3-xClx donor 

density), parameter G (Spiro-OMeTAD thickness) and 

parameter H (Spiro-OMeTAD acceptor density) were 

able to be optimally forecasted. The default GA 

preferences for this case study were set as: 

 

Type  =  real-valued  

Population size =  50  

Number of generations = 1000  

Elitism =  2  

Crossover probability = 0.8  

Mutation probability = 0.1 

 
Table 4 Fitness function (fi) formulation for larger-the-better 

problem 
 

Minimize - Ras(A, B, C, D, E, F, G, H) 

Subject to the constraints: 

A 0.18 μm ≤ A ≤ 0.62 μm 

B 1x1018 cm-3≤ B ≤ 9x1018 cm-3 

C 0.038 μm ≤ C ≤ 0.082 μm 

D 1x1017 cm-3 ≤ D ≤ 9x1017 cm-3 

E 0.38 μm ≤ E ≤ 0.82 μm 

F 1x1013 cm-3  ≤ F ≤ 1x1013 cm-3 

G 0.23 μm ≤ G ≤ 0.47 μm 

H 1x1018 cm-3 ≤ H ≤ 9x1018 cm-3 

 

 

3.0 RESULTS AND DISCUSSION 
 

Before undergoing further on predictive modeling 

approach, a simple experiment has been done to 

observe the effect of parameter variations on the 

device performances. Table 5 shows the summary of 

the effects of single parameter variations on their 

corresponding PCE. (Note: Default parameters are set 

similarly to medium level as indicated in Table 2.) 

Based on Table 5, material parameters; SnO2:F 

donor density, ZnO donor density, CH3NH3PbI3-xClx 

donor density, Spiro-OMeTAD thickness and Spiro-

OMeTAD acceptor density indicate a very least 

influence on the PCE variation as there is no changes 

in PCE detected. Material parameters; SnO2:F 

thickness and ZnO thickness exhibit increasing trend in 

PCE as their corresponding thickness are reduced. On 

the other hand, material parameter; CH3NH3PbI3-xClx 

thickness demonstrates declining trend in PCE as its 

thickness is reduced.  

The collective results of the predictive modeling of 

the Perovskite photovoltaic cell are presented in this 

section. The experimental data resulted from the DoE 

L27 Taguchi OA in Table 3 are normalized accordingly 

where the deviation sequences, the GRCs, GRGs and 

their respective ranks for each experimental row are 

computed, evaluated and recorded in Table 6. 
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Table 5 Summary of the effects of parameter variations on their corresponding PCE 
 

SnO2:F thickness (µm) PCE (%) Trend SnO2:F donor density (cm-3) PCE (%) Trend 

0.2 20.04  1×1018 19.98  

No changes 0.4 19.98 5×1018 19.98 

0.6 19.93 9×1018 19.98 

ZnO thickness (µm) PCE (%) Trend ZnO donor density (cm-3) PCE (%) Trend 

0.04 19.98  1×1017 19.98  

No changes 0.06 19.98 5×1017 19.98 

0.08 19.97 9×1017 19.98 

CH3NH3PbI3-xClx thickness (µm) PCE (%) Trend CH3NH3PbI3-xClx donor density (cm-3) PCE (%) Trend 

0.4 18.79  1×1013 19.98  

No changes 0.6 19.98 5×1013 19.98 

0.8 20.45 9×1013 19.98 

Spiro-OMeTAD thickness  (µm) PCE (%) Trend Spiro-OMeTAD acceptor density (cm-3) PCE (%) Trend 

0.25 19.98  

No changes 

1×1018 19.98  

No changes 0.35 19.98 5×1018 19.98 

0.45 19.98 9×1018 19.98 

 

 
Table 6 Deviation Sequences, GRCs, GRGs and Ranks 

 

Exp. 

No. 

