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number of measurement points. The application of a two-stage ANN showed results with a high potential
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Abstrak

Artificial neural networks (ANNSs) telah menjadi tumpuan sebagai satu penyelesaian dalam mengesan
kerosakan berasaskan getaran sejak tahun 1990an disebabkan oleh keupayaannya untuk meramal kejadian
kerosakan dari data getaran yang direkodkan. Walau bagaimanapun, ketepatan kaedah ini adalah amat
bergantung kepada bilangan titik pengukuran yang digunakan terutamanya apabila data dalam bentuk mod
lenturan digunakan sebagai indikasi kerosakan. Jika bilangan titik pengukuran adalah banyak, maka lebih
banyak maklumat boleh dijadikan input ke dalam ANN untuk meramal kejadian kerosakan. Dengan ini,
keputusan ramalan yang diperoleh adalah lebih tepat. Sungguhpun demikian, kos yang terlibat adalah
tinggi dan ianya tidak praktikal untuk merekodkan data getaran daripada setiap bahagian struktur yang
hendak dikaji, dengan itu keupayaan ANN untuk mengesan kerosakan mungkin terjejas. Oleh itu, satu
kaedah baru yang menggunakan aplikasi ANN dicadangkan dalam kajian ini untuk meramalkan data
getaran yang tidak diukur dalam bentuk mod lenturan. Untuk perbandingan ketepatan kaedah yang
dicadangkan, keputusan kajian ini dibandingkan dengan kaedah Cubic Spline interpolation (CS). Kajian
terhadap kepekaan bilangan titik pengukuran juga dijalankan. Keputusan kajian menunjukkan bahawa
kaedah ANN adalah lebih tepat berbanding kaedah CS kerana ANN berupaya meramal magnitud pada
mod lenturan yang tidak diukur dengan tepat hanya berdasarkan data yang terhad. Kaedah ini mempunyai
potensi yang tinggi untuk mengatasi isu kekurangan sensor dalam bidang pemantauan kerosakan dalam
struktur.

Kata kunci: Artificial neural network; cubic spline; mod lenturan; kerosakan struktur
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Hl1.0 INTRODUCTION vibration-based methods can be found in Doebling et al. [1] and

Sohn et al. [2]. The accuracy of vibration-based damage detection
Vibration-based damage detection has been investigated by many is very dependent on the number of measurement points, whereby
researchers since the 1990s. An extensive overview of the a high number of measurement points will provide better accuracy
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in detecting damage in a structure. As damage can affect the
structural performance, it is crucial to access the structure’s
condition in as much detail as possible. A large structure means
that the size of the response must be recorded from a large
number of locations. However, in practice it is rather difficult to
obtain measurements at every point on a structure, especially for
structures with a large degree of freedom. For this reason, various
methods have been proposed to overcome the problem of a
limited number of measurement points such as reduction and
expansion techniques [3-6], substructuring techniques [7,8],
model updating [9,10], the multi-stage assessment scheme [11],
and the conventional cubic spline method.

Among those techniques, the Cubic Spline interpolation (CS)
method has gained attention in many studies due to its ability to
interpolate mode shape values based on a limited number of
measurement points. Parloo et al. [12] applied the CS method to
interpolate the mode shape values of an aluminium beam structure
in several cases of crack formations. Nine measurements are
obtained in each data set along the full length of a 480 mm beam,
and the CS method is used to calculate the required curvature
values of mode shape estimates. Meo and Zumpano [13] utilised
the CS method to interpolate the mode shape values of six
different optimal sensor-placement techniques and compared
them with the numerical model. Hadjileontiadis and Douka [14]
used the CS method to predict the missing data in a fractal
dimension analysis to detect the existence of cracks in steel plates,
while Ooijevaar et al. [15] derived a modal strain energy damage
index algorithm using the CS method to detect damage in a
delaminated composite T-beam. Other studies employing the CS
method to determine the unmeasured mode shape values can be
found in Loutridis et al. [16], Rucka and Wilde [17], Bayissa et
al. [18] and Radzienski et al. [19]. Although many researchers
concluded that the CS method is capable of interpolating the
mode shape values from a limited number of data, it is still unable
to provide high-accuracy interpolation. This is because the
method is quite sensitive to the sensor arrangement and the
number of points measured. Moreover, the method is unable to
provide an accurate result if the number of control points is
insufficient and the location points selected are inappropriate.

