

63:1 (2013) 87–96 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696

Full paper
Jurnal

Teknologi

A Review of CADs, Languages and Data Models for Synthetic Biology

Narjeskhatoon Habibia*, Siti Zaiton Mohd Hashima, Cesar A. Rodriguezb, Mohd Razip Samianc

aSoft Computing Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
bAutodesk Incorporation, San Francisco, CA,USA
cSchool of Biological Sciences, Universiti Sains Malaysia,Pinang, Malaysia

*Corresponding author: hnarjeskhatoon2@live.utm.my

Article history

Received :25 March 2013

Received in revised form :
4 June 2013

Accepted :15 June 2013

Graphical abstract

Abstract

Synthetic biology is to apply engineering standards to the biology. It has two main aims; first to design

and construct biological systems in order to extend the understanding of how they work, and second, to
design biological systems for performing valuable tasks like medications synthesis and biofuels

production. Due to the complex nature of the biological systems, and similar to the engineering fields,

computational methods and computer aided design (CAD) tools, are required to handle this complexity.
In this review, existing CADs, languages and data models for synthetic biology are explored. The goal

is to provide an insight for the synthetic biologists to take advantage of the available computational

tools and to find out the gaps to work on.

Keywords: CAD; BioCAD; synthetic biology; bioinformatics; language; data model

Abstrak

Biologi sintetik adalah untuk memohon piawaian kejuruteraan biologi. Ia mempunyai dua matlamat

utama iaitu pertama untuk mereka bentuk dan membina sistem biologi untuk melanjutkan memahami

bagaimana ia berfungsi, dan kedua, untuk mereka bentuk sistem biologi untuk melaksanakan tugas-

tugas yang berharga seperti sintesis ubat-ubatan dan pengeluaran biofuel. Oleh kerana sifat kompleks
sistem biologi, dan sama dengan bidang kejuruteraan, kaedah pengiraan dan reka bentuk bantuan

komputer (CAD) alat, diperlukan untuk mengendalikan kerumitan ini. Dalam kajian ini Cads yang
sedia ada, bahasa dan model data untuk biologi sintetik akan diterokai. Matlamatnya adalah untuk

memberi gambaran untuk biologi sintetik untuk mengambil kesempatan daripada alat-alat yang ada

pengiraan, dan untuk mengetahui jurang untuk bekerja.

Kata kunci: CAD; BioCAD; biologi sintetik; bioinformatik; bahasa; model data

© 2013 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Synthetic biology is applying engineering standards to the

biology. It has two main aims; first to plan and construct

biological systems in order to enlarge the current

comprehension of how they work, and second, to design

biological systems to perform valuable tasks like microbes

engineering to execute cancer tumors, medications synthesis

economically by metabolic engineering, biofuels production,

chemical material creation, bioremediation, business design, and

chemical catalyzers design for novel reactions.1,2

 Due to multiple scales, versatile and dynamic nature of

biological systems and materials, computational methods and

computer aided design (CAD) tools are required to handle this

complexity. In the recent years, several CADs and programming

languages for synthetic biology have been developed to support

the design of new systems. These tools need to access the

libraries of parts and query them.1

Because the synthetic biology is an emerging field, there is only

very few reviews on its computational tools. It means that, it is

difficult for a researcher in the field to find out what kinds of

tools are available and how to take advantage of them.

 R. Weis et al.3 explored the computational methods for

synthetic biology. D. Chandran et al.4 investigated the CADs.

The existing programming languages in the field were reviewed

by J. Beal et al.5 The data models were discussed in M.

Galdzicki et al. work.6 A survey has been done by L. Kahl et al.

to find out the technologies which are used by the synthetic

biologists in their projects.7

 In this review, existing CADs, languages and data models

for synthetic biology are explored. The goal is to provide a

broad view of the current available computational facilities for

synthetic biologists who intend to use them, as well as for the

researchers who seek to propose new tools.

 The advantage of the currecnt review, compared with the

similar works, is that it integrates discussion on the CADs,

88 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

languages and data models in one place. In addition, it aims to

review more computational tools than the previous ones.

2.0 SYNTHETIC BIOLOGY

Synthetic biology, a subfield within biological design concerned

with engineering organisms to perform novel functions and

develop the means by which organisms can be engineered easily

and robustly, is a relatively young field with a large potential for

growth. Much of the work in the field includes designing and

constructing genetic circuitry, joining biological “parts” (e. g.

Promoters, ribosome binding sites, and translated sequences) to

form the basis for biological “devices,” organisms that have an

engineered, well-specified input-output behavior.