Deviation 

Sequences, ∆oi 

(k) 

GRC, ξi (k) GRG 

(γi) 

Rank 

∆oi (FF) ∆oi 

(PCE) 

ξi  

(FF) 

ξi 

(PCE) 

1 0.5330 0.8654 0.4840 0.3662 0.4251 20 

2 0.2889 0.1683 0.6338 0.7482 0.6910 11 

3 0.3585 0.1490 0.5824 0.7704 0.6764 12 

4 0.1085 0.375 0.8217 0.5714 0.6966 10 

5 0.1568 0 0.7612 1 0.8806 1 

6 1 0.8798 0.3333 0.3624 0.3479 27 

7 0 0.25 1 0.6667 0.8333 3 

8 0.7453 0.6731 0.4015 0.4262 0.4139 21 

9 0.4540 0.2452 0.5241 0.6710 0.5975 17 

10 0.6545 1 0.4331 0.3333 0.3832 24 

11 0.2606 0.1683 0.6574 0.7482 0.7028 8 

12 0.3113 0.1298 0.6163 0.7939 0.7051 7 

13 0.1474 0.4663 0.7723 0.5174 0.6449 15 

14 0.1627 0.0529 0.7544 0.9044 0.8294 4 

15 0.9175 0.8221 0.3527 0.3782 0.3655 26 

16 0.0177 0.3029 0.9658 0.6228 0.7943 5 

17 0.6757 0.625 0.4253 0.4444 0.4349 19 

18 0.4198 0.2356 0.5436 0.6797 0.6117 16 

19 0.5884 0.9519 0.4594 0.3444 0.4019 22 

20 0.2866 0.2019 0.6357 0.7123 0.6740 13 

21 0.3160 0.1394 0.6127 0.7820 0.6973 9 

22 0.1191 0.4327 0.8076 0.5361 0.6719 14 

23 0.1580 0.0481 0.7599 0.9123 0.8361 2 

24 0.8361 0.7308 0.3742 0.4063 0.3902 23 

25 0.0212 0.3510 0.9593 0.5876 0.7734 6 

26 0.8278 0.8269 0.3766 0.3768 0.3767 25 

27 0.4281 0.2788 0.5388 0.6420 0.5904 18 

 

 

The experimental results from the GRA in Table 6 

reveals that the highest rank of GRG demonstrated by 

the fifth experimental row, indicating that the fifth row 

contains the best levels of the input material 

parameters which would possibly generate the most 

optimum magnitude of FF and PCE of the device. 

Figure 3 shows the interrelationship between eight 

input material parameters and the computed GRGs 

developed using MLR approach. The scattered points 

on the plot are observed to form a curve rather than 

a straight line implying the skewness in the computed 

GRGs. In this case, most of GRG points are scattered 

near the reference line, implying that the GRGs are 

reasonably consistent with normality.  

The summary of the MLR results for this case study is 

tabulated in Table 7. From the results, the input 

material parameter that dominantly contribute the 

most impact on the GRG variations is parameter H 

(Spiro-OMeTAD acceptor density) with three 

significant code, followed by parameter E 

(CH3NH3PbI3-xClx thickness) with one significant code. 

The remaining of the involved material parameters are 

considered neutral as their respective magnitudes 

would not contribute significant impact on the GRG 

variations. 

 

 
 

Figure 3 Q-Q plots for multiple input parameters 

 

 

The objective function of the current problem can 

be drawn from the computed estimation of regression 

coefficients and relationally written as: 

 
𝑌′ = 0.545 − 0.042𝐴 + 0.001𝐵 − 0.205𝐶 + 0.002𝐷 −

0.178𝐸 − 0.001𝐹 − 0.149𝐺 + 0.048𝐻                                 () 
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The objective function is required to be inverted within 

the pre-determined upper and lower boundaries due 

to the equation is originally derived for searching the 

local minima. 

 
Table 7 Summary of Multiple Linear Regressions 

 

Term Regression 

Coeff. 

Std. Error t 

value 

Pr 

(>|t|) 

Signif. 

code 

Inter

- 

cept 

0.5454974   0.0870634    6.266 6.57e-

06 

*** 

A -0.0417837   0.0678473   -0.616     0.546  

B 0.0009617   0.0033924    0.283     0.780  

C -0.2049723   0.6784730   -0.302     0.766  

D 0.0022402   0.0033924    0.660     0.517  

E -0.1784969   0.0678473   -2.631     0.017 * 

F -0.0012224   0.0033924   -0.360     0.723  

G -0.1494892   0.1356946   -1.102     0.285  

H 0.0484275   0.0033924   14.275 2.94e-

11 

*** 

Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 

 

 

Hence, the fitness function of the maximization 

problem can be mathematically re-written as: 

 
𝑌′ = −0.545 + 0.042𝐴 − 0.001𝐵 − 0.205𝐶 − 0.002𝐷 +

0.178𝐸 + 0.001𝐹 + 0.149𝐺 − 0.048𝐻                            () 

 

The fitness function (fi) iteratively undergoes the 

process of selection, crossover and mutation until the 

optimum magnitude of the function is reached.  For 

this case, the process of selection, crossover and 

mutation were halted at 941 iterations as illustrated in 

Figure 4. 