Over the last few decades, there have been many
publications on the capabilities of Artificial Neural Networks
(ANNS) in the field of vibration-based damage detection. Early
works which applied ANNSs in the field were done by Rhim and
Lee [20], Pandey and Barai [21], Masri et al. [22], and Zhao et al.
[23]. In a recent study by Gonzalez-Perez and Valdes-Gonzalez
[24], an ANN is utilised to predict damage in the girders of an
analytical vehicular bridge. Wang and He [25] demonstrated that
the reduced natural frequencies in an arch dam can be detected
using an ANN. A numerical simulation and a model experiment
were employed in the study. All of the studies concluded that
ANNs are robust and capable of detecting relatively small
changes in the structural parameters. However, in previous
studies, the inputs into the ANN models generally require a
complete set of measurement points for a robust result. A
complete set of measurements may lead to a larger size of training
data for ANN models. If the number of measurement points is
insufficient, the accuracy of the result is jeopardised. Among the
previous studies that have used ANNSs for damage detection, there
are no publications known to the authors in which the unmeasured
points between the measurements were considered.

In this paper, an approach using an ANN to predict the
values of mode shapes at unmeasured points, followed by a
damage identification process, is demonstrated. The study is
presented in two stages; in the first stage, the ANN is utilised to
predict the mode shape values at unmeasured points, while the
second stage deals with damage detection. In the first stage, the

ANN is trained to relate the measured frequency and mode shape
with the unmeasured mode shape values. Once trained, the ANN
is then used to predict the mode shape values based on the
measured modal data. The accuracy of the predicted mode shapes
is then compared with the interpolated mode shape values by the
CS method. McKinley and Levine [26] provided the detail of the
CS method. A sensitivity study on the effect of the number of
measurement points and their locations on the prediction results is
also conducted. In the second stage, the predicted mode shape
values from the first-stage ANN together with the existing
measured modal data are used as the input to the ANN to predict
damage locations and their severities. A detailed parametric study
is carried out to investigate the feasibility of the proposed method
in damage detection. A two-span reinforced concrete slab is used
as an example in this study.

W2.0 METHODOLOGY
2.1 ANN Architecture

The architecture of the ANN used in this study is briefly discussed
in this section. A feedforward backpropagation ANN with one
hidden layer is used in the study. The tangent sigmoid transfer
function is applied to the input and hidden layers while a linear
transfer function is applied to the output layer. The ANN models
are trained using the Scaled Conjugate Gradient algorithm with an
early stopping method. The optimal number of hidden neurons in
this study has been determined by a trial and error method. All
ANN models are developed on the Matlab platform.

As mentioned in the previous section, there are two stages in
the study, involving two ANN models, ANN1 and ANN2, as
shown in Figure 1. ANNL1 is used to obtain the mode shape values
of the unmeasured locations based on measured modal data. The
input parameters are the first three mode shapes and natural
frequencies of the structure. The training data are generated
randomly from the finite element model of a two-span concrete
slab, which is discussed in Section 3. The outputs of ANN1 are
the predicted mode shape values at the unmeasured points. In the
second stage of the study, the inputs to the ANN models are the
measured modal data together with the outputs of the ANN1
model (refer to Figure 1). The outputs of ANN2 are the Stiffness
Reduction Factor (SRF). SRF indicates the change in the stiffness
parameter or the damage severity for each element. The higher the
SRF, the more severe is the damage [27]. SRF is denoted as

SRF = 1 — —damaged . & — young Modulus.

Eundamaged

First three mode Predicted mode shape
shapes values —» ANN 1 values at unmeasured
and frequencies points

\ AN N 2 . damage

Location and
severities

Figure 1 Architecture of the two-stage ANN models

This study also examines in greater detail the sensitivity of
the proposed two-stage ANN for damage detection. In the
sensitivity study, the results from the two-stage ANN are
compared to those from the conventional ANN. The conventional
ANN consists of only one layer of input, the hidden layer, and the
output layer. Figure 2 presents the architecture of the conventional
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ANN. The only inputs to the conventional ANN models are the
first three mode shapes of all limited measurement points and the
first three natural frequencies of the slab, while the outputs from
the ANN are also the SRF values of each element. The rest of the
parameters in the study remain the same, for consistency of
comparison.

