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Graphical abstract 
 

 

Abstract 
 
Artificial neural networks (ANNs) have received much attention in the field of vibration-based damage 
detection since the 1990s, due to their capability to predict damage from modal data. However, the
accuracy of this method is highly dependent on the number of measurement points, especially when the
mode shape is used as an indicator for damage detection. With a high number of measurement points, 
more information can be fed to the ANN to detect damage; therefore, more reliable results can be
obtained. Nevertheless, in practice, it is uneconomical to install sensors on every part of a structure; thus 
the capability of ANNs to detect damage is quite limited. In this study, an ANN is applied to predict the
unmeasured mode shape data based on a limited number of measured data. To demonstrate the accuracy
of the proposed method, the results are compared with the Cubic Spline interpolation (CS) method. A 
parametric study is also conducted to investigate the sensitivity of the number of measurement points to
the proposed method. The results show that the ANN provides more reliable results compared to the CS 
method as it is able to predict the magnitude of mode shapes at the unmeasured points with a limited
number of measurement points. The application of a two-stage ANN showed results with a high potential 
for overcoming the issue of using a limited number of sensors in structural health monitoring. 
 
Keywords: Artificial neural network; cubic spline; mode shape; damage detection 
 
Abstrak 
 
Artificial neural networks (ANNs) telah menjadi tumpuan sebagai satu penyelesaian dalam mengesan
kerosakan berasaskan getaran sejak tahun 1990an disebabkan oleh keupayaannya untuk meramal kejadian
kerosakan dari data getaran yang direkodkan. Walau bagaimanapun, ketepatan kaedah ini adalah amat 
bergantung kepada bilangan titik pengukuran yang digunakan terutamanya apabila data dalam bentuk mod
lenturan digunakan sebagai indikasi kerosakan. Jika bilangan titik pengukuran adalah banyak, maka lebih
banyak maklumat boleh dijadikan input ke dalam ANN untuk meramal kejadian kerosakan. Dengan ini,
keputusan ramalan yang diperoleh adalah lebih tepat. Sungguhpun demikian, kos yang terlibat adalah
tinggi dan ianya tidak praktikal untuk merekodkan data getaran daripada setiap bahagian struktur yang 
hendak dikaji, dengan itu keupayaan ANN untuk mengesan kerosakan mungkin terjejas. Oleh itu, satu
kaedah baru yang menggunakan aplikasi ANN dicadangkan dalam kajian ini untuk meramalkan data
getaran yang tidak diukur dalam bentuk mod lenturan. Untuk perbandingan ketepatan kaedah yang 
dicadangkan, keputusan kajian ini dibandingkan dengan kaedah Cubic Spline interpolation (CS). Kajian
terhadap kepekaan bilangan titik pengukuran juga dijalankan. Keputusan kajian menunjukkan bahawa
kaedah ANN adalah lebih tepat berbanding kaedah CS kerana ANN berupaya meramal magnitud pada
mod lenturan yang tidak diukur dengan tepat hanya berdasarkan data yang terhad. Kaedah ini mempunyai
potensi yang tinggi untuk mengatasi isu kekurangan sensor dalam bidang pemantauan kerosakan dalam 
struktur.   
 
Kata kunci: Artificial neural network; cubic spline; mod lenturan; kerosakan struktur 
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1.0  INTRODUCTION 
 
Vibration-based damage detection has been investigated by many 
researchers since the 1990s. An extensive overview of the 

