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of these methods on the EEG signals were discussed. It is 
followed by development of software in section 5. Lastly we 
conclude the work done and give some suggestion for future 
work. 
 
 

2.0  EEG SIGNAL 
 
By placing electrodes on the scalp, the signal will be read. Then 
amplifiers bring the microvolt signals into range where they can 
be digitalized accurately. Converter changes the signals from 
analog to digital form and digital computer process the digital 
data to the written form. Figure 1 shows the EEG signals 
recorded from an epileptic patient. 
    In order to analyze the signals, we have to determine the 
frequency distribution of the signals. Table 1 shows the four 
major types of frequency of the EEG [3]. 
    Since the frequency characteristic is an important 
information that can be observed from the signals, FFT and 
wavelet transform are among the best methods in analysis of 
EEG signals [4, 5]. These methods provide time-frequency 
shifted on the EEG signals. 
 

 
 

Figure 1  EEG signals recorded from epileptic patients 
 
 

Table 1  Major types of frequency of the EEG 
 

Delta waves, δ. (<4Hz)  Delta rhythms are slow brain activities, can 
be seen only in deep sleep stages of normal 
adults. Otherwise, diagnoses are suggested. 

Theta waves, θ. (4-8Hz)  This EEG frequency bands exist in normal 
infants and children as well as during 
drowsiness and sleep in adults. Only a small 
amount of theta rhythms appears in the 
normal waking adult. Present of high theta 
activity in awake adults suggests abnormal 
and pathological conditions. 

Alpha waves, α. (8-14Hz)  Alpha rhythms exist in normal adults during 
relaxed and mentally inactive awakeness. 
Alpha rhythms are blocked by opening the 
eyes (visual attention) and other mental 
efforts such as thinking. 

Beta waves, β. (14-30Hz)  Beta activity is mostly marked in front to 
central region with less amplitude than alpha 
rhythms. It is enhanced by expectancy states 
and tension. 

 
 
 
 

3.0  FFT AND THE APPLICATION ON THE EEG 
SIGNALS 
 
FFT is the fast algorithm to calculate discrete Fourier transform 
(DFT) [6]. The DFT X(k) of a finite duration function x(n) is 
given as: 
 

ܺሺ݇ሻ ൌ  ሺ݊ሻݔ ேܹ


ேିଵ

ୀ

 

      (1) 

where  ேܹ ൌ ݁
షೕమഏ
ಿ , ܰ ൌ lengthሾݔሺ݊ሻሿ  , ݇ ൌ 0,1,… , ܰ െ 1.    

 
    Note that, if we are given N-point data, the calculation need 
N2 step. By FFT, we can reduce this calculation in only N Log2 
N operations. We can illustrate the algorithm of calculating 8-
point DFT using FFT as the simplified signal flow graph as 
shown in Figure 2. 
    We transform the data by Equation 1. Observe that X is a 
complex vector representing X(k) for k=0,1,2,...,255. Then we 
compute the absolute value of X to get the magnitude. The 
magnitude of X squared is called the estimated power spectrum. 
A plot of the estimated power spectrum versus frequency is 
called a periodogram. 
    Since the first component of X is the sum of the data and 
has large amplitude, we have to remove it before generating the 
periodogram.  Notice also X(129),X(130),...,X(255) are complex 
conjugates of X(127),X(126),...,X(1) respectively. Then the 
periodogram can be plotted for X(k), k=1,2,..128. Figure 3 
shows the periodogram for channel Fz at t=1 of patient A, which 
highest amplitude is occurred at the range of alpha band. 
    We apply this procedure for all channels at time t=1 until 
t=10 for all the four patients. The patterns of all periodograms 
are investigated to identify the abnormality of the signals.  From 
the observations, we found that most of the channel has high 
amplitude in the range of delta and theta bands. This indicates 
that the abnormality occurred to the EEG signals of the epileptic 
patient. Then, the highest amplitude's range for each channel is 
observed to determine which channels have to be concerned on 
diagnosing epilepsy. 
    Table 2 shows the differences of the highest amplitude's 
range for each channel of patient A.  Let take 108 μV and above 
as the higher amplitude's value of the abnormality of the 
periodograms. The classification of normal or abnormal of the 
channel at that time are summarised in Table 3, which conclude 
that most of the signal showing abnormal pattern between t=5 to 
t=8. 
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Figure 2  Simplified signal flow graph of 8-point DFT 
 
 

 
 