First three mode

Locations and
shapes valuesand — ! ANN |—> damage
frequencies severities

Figure 2 Architecture of the conventional ANN

3.0 NUMERICAL EXAMPLE

A continuous two-span reinforced concrete slab is used as a
numerical example to demonstrate the proposed two-stage ANN
for damage detection. The slab is modelled using Structural
Dynamics Tools (SDT), which runs on the Matlab platform. The
dimensions of the slab are 6.4 m x 0.8 m x 0.1 m and it is simply
supported at 0.2 m, 3.2 m, and 6.2 m from the left end. “Simply
supported” in this study refers to the restraints in all
displacements along the global coordinate axes. The material
properties of the slab are E = 3.3 x 10 N/m?, p = 2.45 x 10°
kg/m®, and v = 0.2. The slab is modelled using shell elements
with 165 nodes and 128 elements, and the supports are assumed to
be simply supported along nodes 6 to 10, 81 to 85, and 156 to
160. The standard shell elements in the SDT have been applied to
all elements. Each of the quadrilateral elements has four
integration points for finite element analysis as shown in Figure
3(a). The simulation results are the mode shape values which are
measured every 0.2 m on the centreline of the slab model along
the span. For the purpose of damage detection, the slab is divided
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into 32 segments whereby each segment is equally distributed
vertically and has dimensions of 0.2 m x 0.8 m, as shown in
Figure 3(b). In this example, it is assumed that the mode shapes
are measured only at nodes 3, 58, 108, and 163, while the mode
shape values at the rest of the nodal points are considered as
unmeasured modal data.

To demonstrate the accuracy of the proposed approach in
predicting the mode shape values at the unmeasured points, an
ANN model is trained to relate the measured modal data with the
unmeasured mode shape values. At this stage, only ANN1 is
utilised. Table 1 lists the unmeasured nodal points and the
measured nodal points.

In this example, the inputs are the first three frequencies and
mode shapes measured at the four nodal points while the outputs
are the mode shape values at the unmeasured nodal point as listed
in Table 1. For training purposes, 3000 training data are used.
These training data consist of various damage cases that are
generated from the finite element model. The damage cases are
simulated by reducing the Young’s modulus (E) in the selected
segments. The damage cases are varied between the ranges of 0.2
x E and 1.0 x E. The training data are divided into sets containing
70%, 20%, and 10% of the data, respectively, for training,
validation, and testing purposes. Once trained, two simulated
damage cases (Case A and Case B) are fed into the trained ANN1
model to predict the mode shape values at the unmeasured points.
Case A consists of damages in segments 10 and 30 of the slab
while Case B consists of damages at segments 4, 5, 12, 20, and 26
with higher severity, as listed in Table 2. Table 3 tabulates the
first three frequencies of the simulated damage cases. Figure 4
shows the mode shapes of those two scenarios obtained from the
four measurement points.
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Figure 3(a) Finite element model of a two-span concrete slab
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Figure 3(b) Slab segments of finite element model
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Table 1 List of measured and unmeasured nodes
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Table 2 Simulated damage scenarios

Measured nodal U d nodal point Case A Case B
point nmeasured nodal poin Segment E value Segment E value
10 0.6 xE 4 0.6 xE
3,58, 108and 163 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 63, 30 08xE 5 0.7xE
68, 73, 78, 83, 88, 93, 98, 103, 113, 118, ;g 8-8 xE
123,128, 133, 138, 143, 148, 153 and 158 IxE
26 0.6 xE
E = Young Modulus
Table 3 Natural frequencies of the undamaged and the damage cases
Undamaged Case A Case B
Mode 1 18.51 18.12 17.77
Mode 2 29.02 28.73 28.03
Mode 3 74.04 73.54 69.70
Unit: Hz
Mode 1 Mode 2 Mode 3

Case B
Case A
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Figure 4 Mode shapes of damage Case A and Case B
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Figure 5 Comparison of mode shapes in Case A

To assess the accuracy of the proposed approach, the results
of ANN1 are compared to finite element mode shapes and mode
shapes obtained by the CS method measured at the four
measurement points as mentioned above. Figure 5 shows the
comparison in Case A.