vibration-based methods can be found in Doebling et al. [1] and 
Sohn et al. [2]. The accuracy of vibration-based damage detection 
is very dependent on the number of measurement points, whereby 
a high number of measurement points will provide better accuracy 
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in detecting damage in a structure. As damage can affect the 
structural performance, it is crucial to access the structure’s 
condition in as much detail as possible. A large structure means 
that the size of the response must be recorded from a large 
number of locations. However, in practice it is rather difficult to 
obtain measurements at every point on a structure, especially for 
structures with a large degree of freedom. For this reason, various 
methods have been proposed to overcome the problem of a 
limited number of measurement points such as reduction and 
expansion techniques [3–6], substructuring techniques [7,8], 
model updating [9,10], the multi-stage assessment scheme [11], 
and the conventional cubic spline method. 
  Among those techniques, the Cubic Spline interpolation (CS) 
method has gained attention in many studies due to its ability to 
interpolate mode shape values based on a limited number of 
measurement points. Parloo et al. [12] applied the CS method to 
interpolate the mode shape values of an aluminium beam structure 
in several cases of crack formations. Nine measurements are 
obtained in each data set along the full length of a 480 mm beam, 
and the CS method is used to calculate the required curvature 
values of mode shape estimates. Meo and Zumpano [13] utilised 
the CS method to interpolate the mode shape values of six 
different optimal sensor-placement techniques and compared 
them with the numerical model. Hadjileontiadis and Douka [14] 
used the CS method to predict the missing data in a fractal 
dimension analysis to detect the existence of cracks in steel plates, 
while Ooijevaar et al. [15] derived a modal strain energy damage 
index algorithm using the CS method to detect damage in a 
delaminated composite T-beam. Other studies employing the CS 
method to determine the unmeasured mode shape values can be 
found in Loutridis et al. [16], Rucka and Wilde [17], Bayissa et 
al. [18] and Radzienski et al. [19]. Although many researchers 
concluded that the CS method is capable of interpolating the 
mode shape values from a limited number of data, it is still unable 
to provide high-accuracy interpolation. This is because the 
method is quite sensitive to the sensor arrangement and the 
number of points measured. Moreover, the method is unable to 
provide an accurate result if the number of control points is 
insufficient and the location points selected are inappropriate. 
  Over the last few decades, there have been many 
publications on the capabilities of Artificial Neural Networks 
(ANNs) in the field of vibration-based damage detection. Early 
works which applied ANNs in the field were done by Rhim and 
Lee [20], Pandey and Barai [21], Masri et al. [22], and Zhao et al. 
[23]. In a recent study by Gonzalez-Perez and Valdes-Gonzalez 
[24], an ANN is utilised to predict damage in the girders of an 
analytical vehicular bridge. Wang and He [25] demonstrated that 
the reduced natural frequencies in an arch dam can be detected 
using an ANN. A numerical simulation and a model experiment 
were employed in the study. All of the studies concluded that 
ANNs are robust and capable of detecting relatively small 
changes in the structural parameters. However, in previous 
studies, the inputs into the ANN models generally require a 
complete set of measurement points for a robust result. A 
complete set of measurements may lead to a larger size of training 
data for ANN models. If the number of measurement points is 
insufficient, the accuracy of the result is jeopardised. Among the 
previous studies that have used ANNs for damage detection, there 
are no publications known to the authors in which the unmeasured 
points between the measurements were considered.  
  In this paper, an approach using an ANN to predict the 
values of mode shapes at unmeasured points, followed by a 
damage identification process, is demonstrated. The study is 
presented in two stages; in the first stage, the ANN is utilised to 
predict the mode shape values at unmeasured points, while the 
second stage deals with damage detection. In the first stage, the 

ANN is trained to relate the measured frequency and mode shape 
with the unmeasured mode shape values. Once trained, the ANN 
is then used to predict the mode shape values based on the 
measured modal data. The accuracy of the predicted mode shapes 
is then compared with the interpolated mode shape values by the 
CS method. McKinley and Levine [26] provided the detail of the 
CS method. A sensitivity study on the effect of the number of 
measurement points and their locations on the prediction results is 
also conducted. In the second stage, the predicted mode shape 
values from the first-stage ANN together with the existing 
measured modal data are used as the input to the ANN to predict 
damage locations and their severities. A detailed parametric study 
is carried out to investigate the feasibility of the proposed method 
in damage detection. A two-span reinforced concrete slab is used 
as an example in this study.  
 