Figure 3  The periodogram for channel Fz at t=1 of patient A 
 

 
 
 
 
 
 
 
 
 
 
 

       
x(0)          ......  x(0)
x(4)     ......  x(1)
x(2)     ......  x(2)
x(6)     ......  x(3)
x(1)     ......  x(4)
x(5)     ......  x(5)
x(3)     ......  x(6)
x(7)     ......  x(7)
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Table 2  The highest amplitude’s range for each channel in spectral plot for EEG signal of patient A (µV) 

 

t= 1 2 3 4 5 6 7 8 9 10 

Fp1 1.3E+07 1.5E+06 1.9E+06 2.4E+07 6.2E+08 3.3E+08 1.5E+08 9.4E+07 7.3E+07 6.6E+07 

Fp2 1.8E+06 3.7E+06 4.8E+06 1.1E+08 5.3E+08 5.3E+08 1.4E+08 1.3E+08 4.1E+07 2.0E+07 

F3 2.1E+06 1.4E+06 8.4E+05 1.1E+08 3.8E+07 1.8E+07 2.6E+07 3.6E+07 3.9E+07 4.6E+07 

F4 1.7E+07 2.3E+06 2.8E+06 1.0E+07 7.9E+07 4.7E+07 3.3E+07 5.7E+07 5.6E+07 2.2E+07 

C3 6.1E+06 4.7E+06 6.0E+06 1.0E+08 1.1E+08 7.4E+07 7.9E+07 4.4E+07 2.3E+07 7.7E+07 

C4 5.5E+07 1.5E+06 8.2E+06 8.3E+06 1.9E+08 1.6E+08 1.7E+08 9.7E+07 3.0E+07 3.4E+07 

P3 1.2E+07 8.0E+06 6.9E+06 1.3E+08 1.6E+08 2.0E+08 1.5E+08 8.4E+07 8.3E+07 6.6E+07 

P4 1.2E+08 4.3E+06 6.9E+07 2.5E+07 4.6E+08 2.9E+08 3.1E+08 1.8E+08 8.2E+07 1.4E+08 

O1 2.3E+07 1.0E+07 9.3E+06 3.2E+07 2.5E+08 3.4E+08 3.4E+08 8.0E+07 1.2E+08 2.5E+08 

O2 5.5E+07 4.8E+06 4.8E+07 2.2E+07 2.7E+08 4.8E+08 3.8E+08 2.3E+08 6.9E+07 2.1E+08 

F7 5.1E+06 2.4E+06 4.2E+06 1.4E+07 2.8E+08 6.2E+08 2.8E+08 1.0E+08 1.3E+08 9.0E+07 

F8 5.6E+06 1.7E+06 1.5E+07 8.8E+07 2.5E+08 1.1E+09 8.1E+08 2.0E+08 3.6E+08 1.0E+08 

T3 7.3E+06 7.2E+06 4.8E+06 9.6E+06 2.8E+08 1.1E+09 7.8E+08 1.4E+08 5.3E+08 6.7E+07 

T4 2.7E+07 5.5E+06 3.4E+07 4.1E+07 3.0E+08 1.4E+09 1.1E+09 1.3E+08 5.4E+08 1.3E+08 

T5 2.3E+07 1.3E+07 6.3E+06 4.8E+07 2.0E+08 7.6E+08 6.3E+08 9.1E+07 2.8E+08 8.2E+07 

T6 6.1E+07 7.1E+06 7.4E+07 4.3E+07 2.3E+08 1.1E+09 9.4E+08 1.7E+08 3.5E+08 1.2E+08 

A1 1.5E+07 2.1E+07 1.1E+07 1.1E+07 3.8E+08 1.3E+09 8.7E+08 1.2E+08 2.5E+08 1.1E+08 

A2 2.0E+07 1.1E+07 2.9E+07 5.0E+07 5.6E+08 1.7E+09 1.3E+09 2.0E+08 3.9E+08 1.2E+08 

Fz 1.0E+06 7.8E+05 9.7E+05 7.3E+06 4.3E+07 2.8E+07 1.1E+07 1.3E+07 1.2E+07 1.3E+06 

Cz 5.0E+06 2.4E+06 4.8E+06 1.3E+07 2.8E+08 2.5E+08 2.9E+08 1.4E+08 2.1E+08 2.3E+07 

Pz 4.3E+07 1.3E+07 2.5E+07 2.2E+08 3.1E+08 1.6E+08 1.4E+08 2.9E+08 5.0E+07 3.4E+08 
 
 