Based on the figure, it is seen that the ANN predictions are well
matched to the finite element mode shapes for all modes. For
mode 1, the mode shape predicted by the ANN is close to the
finite element mode shapes while the CS mode shape is
inaccurately interpolated, especially between the first and second
measurement points (nodes 3 and 58) and between the third and
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fourth measurement points (nodes 108 and 163). In mode 2, it is
also observed that the ANN is able to predict the mode shape
values in the unmeasured data close to the finite element mode
shape, while the CS method provides higher error especially at the
middle support. The same situation is observed in mode 3, where
the ANN is also able to predict the mode shape values more
satisfactorily than the CS method. Another criterion to assess the
capability of the proposed approach involves measuring the mean
squared error (MSE) between the predicted mode shape and the
mode shape calculated by the CS method with the finite element
model mode shape. The MSE values are intended to show the
precision of the proposed approach with respect to the actual
values compared to the CS method, as listed in Table 4.

It is observed that the MSE values of the CS method in both
cases are higher than the MSE values of the ANN; this indicates
that the proposed method provides a better mode shape estimation
compared to the CS method. As mentioned earlier, the reason for
the inaccuracy of the CS method is that it is highly influenced by
the number and location of measurement points in estimating the
unmeasured mode shape points. As for the ANN model, once it is
successfully trained, it is able to predict the unmeasured mode
shape from the measured modal data without depending on the
number and location of the measurement points. A faulty
interpretation of inaccurate curves of mode shapes can also be
avoided by using the proposed approach. A more detailed study of
the sensitivity of the measurement points is conducted in the
following section.

Table 4 MSE of ANN and CS to actual values

ANN CS

Case A

Mode 1 3.19 exp-09 6.15 exp-05

Mode 2 8.47 exp-09 0.000371

Mode 3 8.01 exp-08 0.002606
Case B

Mode 1 1.03 exp-08 5.16 E-05

Mode 2 2.27 exp-08 0.000388

Mode 3 2.23 exp-07 0.002592

3.1 Sensitivity Study
3.1.1 Different Numbers of Measurement Points

A more comprehensive study is conducted to investigate the effect
of the number of measurement points on the prediction results.

For this purpose, the number of measurement points is varied. The
prediction results for both the ANN and CS methods are
compared with the actual mode shape obtained from the finite
element model. The simulated damage case of Case A is used as
the testing data, whereby the damages are applied at segments 10
and 30 with 0.6 x E and 0.8 x E, respectively. Three ANN1
models are developed for the purpose of comparison. These ANN
models are distinguished based on different numbers of
measurement points used to measure the mode shape. These cases
are referred to as 6P, 8P, and 16P for 6, 8, and 16 measurement
points, respectively. Figures 6(a) to (d) show the locations of
measurement points for the three cases. The corresponding
measured and unmeasured nodal points are listed in Table 5.

In each case, it is assumed that the mode shapes are measured at
the specified sensor points on the slab. As the first three modes
are considered in this study, the inputs to the ANN1 models are
the first three mode shape values at every measurement point
together with the first three modes of natural frequencies. Once
trained, the ANN1 models are used to predict the mode shape
values at the remaining unmeasured points on the slab. The
comparisons of the results are illustrated in Figure 7. The known
measurement points are denoted by X.