 

2.0  METHODOLOGY 
 
2.1  ANN Architecture  
 
The architecture of the ANN used in this study is briefly discussed 
in this section. A feedforward backpropagation ANN with one 
hidden layer is used in the study. The tangent sigmoid transfer 
function is applied to the input and hidden layers while a linear 
transfer function is applied to the output layer. The ANN models 
are trained using the Scaled Conjugate Gradient algorithm with an 
early stopping method. The optimal number of hidden neurons in 
this study has been determined by a trial and error method. All 
ANN models are developed on the Matlab platform.  
  As mentioned in the previous section, there are two stages in 
the study, involving two ANN models, ANN1 and ANN2, as 
shown in Figure 1. ANN1 is used to obtain the mode shape values 
of the unmeasured locations based on measured modal data. The 
input parameters are the first three mode shapes and natural 
frequencies of the structure. The training data are generated 
randomly from the finite element model of a two-span concrete 
slab, which is discussed in Section 3. The outputs of ANN1 are 
the predicted mode shape values at the unmeasured points. In the 
second stage of the study, the inputs to the ANN models are the 
measured modal data together with the outputs of the ANN1 
model (refer to Figure 1). The outputs of ANN2 are the Stiffness 
Reduction Factor (SRF). SRF indicates the change in the stiffness 
parameter or the damage severity for each element. The higher the 
SRF, the more severe is the damage [27]. SRF is denoted as 
  
SRF ൌ 1 െ Eౚ౗ౣ౗ౝ౛ౚ

E౫౤ౚ౗ౣ౗ౝ౛ౚ
;  E ൌ Young Modulus.       

 
 
 
 
 
 
 
 
 

Figure 1  Architecture of the two-stage ANN models 
 
 
   This study also examines in greater detail the sensitivity of 
the proposed two-stage ANN for damage detection. In the 
sensitivity study, the results from the two-stage ANN are 
compared to those from the conventional ANN. The conventional 
ANN consists of only one layer of input, the hidden layer, and the 
output layer. Figure 2 presents the architecture of the conventional 
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ANN. The only inputs to the conventional ANN models are the 
first three mode shapes of all limited measurement points and the 
first three natural frequencies of the slab, while the outputs from 
the ANN are also the SRF values of each element. The rest of the 
parameters in the study remain the same, for consistency of 
comparison. 
 
 

 
 
 
 

Figure 2  Architecture of the conventional ANN 
 
 

3.0  NUMERICAL EXAMPLE 
 
A continuous two-span reinforced concrete slab is used as a 
numerical example to demonstrate the proposed two-stage ANN 
for damage detection. The slab is modelled using Structural 
Dynamics Tools (SDT), which runs on the Matlab platform. The 
dimensions of the slab are 6.4 m × 0.8 m × 0.1 m and it is simply 
supported at 0.2 m, 3.2 m, and 6.2 m from the left end. “Simply 
supported” in this study refers to the restraints in all 
displacements along the global coordinate axes. The material 
properties of the slab are E = 3.3 × 1010 N/m2, ρ = 2.45 × 103 
kg/m3, and υ = 0.2. The slab is modelled using shell elements 
with 165 nodes and 128 elements, and the supports are assumed to 
be simply supported along nodes 6 to 10, 81 to 85, and 156 to 
160. The standard shell elements in the SDT have been applied to 
all elements. Each of the quadrilateral elements has four 
integration points for finite element analysis as shown in Figure 
3(a). The simulation results are the mode shape values which are 
measured every 0.2 m on the centreline of the slab model along 
the span. For the purpose of damage detection, the slab is divided 

into 32 segments whereby each segment is equally distributed 
vertically and has dimensions of 0.2 m × 0.8 m, as shown in 
Figure 3(b). In this example, it is assumed that the mode shapes 
are measured only at nodes 3, 58, 108, and 163, while the mode 
shape values at the rest of the nodal points are considered as 
unmeasured modal data.  
To demonstrate the accuracy of the proposed approach in 
predicting the mode shape values at the unmeasured points, an 
ANN model is trained to relate the measured modal data with the 
unmeasured mode shape values. At this stage, only ANN1 is 
utilised. Table 1 lists the unmeasured nodal points and the 
measured nodal points. 
  In this example, the inputs are the first three frequencies and 
mode shapes measured at the four nodal points while the outputs 
are the mode shape values at the unmeasured nodal point as listed 
in Table 1. For training purposes, 3000 training data are used. 
These training data consist of various damage cases that are 
generated from the finite element model. The damage cases are 
simulated by reducing the Young’s modulus (E) in the selected 
segments. The damage cases are varied between the ranges of 0.2 
× E and 1.0 × E. The training data are divided into sets containing 
70%, 20%, and 10% of the data, respectively, for training, 
validation, and testing purposes. Once trained, two simulated 
damage cases (Case A and Case B) are fed into the trained ANN1 
model to predict the mode shape values at the unmeasured points. 
Case A consists of damages in segments 10 and 30 of the slab 
while Case B consists of damages at segments 4, 5, 12, 20, and 26 
with higher severity, as listed in Table 2. Table 3 tabulates the 
first three frequencies of the simulated damage cases. Figure 4 
shows the mode shapes of those two scenarios obtained from the 
four measurement points. 
 