 

 
 

Figure 4 GA Performance during convergence 

 

 

Based on the GA performance, the highest 

possible fitness magnitude of the GRG is observed at 

0.886558 where the optimum magnitude of the input 

material parameters; A, B, C, D, E, F, G and H are 

predictively estimated at 0.198 μm, 8.973x1018 cm-3, 

0.039 μm , 8.827x1017 cm-3  , 0.386 μm, 1.929x1013 cm-3, 

0.233 μm and 8.984x1018 cm-3 respectively.  

Finally, the Perovskite photovoltaic cell model is re-

simulated by employing the newly predicted input 

material parameters for verification. The comparative 

J-V transfer characteristics of the device between 

before and after predictive modeling are depicted in 

Figure 5. 
 

 
 

Figure 5 J-V transfer characteristics of Perovskite photovoltaic 

cell before and after predictive modelling 

 

 

Based on the J-V curves, the open circuit voltage 

(Voc) of the device has been slightly enhanced by 

~0.51% after undergoing the proposed predictive 

modeling approach where the Voc magnitude before 

and after predictive modeling are measured at 1.1282 

V and 1.1340 V respectively. However, a slight 

decrease of ~0.7% in current density (Jsc) 

demonstrated by the device after predictive 

modeling predominantly attributed to larger resistive 

losses that sourced from erratic variation effect of 

thickness and dopant density in absorber layer. Jsc 

magnitudes for both devices before and after 

predictive modeling are measured at 23.535 mA/cm2 

and 23.371 mA/cm2 respectively. Figure 6 depicts the 

comparative bar graph of FF and PCE before and 

after predictive modeling. According to the bar 

graph, a slight rise exhibited in both output 

parameters after undergoing the proposed predictive 

modeling approach (Hybrid L27 OA Taguchi-based 

GRA-MLR-GA) in which both FF and PCE are improved 

by ~5.93% and ~5.78% respectively.  

 

 
 

Figure 6 Comparative bar graph of FF and PCE before and after 

predictive modeling 
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Table 8 summarizes the improvement of FF and PCE 

after the input material parameters have been 

predictively modeled by the proposed approach. The 

experimental results explicitly prove that the electrical 

performance of Perovskite photovoltaic cell can be 

significantly improved by predictively modeling the 

input material parameters using the proposed hybrid 

L27 OA Taguchi-based GRA-MLR-GA approach. In 

future work, more input material parameters could be 

added into the existing analytical model in order to 

gain better predictive solutions. 

 
Table 8 Summary of Device Mode;ling Using Hybrid L27 OA 

Taguchi-based GRA-MLR-GA Approach 

 

Output 

Parameters 

Units Before 

Predictive 

Modeling 

After 

Predictive 

Modeling 

% 

Improvement 

FF % 73.11 77.72 ~5.93% 

PCE % 19.41 20.6 ~5.78% 

 
 

4.0  CONCLUSION 
 

In summary, the Perovskite photovoltaic cell virtually 

developed via open source solar cell capacitance 

simulator (SCAPS) has been successfully optimized using 

the proposed hybrid L27 OA Taguchi-based GRA-MLR-GA 

approach. The proposed approach utilized L27 OA 

Taguchi design of experiments (DoE) for experimental 

data acquisition. The Grey relational analysis (GRA) was 

subsequently conducted to merge two types of 

experimental data (FF & PCE) into a single representative 

unit called Grey relational grade (GRG). Through multiple 

linear regression (MLR) analysis, the objective function of 

the centered problem was drawn and fed into genetic 

algorithm for searching local maxima of the function.  

After iteratively undergoing 941 cycles of selection, 

crossover and mutation, the best fitness magnitude (fi) 

was found at 0.886558. The optimum magnitude of the 

material parameters have been successfully obtained as 

shown in Table 9.  