Table 3  Normal and abnormal for each channel for EEG signal of patient A 
 

t= 1 2 3 4 5 6 7 8 9 10 
Fp1 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Normal Normal 
Fp2 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal Normal 
F3 Normal Normal Normal Abnormal Normal Normal Normal Normal Normal Normal 
F4 Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal 
C3 Normal Normal Normal Abnormal Abnormal Normal Normal Normal Normal Normal 
C4 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Normal Normal 
P3 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Normal Normal Normal 
P4 Abnormal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Normal Abnormal 
O1 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Abnormal Abnormal 
O2 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Normal Abnormal 
F7 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
F8 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
T3 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
T4 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
T5 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Abnormal Normal 
T6 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
A1 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
A2 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
Fz Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal 
Cz Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
Pz Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal Abnormal 
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4.0 WAVELET TRANSFORM AND THE 
APPLICATION ON THE EEG SIGNALS 
 
Wavelets can be defined as "small waves" that have limited 
duration and 0 average values. They are mathematical functions 
capable of localizing a function or a set of data in both time and 
frequency [3]. 
    There are many types of wavelet transforms such as Haar 
wavelet, Mexican Hat wavelet, Gaussian wavelet, Morlet 
wavelet, and Daubechies wavelet. In this paper, we use 
Daubechies wavelet to make the analysis of the  
signals. The advantage of this wavelet system is it can represent 
the spiky form of the EEG signals properly. 
    In this Daubechies system, the different orders of the 
wavelets that are normally used are 2,3,4,5, and 6. This family 
of wavelets is known for its orthogonality property and efficient 
filter implementation. Daubechies order 4 wavelet is found to be 
the most appropriate for analysis of epileptic EEG signals [3]. 
The lower order wavelets of the family are identified to be too 
coarse to represent EEG spikes properly. The higher order ones 
have more oscillations and cannot represent the spiky form of 
the absence seizure epileptic EEG signals properly. 
    The general equations for the scaling functions, ߮ሺݐሻ and 
wavelets, ߰ሺݐሻ can be written as:  
 

߮ሺݐሻ ൌ 2 ଶ⁄ ߮ሺ2ݐ െ ݇ሻ  
      (2) 

߰ሺݐሻ ൌ 2 ଶ⁄ ߰ሺ2ݐ െ ݇ሻ 
      (3) 
where j = 0, 1, 2, ... is the level of the basis functions and k = 0, 
1, 2, ..., 2j − 1. 
 
    The difficulty of this Daubechies order 4 wavelet is there is 
no explicit function, so we cannot draw it directly. What we are 
given is h(k), the coefficients in refinement relation which 
connect ߮ሺݐሻ and translates of ߮ሺ2ݐሻ. These scaling function 
coefficients for normalized D4 are as follows: 
 

݄ሺ0ሻ ൌ
1  √3
4√2

 

 ݄ሺ1ሻ ൌ
3  √3
4√2

 

݄ሺ2ሻ ൌ
1 െ √3
4√2

 

݄ሺ3ሻ ൌ
3 െ √3
4√2

 

      (4) 
 
Then the scaling function of the D4 transform is given 
 

߮ሺݐሻ ൌ ݄ሺ0ሻ√2߮ሺ2ݐሻ  ݄ሺ1ሻ√2߮ሺ2ݐ െ 1ሻ
 ݄ሺ2ሻ√2߮ሺ2ݐ െ 2ሻ  ݄ሺ3ሻ√2߮ሺ2ݐ െ 3ሻ 

      (5) 
 
where ߮ሺݐሻ is expressed in terms of ߮ሺ2ݐሻ and its translates. 
The wavelet functions of the D4 transform is given by 
 

߰ሺݐሻ ൌ ݃ሺ0ሻ√2߮ሺ2ݐሻ  ݃ሺ1ሻ√2߮ሺ2ݐ െ 1ሻ
 ݃ሺ2ሻ√2߮ሺ2ݐ െ 2ሻ  ݃ሺ3ሻ√2߮ሺ2ݐ െ 3ሻ 

      (6) 
where g(0) = h(3), g(1) = −h(2), g(2) = h(1), and g(3) = −h(0). 
These wavelet and scaling functions can be drawn as shown in 
Figure 4. 