Based on the results, it is seen that the ANN is able to predict
the mode shape at unmeasured points accurately for all cases. On
the other hand, the mode shape curves interpolated by the CS
method in Case 6P for modes 2 and 3 are still imperfect compared
to the ANN predictions. Higher error is observed in mode 2 at the
middle support of the slab for the mode shape interpolated by the
CS method. The same scenario is also observed for mode 2 in
Case 8P. For Case 16P, both the ANN and the CS method provide
good generalisation of the finite element mode shapes. From the
results, it is clear that the capability of the CS method improves as
the number of measurement points increases while the ANN
model is still able to predict the mode shape accurately with a
limited number of measurement points. For a further comparison
of the capabilities of the two methods, MSE values are calculated
between the predicted values and the actual mode shape values.
The MSE values for both methods are listed in Table 6. It is
obvious that the MSE values obtained for ANN1 models are
significantly lower than those for the CS method in all cases. This
affirms that the proposed approach provides better results
compared to the standard CS method. The results also indicate
that the proposed approach is able to avoid the need for too many
measurement points for mode shape measurement.
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Figure 6 Locations of measurements points.
Table 5 Complete list of measured and unmeasured nodes.
Case Measured Nodal Point Unmeasured Nodal Point
6P 3,33, 58, 108, 133 and 163 8, 13, 18, 23, 28, 38, 43, 48, 53, 63, 68, 73, 78, 83, 88, 93, 98,
103, 113, 118, 123, 128, 138, 143, 148, 153 and 158
3, 23,43, 63, 103, 123, 143 and 163 8, 13, 18, 28, 33, 38, 48, 53, 58, 68, 73, 78, 83, 88, 93, 98, 108,
8P 113, 118, 128, 133, 138, 148, 153 and 158
3,13, 23, 33,43, 53, 63, 78, 88, 103, 113, 8, 13, 18, 28, 33, 38, 48, 53, 58, 68, 73, 78, 83, 88, 93, 98, 108,
123, 133, 143, 153 and 163 113,118, 128, 133, 138, 148, 153 and 158
16P
== == FE mode shape —— ANN predition == - CS Interpolation = X Common points
6P - Mode 1 6P - Mode 2 6P - Mode 3
B
X 53 103 3 . \\J 103 15§<
i 53 103 lSi< \ .
Nodal point Nodal point Nodal point
8P - Mode 1 8P - Mode 2 8P - Mode 3
, x 1 \ \

D T N— / 0 T r T
X 53 103 3 . 3 \ 103 15%<

53 103 15&
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Figure 7 Comparison of mode shapes of groups 6P, 8P and 16P

Table 6 MSE of the approximation difference between mode shapes in
comparison to FE

Number of ANN CS
Measurement Points
4 9.46 exp-08 0.003133
6 8.19 exp-08 0.0002
8 2.86 exp-08 1.98 exp-05
16 2.53 exp-08 2.90 exp-08

For instance, according to a study by Ooijevaar et al. [15],
for a good result, a minimum of eight equally distant
measurement points is needed to achieve satisfactory mode shape
interpolation results through the CS method for a 1.0 m structure.
By using the proposed approach, as demonstrated in Section 3.0,
fewer measurement points are used to obtain a successful mode
shape prediction even with a longer structure.

3.1.2 Influence of Location of Measurement Points

This section investigates the influence of different measurement
locations on the ANN prediction results in comparison with the
CS method. The same simulated damage scenario as Case A is
used as the testing data in this section. For this purpose, four cases
with different measurement locations are created. Table 7 lists the
distances of the measurement points for the four cases. The
distances are measured from the left end of the slab. Only four
measurement points with different locations are considered in this
part of the study.

As there are a total of 33 nodes in a complete mode shape,
the remaining 29 points will be determined from the CS method
and ANN model. To assess the effectiveness of the proposed
method, the mode shapes obtained from both methods are then
compared with the finite element mode shapes of damage in Case
A, which are assumed to be the actual mode shapes. Figure 8
exhibits all the mode shape curves obtained from both the CS
method and the ANN.

Table 7 Location of measurement points (distance from left in meters)

Case 1 Case 2 Case 3 Case 4
First point 0 0 0.6 0
Second point 2.2 12 24 24
Third point 4.2 5.2 4.0 5.2
Fourth point 6.4 6.4 5.8 6.4

The results show that the ANN is able to predict all three mode
shapes accurately for all cases. Regardless of the location of the
measurement points, the ANN model is still able to predict the
unmeasured mode shape values accurately once it is well trained.
This is in contradiction to the CS method, where in the first mode,
although the CS method is able to obtain the correct shape in all
four cases, the error is quite remarkable. For higher modes (2 and
3), the CS method is unable to provide satisfactory results for all
cases. Moreover, for Cases 1, 2, and 4 with the same two
measurement points at both ends, the CS interpolated mode
shapes are unable to match the finite element mode shape. This
clearly shows that the CS method is very dependent on the
location of measurement points, while the ANN, once trained with
sufficient data, is able to predict the mode shape curves correctly.
This proves that the CS method is more sensitive to measurement
locations than the ANN method. Therefore, by using the ANN
approach, the use of a rigorous process to select the measurement
points for damage detection can be avoided.