 
Table 9 Optimum Magnitude of the Material Parameters 
 

Material Parameters Optimum 

Magnitude 

SnO2:F thickness 0.198 μm 

SnO2:F donor density 8.973x1018 cm-3 

ZnO thickness 0.039 μm 

ZnO donor density 8.827x1017 cm-3   

CH3NH3PbI3-xClx thickness 0.386 μm 

CH3NH3PbI3-xClx donor density 1.929x1013 cm-3 

Spiro-OMeTAD thickness 0.233 μm 

Spiro-OMeTAD acceptor density 8.984x1018 cm-3 

 

 

Furthermore, both FF and PCE of the device were 

successfully improved by ~5.93% and ~5.78% respectively. 

These explicitly justify that the proposed hybrid L27 OA 

Taguchi-based GRA-MLR-GA approach could be 

suitably employed in modeling multiple material 

parameters of Perovskite photovoltaic cell for improved 

performance. 

Acknowledgement 
 

The authors would like to thank the Ministry of Higher 

Education (MOHE) of Malaysia, Mybrain15 and Micro 

and Nano Electronics Research Group (MiNE), Centre 

for Telecommunication Research and Innovation 

(CeTRI), Faculty of Electronics and Computer 

Engineering (FKEKK), Universiti Teknikal Malaysia 

Melaka (UTeM) for sponsoring this research study 

under research grant (FRGS/1/2017/TK04/FKEKK-

CeTRI/F00335). 

 

 

References 
 

[1] Sun, Y., Seo, J.  H., Takacs, C.  J., Seifter, J., and Heeger, A. 

J. 2011. Inverted Polymer Solar Cells Integrated with a Low-

Temperature-Annealed Sol-Gel-Derived ZnO Film as an 

Electron Transport Layer. Advanced Materials. 23(14): 1679-

83. 

[2] Tara, A., Bharti, V., Sharma, S., and Gupta, R. 2021. Device 

Simulation of FASnI3 based Perovskite Solar Cell with 

Zn(O0.3, S0.7) as Electron Transport Layer using SCAPS-1D. 

Optical Materials. 119: 111362. 

[3] Hussain, S. S., Riaz, S., Nowsherwan, G. A., Jahangir, K., 

Raza, A., Iqbal, M. J., Sadiq, I., Hussain, S. M., and Naseem, 

S. 2021. Numerical Modeling and Optimization of Lead-Free 

Hybrid Double Perovskite Solar Cell by Using SCAPS-1D. 

Journal of Renewable Energy. 2021: 1-12. 

[4] Yongjin, G.,  Xueguang, B., Yucheng, L.,  Binyi, Q., Qingliu, 

L.,  Qubo, J., and Pei, M. 2020. Numerical Investigation 

Energy Conversion Performance of Tin-based Perovskite 

Solar Cells Using Cell Capacitance Simulator. Energies. 

13(5907): 1-17. 

[5] Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and II Seok, S. 

2013. Chemical Management for Colorful, Efficient, and 

Stable Inorganic−Organic Hybrid Nanostructured Solar 

Cells. Nano Letters. 13: 1764-1769. 

[6] Kumawat, N. K., Dey, A., Kumar, A., Gopinathan, S. P., 

Narasimhan, K. L., and Kabra, D. 2015. Band Gap Tuning of 

CH3NH3Pb(Br1-xClx)3 Hybrid Perovskite for Blue 

Electroluminescence. ACS Applied Materials and 

Interfaces. 7(24): 13119-24. 

[7] Lin, L., Jiang, L., Li, P., Fan, B., and Qiu, Y. 2018. A Modeled 

Perovskite Solar Cell Structure with a Cu2O Hole-

transporting Layer Enabling over 20% Efficiency by Low-cost 

Low-temperature Processing. Journal of Physics and 

Chemistry of Solids. 124(July 2018): 205-11. 

[8] Haider, S. Z., Anwar, H., and Wang, M. 2018. A 

Comprehensive Device Modelling of Perovskite Solar Cell 

with Inorganic Copper Iodide as Hole Transport Material. 

Semiconductor Science and Technology. 33(3): 1-12. 

[9] Mandadapu, U., Vedanayakam, S. V., Thyagarajan, K., 

and Babu, B. J. 2018. Optimisation of High Efficiency Tin 

Halide Perovskite Solar Cells using SCAPS-1D. International 

Journal of Simulation and Process Modelling. 13 (3): 221-27. 