 
 

Figure 4  D4 wavelet and scaling functions 
 
 
    By taking the inner product of EEG signals and these basis 
functions, we can calculate the D4 transform of the signals. The 
formula for inner product is 
 

ሻۧݐሻ|߰ሺݐሺݔۦ ൌ  ሻ൯ݐሻ்߰ሺݐሺݔ൫݁ܿܽݎݐ
      (7) 
 
where x(t) are the set of data. The trace of a matrix/vector is the 
sum of the elements on the main diagonal. 
 
    Another approach to construct wavelets is using lifting 
scheme [7]. The equations of the lifting scheme of D4 transform 
are: 

 
݀ଵ ՚ െ√3ݏଵ  ݀ଵ 

ଵݏ ՚ ଵݏ 
√3
4 ݀ଵ 

√3 െ 2
4 ݀ାଵ 

݀ ՚ ିଵݏ  ݀ଵ 

ݏ ՚ ට2   ݏ3√

݀ ՚ ඥ2 െ √3 ݀ 
      (8) 
 
    The equation involves only multiplication and addition of 
{sl} and {dl} arrays and computation is found to be faster than 
conventional operation. The steps that effect changes in value of 
{dl} are called prediction steps and the one that effect change in 
value of {sl} are called update steps. These operations can be 
represented in Figure 5. 
 

 
Figure 5  Prediction and updating steps of lifting scheme 

 
 
    The results of the transformations are shown in Figures 6 
and 7. The calculation was done by Microsoft Visual C++ 6.0. 
    In order to identify the abnormality of the signals, we have 
to observe the amplitude at different level of the frequencies of 
each decomposed signal. In Figure 6, it can be easily seen that 
the amplitudes of signal in lower level frequency is greater than 
the higher level. This condition indicates abnormality in this 
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Table 4  Normal and abnormal for each channel for EEG signal of patient A 
 

t= 1 2 3 4 5 6 7 8 9 10 
Fp1 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
Fp2 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
F3 Normal Normal Normal Abnormal Normal Normal Normal Normal Normal Normal 
F4 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Normal Normal 
C3 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
C4 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
P3 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
P4 Abnormal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
O1 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
O2 Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
F7 Normal Normal Normal Normal Abnormal Abnormal Abnormal Normal Abnormal Normal 
F8 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
T3 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
T4 Normal Normal Abnormal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
T5 Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
T6 Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
A1 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
A2 Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 
Fz Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal 
Cz Normal Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Normal 
Pz Normal Normal Normal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 

 
Table 5  Comparisons of FFT and Wavelet transform 

 
Fast Fourier Transform Wavelet Transform 

The signal is transformed with 
exponential function 

The signal is transformed with 
wavelet function 

The original signal is 
transformed into a signal 
complex function and the result 
is in the frequency domain 

The original signal decomposed 
into another signals in different 
frequencies. 

The time information cannot be 
seen in the transformed signal. 

Both frequency and time 
information can be obtained from 
the decomposed signals. 

 

 
 

Figure 8  The output of the interface 
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Figure 9  Sample result 
 
 
    In this software, the instruction has been written at the top 
of software background. As the instruction's guide, user only 
needs to choose the patient, time and channel by click the left 
button of mouse. Then click the Compute button, the result will 
be shown side by side in label boxes. By click the Clear button, 
the process can be repeated on other option of patients, time or 
channel without restart the software. 
    Even the software is designed for calculation of 256 
discrete data, but it was designed to be user-friendly. User can 
also easily modify the input data length into any number that 
power-of-2 (2n where n=1, 2, …). User just needs to change the 
value of row in Interface.h file. To do this, user can replace the 
data of new patients into the .in extension files. For example file 
"bt5.in" is representing Patient 2 at time= 5 seconds, whereas 
file "dt2.in" representing Patient 4 at time = 2 seconds.  Besides, 
the software also makes the results shown in quick 
understanding form. In FFT, some grey line had been drawn in 
order to differential the frequency band, also the highest 
amplitude value is highlighted in red color beside the peak.  
While WT result also provided some grey line to make the 
reading of amplitude values become easier. 
 
 

7.0  CONCLUSION 
 
The applications of FFT and wavelet transform on the EEG 
signals are discussed in this paper which conclude that both 
methods give the same result that is the abnormality of the 
signals occurred at t=4 until t=6. Therefore, we conclude that 
the abnormality of the signals happened at that time. Also from 
the comparison result, we found that WT gave more information 

due to its 3D output (amplitude, frequency and time). This is 
ongoing study, we also interest on short-time Fourier transform 
(STFT) which provides 3D output in future research.  
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