3.2 Damage Detection Using Two-Stage ANN

This section demonstrates the application of ANN2 for damage
detection. The inputs to the ANN2 are a combination of measured
mode shapes and frequency values and the predicted mode shape
values at the unmeasured locations obtained from the ANN1. The
outputs are the SRF of each segment of the slab. The sensitivity of
ANNZ2 is compared to that of the conventional ANN model. The
architecture of the conventional ANN model is as discussed in
Section 2.1.

To maintain the consistency of the study, both the two-stage
ANN and the conventional ANN models are trained using the
same training data generated from the finite element model. Both
the conventional ANN and the ANN1 models are trained using
the first three modes of frequencies and mode shapes from 4, 6, 8,
and 16 measurement points as the input parameters. The outputs
of the conventional ANN models are the SRF of each element on
the slab, while for ANN1 they are the remaining unmeasured
points of the slab. The locations of the sensors for the different
cases of numbers of measurement points are as discussed
previously. Similarly, 3000 training data are used in the training
session. For the two-stage ANN, the outputs of ANNL1 are fed into
ANN2 together with the measured frequencies and mode shapes
to predict the SRF of each element of the slab.

For comparison, the simulated damage scenario of Case B
using 16 measurement points is used in this part to investigate the
feasibility of the proposed two-stage ANN approach. The
comparisons of the damage prediction are measured using the
MSE. The MSE values are calculated based on the actual damage.
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Figure 9 depicts the summary of the comparison of MSE values points is low, the input fed into the conventional ANN is very
for all of the ANN models in Case B. limited. Hence, the inadequate input causes the generalisation

The results show that the proposed method provides lower results to be poor. However, as the number of measurement
MSE values than the conventional ANN models with a lower points.

number of measurement points (4 and 6). This indicates that
ANNL1 is able to provide additional information to ANN2 to
improve the damage prediction performance when a small number
of measurements is used. When the number of measurement

Mode 1

( 53 103 1;3\

Nodal point Nodal point

Mode 3

FE mode shape &
ANN (Case 1-4)
—— CS-Case 1

= ++ CS-Case?

----- CS - Case 3

......... CS - Case 4

Nodal point

Figure 8 Mode shape curves influenced by different measurement points
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0.003 1 0.00342
0.002 -
0.001 -
0 T .

2 7 12 17

Number of Measurement Points

0.00931

% 0.00616
0.00609 .

MSE

Figure 9 MSE comparison between single-stage and two-stage ANN (Case B)

Although the effect of ANN prediction propagation errors two-stage ANN model, in practice it is not always economical to
from the earlier ANN1 model has reduced the efficiency of the measure the mode shape at a high number of measurement
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points. Figure 10 shows the damage prediction results for Cases
A and B using 16 measurement points in the two-stage ANN. It
is observed that ANN2 is able to locate the damage location
correctly; however, all the SRF values are slightly
underestimated. There is also some minor negative and positive
false detection on the left and right of the damaged segments in
both damage cases. This is attributed to the propagation errors
mentioned earlier. The negative values of SRF in the Figure 10
are assumed to be no damage. In comparison with the
conventional ANN model, the proposed method is able to
enhance the damage detection result when a limited number of
measurement points are available; thus, by using the proposed
approach, the number of measurement points can be kept small.
The findings of this study could be used to overcome the issue
of using a limited number of measurement points for damage
detection.

W Actual Damage OPredicted Damage

0.4 I

0.3

0.2
SRF

0.1 T

O -
1 3 5 7 9 117131517 19 21 23 25 27 29 31
-0.1
Segment
(a) Case A

SRF

1 3 5 9 1113151719 21 23 2527 29 31

Segment

(b) Case B

Figure 10 Generalisation of 16P models (two-stage ANN)

4.0 CONCLUSION

The study has demonstrated an approach that applies ANNSs to
predict unmeasured mode shape values for damage detection.
Two simulated damage cases are created to test the feasibility of
the proposed method. In the first-stage ANN, a comparison with
the CS method showed that application of an ANN predicted the
mode shape values at the unmeasured points better. The
proposed two-stage ANN is able to accurately predict the mode
shape curves and to identify the damage locations. Furthermore,
the proposed approach can also be used to overcome the
problem of trial and error in selecting the measurement points
for damage detection. However, the propagation errors induced
by ANN1 outputs have reduced the efficiency for damage
detection. Hence, an improvement to the proposed approach by

considering the propagation errors will be a focus of future
studies.
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