[10] Bello, I. T., Odedunmoye, Y. A., Adedokun, O., Shiitu, H. A., 

and Audugba, A. O. 2019. Numerical Simulation of 

Sandwiched Perovskite-based Solar Cell Using Solar Cell 

Capacitance Simulator (SCAPS-1D). Journal of the Nigerian 

Society of Physical Sciences. 1(2019): 57-61. 

[11] Du, H. J., Wang, W. C., and Gu, Y. F. 2017. Simulation Design 

of P-I-N-type all-perovskite Solar Cells with High Efficiency. 

Chinese Physics B. 26 (2): 1-7. 

[12] Mandadapu, U., Vedanayakam, S. V., Thyagarajan, K., 

Reddy, M. R., and Babu, B. J. 2017. Design and Simulation 

of High Efficiency Tin Halide Perovskite Solar Cell. 

International Journal of Renewable Energy Research. 7(4): 

1604-12. 

[13] Kaharudin, K. E., Salehuddin, F., Hamidon, A. H., Aziz, M. N. 

I. A. and Ahmad, I. 2015. Taguchi Modeling of Process 



9                 Khairil Ezwan Kaharudin & Fauziyah Salehuddin / Jurnal Teknologi (Sciences & Engineering) 84:1 (2022) 1–9 

 

 

Parameters in VDG-MOSFET Device for Higher ION/IOFF Ratio. 

Jurnal Teknologi. 77(12): 19-26. 

[14] Salehuddin, F., Kaharudin, K. E., Zain, A. S. M., Yamin, A. K. 

M., and Ahmad, I. 2014. Analysis of Process Parameter 

Effect on DIBL in n-channel MOSFET Device using L27 

Orthogonal Array. International Conferences on 

Fundamental and Applied Sciences. AIP Conf. Proc. 1621 

(1): 322-28. 

[15] Roslan, A. F., Kaharudin, K. E., Salehuddin, F., Zain, A. S. M., 

Ahmad, I., Faizah, Z. A. N., Hazura, et al. 2018. Optimization 

of 10 nm Bi-GFET Device for Higher ION/IOFF Ratio Using 

Taguchi Method. Journal of Physics: Conference Series. 

1123: 012046. 

[16] Kaharudin, K. E., Salehuddin, F., Zain, A. S. M., and Roslan, 

A. F., 2019. Optimal Design of Junctionless Double Gate 

Vertical MOSFET using Hybrid Taguchi-GRA with ANN 

Prediction. Journal of Mechanical Engineering and 

Sciences. 13(3): 5455-79. 

[17] Kaharudin, K. E., Hamidon, A. H., Salehuddin, F. 2014. 

Implementation of Taguchi Modeling for Higher Drive 

Current (ION) in Vertical DG-MOSFET Device. Journal of 

Telecommunication, Electronic and Computer 

Engineering. 6(2): 11-18. 

[18] Kaharudin, K. E., Salehuddin, F., Zain, A. S. M., and Aziz, M. 

N. I. A. Taguchi Modeling with the Interaction Test for Higher 

Drive Current in WSIx/TIO2 Channel Vertical Double Gate 

NMOS Device. Journal of Theoretical and Applied 

Information Technology. 90(1): 185-93. 

[19] Niemegeers, A., Burgelman, M. 1996. Modelling of AC-

Characteristics of Solar Cells. Proc. 25nd IEEE Photovoltaic 

Specialists Conference. 901-4. 

[20] Hossain, M. F., Faisal, M., and Okada, H. 2016. Device 

Modeling & Performance Analysis of Perovskite Solar Cells 

based on Similarity with Inorganic Thin Film Solar Cells 

Structure. International Conference on Electrical, 

Computer and Telecommunication Engineering. 8-10. 

[21] Sobayel, K., Akhtaruzzaman, M., Rahman, K. S., Ferdaous, 

M. T., Al-Mutairi, Z. A., Alharbi, H. F., Alharthi, N. H.Karim, M. 

R., Hasmady, S., and Amin, N. 2019. A Comprehensive 

Defect Study of Tungsten Disulfide (WS2) as Electron 

Transport Layer in Perovskite Solar Cells by Numerical 

Simulation. Results in Physics. 12(December 2018): 1097-

1103. 

 

 

 