 

 
 

 
 
 
 

 
Figure 3(a) Finite element model of a two-span concrete slab. 

 
Figure 3(a)  Finite element model of a two-span concrete slab 

 
 

 
 
 
 
 
 
 

Figure 3(b)  Slab segments of finite element model 
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fourth measurement points (nodes 108 and 163). In mode 2, it is 
also observed that the ANN is able to predict the mode shape 
values in the unmeasured data close to the finite element mode 
shape, while the CS method provides higher error especially at the 
middle support. The same situation is observed in mode 3, where 
the ANN is also able to predict the mode shape values more 
satisfactorily than the CS method. Another criterion to assess the 
capability of the proposed approach involves measuring the mean 
squared error (MSE) between the predicted mode shape and the 
mode shape calculated by the CS method with the finite element 
model mode shape. The MSE values are intended to show the 
precision of the proposed approach with respect to the actual 
values compared to the CS method, as listed in Table 4. 
  It is observed that the MSE values of the CS method in both 
cases are higher than the MSE values of the ANN; this indicates 
that the proposed method provides a better mode shape estimation 
compared to the CS method. As mentioned earlier, the reason for 
the inaccuracy of the CS method is that it is highly influenced by 
the number and location of measurement points in estimating the 
unmeasured mode shape points. As for the ANN model, once it is 
successfully trained, it is able to predict the unmeasured mode 
shape from the measured modal data without depending on the 
number and location of the measurement points. A faulty 
interpretation of inaccurate curves of mode shapes can also be 
avoided by using the proposed approach. A more detailed study of 
the sensitivity of the measurement points is conducted in the 
following section. 
 

Table 4  MSE of ANN and CS to actual values 
 

  ANN CS 
Case A  

 
 
 

Case B 

Mode 1 
Mode 2 
Mode 3 

 
Mode 1 
Mode 2 
Mode 3 

3.19 exp-09 
8.47 exp-09 
8.01 exp-08 

 
1.03 exp-08 
2.27 exp-08 
2.23 exp-07 

6.15 exp-05 
0.000371 
0.002606 

 
5.16 E-05 
0.000388 
0.002592 

 
 
3.1  Sensitivity Study 
 
3.1.1  Different Numbers of Measurement Points 
 
A more comprehensive study is conducted to investigate the effect 
of the number of measurement points on the prediction results. 

For this purpose, the number of measurement points is varied. The 
prediction results for both the ANN and CS methods are 
compared with the actual mode shape obtained from the finite 
element model.  The simulated damage case of Case A is used as 
the testing data, whereby the damages are applied at segments 10 
and 30 with 0.6 × E and 0.8 × E, respectively. Three ANN1 
models are developed for the purpose of comparison. These ANN 
models are distinguished based on different numbers of 
measurement points used to measure the mode shape. These cases 
are referred to as 6P, 8P, and 16P for 6, 8, and 16 measurement 
points, respectively. Figures 6(a) to (d) show the locations of 
measurement points for the three cases. The corresponding 
measured and unmeasured nodal points are listed in Table 5. 
In each case, it is assumed that the mode shapes are measured at 
the specified sensor points on the slab. As the first three modes 
are considered in this study, the inputs to the ANN1 models are 
the first three mode shape values at every measurement point 
together with the first three modes of natural frequencies. Once 
trained, the ANN1 models are used to predict the mode shape 
values at the remaining unmeasured points on the slab. The 
comparisons of the results are illustrated in Figure 7. The known 
measurement points are denoted by X. 
  Based on the results, it is seen that the ANN is able to predict 
the mode shape at unmeasured points accurately for all cases. On 
the other hand, the mode shape curves interpolated by the CS 
method in Case 6P for modes 2 and 3 are still imperfect compared 
to the ANN predictions. Higher error is observed in mode 2 at the 
middle support of the slab for the mode shape interpolated by the 
CS method. The same scenario is also observed for mode 2 in 
Case 8P. For Case 16P, both the ANN and the CS method provide 
good generalisation of the finite element mode shapes. From the 
results, it is clear that the capability of the CS method improves as 
the number of measurement points increases while the ANN 
model is still able to predict the mode shape accurately with a 
limited number of measurement points. For a further comparison 
of the capabilities of the two methods, MSE values are calculated 
between the predicted values and the actual mode shape values. 
The MSE values for both methods are listed in Table 6. It is 
obvious that the MSE values obtained for ANN1 models are 
significantly lower than those for the CS method in all cases. This 
affirms that the proposed approach provides better results 
compared to the standard CS method. The results also indicate 
that the proposed approach is able to avoid the need for too many 
measurement points for mode shape measurement. 
 

 
 
 

 
(a) Sensor locations for 4 measurement points. 

 

 
(b) Sensor locations for 6 measurement points. 
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(c) Sensor locations for 8 measurement points. 

 

 
(d)   Sensor locations for16 measurement points. 

 
Figure 6  Locations of measurements points. 

 
 

Table 5  Complete list of measured and unmeasured nodes. 
 

Case  Measured Nodal Point  Unmeasured Nodal Point 
6P 

 
 
 

8P 
 
 
 

16P 

 3, 33, 58, 108, 133 and 163 
 
 

3, 23, 43, 63, 103, 123, 143 and 163 
 
 

3, 13, 23, 33,43, 53, 63, 78, 88, 103, 113, 
123, 133, 143, 153 and 163 

 8, 13, 18, 23, 28, 38, 43, 48, 53, 63, 68, 73, 78, 83, 88, 93, 98, 
103, 113, 118, 123, 128, 138, 143, 148, 153 and 158 

 
8, 13, 18, 28, 33, 38, 48, 53, 58, 68, 73, 78, 83, 88, 93, 98, 108, 

113, 118, 128, 133, 138, 148, 153 and 158 
 

8, 13, 18, 28, 33, 38, 48, 53, 58, 68, 73, 78, 83, 88, 93, 98, 108, 
113, 118, 128, 133, 138, 148, 153 and 158 

 
 
 

 

 
 

 
 

3 53 103 153

Nodal point

6P - Mode 1

3 53 103 153

Nodal point

6P - Mode 2

3 53 103 153

Nodal point
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3 53 103 153

Nodal point

8P - Mode 1

3 53 103 153

Nodal point

8P - Mode 2

3 53 103 153

Nodal point

8P - Mode 3

   FE mode shape              ANN predition                CS Interpolation       X  Common points 



63                                               Goh et al. / Jurnal Teknologi (Sciences & Engineering) 61:1 (2013) 57–66 

 

 

 
 

Figure 7  Comparison of mode shapes of groups 6P, 8P and 16P 
 
 
Table 6  MSE of the approximation difference between mode shapes in 
comparison to FE 
 

Number of  
Measurement Points 

ANN CS 

4 
6 
8 
16 

9.46 exp-08 
8.19 exp-08 
2.86 exp-08 
2.53 exp-08 

0.003133 
0.0002 

1.98 exp-05 
2.90 exp-08 

 
 

  For instance, according to a study by Ooijevaar et al. [15], 
for a good result, a minimum of eight equally distant 
measurement points is needed to achieve satisfactory mode shape 
interpolation results through the CS method for a 1.0 m structure. 
By using the proposed approach, as demonstrated in Section 3.0, 
fewer measurement points are used to obtain a successful mode 
shape prediction even with a longer structure. 
 
3.1.2  Influence of Location of Measurement Points  
 
This section investigates the influence of different measurement 
locations on the ANN prediction results in comparison with the 
CS method.  The same simulated damage scenario as Case A is 
used as the testing data in this section. For this purpose, four cases 
with different measurement locations are created. Table 7 lists the 
distances of the measurement points for the four cases. The 
distances are measured from the left end of the slab. Only four 
measurement points with different locations are considered in this 
part of the study. 
  As there are a total of 33 nodes in a complete mode shape, 
the remaining 29 points will be determined from the CS method 
and ANN model. To assess the effectiveness of the proposed 
method, the mode shapes obtained from both methods are then 
compared with the finite element mode shapes of damage in Case 
A, which are assumed to be the actual mode shapes. Figure 8 
exhibits all the mode shape curves obtained from both the CS 
method and the ANN.  
 
Table 7  Location of measurement points (distance from left in meters) 
 

 Case 1 Case 2 Case 3 Case 4 
 

First point 
Second point 
Third point 
Fourth point 

0 
2.2 
4.2 
6.4 

0 
1.2 
5.2 
6.4 

0.6 
2.4 
4.0 
5.8 

0 
2.4 
5.2 
6.4 

 
 

The results show that the ANN is able to predict all three mode 
shapes accurately for all cases. Regardless of the location of the 
measurement points, the ANN model is still able to predict the 
unmeasured mode shape values accurately once it is well trained. 
This is in contradiction to the CS method, where in the first mode, 
although the CS method is able to obtain the correct shape in all 
four cases, the error is quite remarkable. For higher modes (2 and 
3), the CS method is unable to provide satisfactory results for all 
cases. Moreover, for Cases 1, 2, and 4 with the same two 
measurement points at both ends, the CS interpolated mode 
shapes are unable to match the finite element mode shape. This 
clearly shows that the CS method is very dependent on the 
location of measurement points, while the ANN, once trained with 
sufficient data, is able to predict the mode shape curves correctly. 
This proves that the CS method is more sensitive to measurement 
locations than the ANN method. Therefore, by using the ANN 
approach, the use of a rigorous process to select the measurement 
points for damage detection can be avoided. 
 
3.2  Damage Detection Using Two-Stage ANN 
 
This section demonstrates the application of ANN2 for damage 
detection. The inputs to the ANN2 are a combination of measured 
mode shapes and frequency values and the predicted mode shape 
values at the unmeasured locations obtained from the ANN1. The 
outputs are the SRF of each segment of the slab. The sensitivity of 
ANN2 is compared to that of the conventional ANN model. The 
architecture of the conventional ANN model is as discussed in 
Section 2.1.  
  To maintain the consistency of the study, both the two-stage 
ANN and the conventional ANN models are trained using the 
same training data generated from the finite element model. Both 
the conventional ANN and the ANN1 models are trained using 
the first three modes of frequencies and mode shapes from 4, 6, 8, 
and 16 measurement points as the input parameters. The outputs 
of the conventional ANN models are the SRF of each element on 
the slab, while for ANN1 they are the remaining unmeasured 
points of the slab. The locations of the sensors for the different 
cases of numbers of measurement points are as discussed 
previously. Similarly, 3000 training data are used in the training 
session. For the two-stage ANN, the outputs of ANN1 are fed into 
ANN2 together with the measured frequencies and mode shapes 
to predict the SRF of each element of the slab.  
  For comparison, the simulated damage scenario of Case B 
using 16 measurement points is used in this part to investigate the 
feasibility of the proposed two-stage ANN approach. The 
comparisons of the damage prediction are measured using the 
MSE. The MSE values are calculated based on the actual damage. 
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Figure 9 depicts the summary of the comparison of MSE values 
for all of the ANN models in Case B. 
  The results show that the proposed method provides lower 
MSE values than the conventional ANN models with a lower 
number of measurement points (4 and 6). This indicates that 
ANN1 is able to provide additional information to ANN2 to 
improve the damage prediction performance when a small number 
of measurements is used. When the number of measurement 

points is low, the input fed into the conventional ANN is very 
limited. Hence, the inadequate input causes the generalisation 
results to be poor. However, as the number of measurement 
points. 
 
 
 

 

 

 
 

Figure 8  Mode shape curves influenced by different measurement points 
 

 
Figure 9  MSE comparison between single-stage and two-stage ANN (Case B) 

 
 
  Although the effect of ANN prediction propagation errors 
from the earlier ANN1 model has reduced the efficiency of the 

two-stage ANN model, in practice it is not always economical to 
measure the mode shape at a high number of measurement 
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