 Synthetic biology attempts to modularize biology to make

it tractable. Hence, it focuses on synthesis, abstraction, and

standardization of biological components. Synthesis is creating

reusable and modular parts (regularly as DNA segments).

Abstraction is the implementation of synthesized parts by

function instead of composition (e.g., “this is a promoter”

instead of “this is ttgacagctagctcagtcctaggtataatgctagc”) which

can aid the design of more complex biological systems.

Standardization means that every synthesized part and device is

well-characterized, reproducible, and exchangeable.8

 Synthetic biology has the potential to transform how

human beings interact with the environment and how they

approach health. Traditional genetic engineering approaches to

solving complex problems, typically focus on working on one or

a few genes. Synthetic biology, by contrast, approaches these

problems from a novel, engineering-driven perspective that

focuses on wholesale changes to the existing cellular

architectures and the construction of elaborate systems from the

ground up. Synthetic biology has the potential to fabricate

practical organisms that could clean hazardous waste in

inaccessible places, to use plants to sense chemicals and respond

accordingly, to produce clean fuel in an efficient and sustainable

fashion, and to recognize and destroy tumors. Whether

addressing an existing problem or creating new capabilities,

effective solutions can be inspired by, but need not mimic,

natural biological processes. These new designs can potentially

be more robust or efficient than the original systems.3

3.0 CADS FOR SYNTHETIC BIOLOGY

Comparable to other engineering fields like electrical and

mechanical engineering, computer-aided design (CAD) has been

proposed for synthetic biology. The goal of a synthetic

biology’s CAD (bioCAD) is to give a productive design flow to

build and analyze biological systems.4

 However, there is a paramount difference between biology

and other disciplines. First, mechanisms of living organism’s

functions are not understood thoroughly to make prescient tools.

Second, there are not accepted engineering methods in biology.

Third, the system’s modeling must be done based-on the

biological parts. Fourth, there is no accepted standard to define a

biological part and to construct a system with multiple parts.

There are lots of unresolved problems, like forming DNA

secondary structures and interfering with host cell mechanisms.

 Due to a large number of unknown parameters and lack of

full comprehension of biological mechanisms, quantitative

modeling is not possible in most of the cases and just qualitative

descriptions are provided. Biological system design is mostly

exploratory instead of a logical procedure.

A recent review on BioCADs has been done by D. Chandran et

al. 5. In their paper, the authors state that the design procedure in

a CAD starts with a user-defined specification and continues up

to entering the building process. According to their theory, an

ideal design methodology includes five main stages:

specification, design, analysis, composition of parts, and

assembly. It is essential to note that feedback and iteration play

important roles in the design process. Figure 1 illustrates this

design methodology.

 In the following sub-sections, major existing synthetic

biology CADs are described briefly. Table 1 summarizes their

features.

Figure 1 An ideal CAD methodology for synthetic biology4

3.1 BioJADE

BioJADE is the first implementation of abstract concept in

genetic engineering and a tool to design genetic systems using

graphical notations of genetic components. It is inspired by

similar tools in electrical engineering. BioJADE key concept is

“genetic component prototype”: an abstract representation of a

set of circuits (e.g. inverter) with similar function. BioJADE is

able to translate the abstract representations to phenotypes and

to simulate the resulted phenotypes. BioJADE developers built a

database for genetic parts which finally evolved to MIT Registry

of biological parts.9

 Despite interesting features, BioJADE does not include the

following capabilities:

- Definition of genetic parts.

- Definition of part functional properties.

- Finding the optimal combination of parts in a construct.

3.2 Clotho

Clotho is a design toolset for designing synthetic biological

systems. It is inspired by Electronic Design Automation and its

architecture is based-on the Platform-based Design (PBD).

Clotho’s structural modules are ClothoCore, ClothoHubs,

ClothoConnections, ClothoData, ClothoAlgorithms and

PoBolBindings. The general design flow in Clotho includes the

following steps10,11:

1. Connect to a DB.

2. Associate fields to a standard semantic definition

(PoBol).

3. Process, assemble and analyze.

4. Save the new design as a part to the DB.

89 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

3.3 DeviceEditor

DeviceEditor is a web-based and graphical bioCAD tool to

simulate the visual whiteboard design process which is common

in biological laboratories. DeviceEditor’s main novelties are

visual combinatorial library design, integration with DNA

assembly automation, and a graphical user interface for the

creation and modification of design specification rules.

DeviceEditor provides prototype creation facility using

standardized, functional, and visual abstractions. In addition, it

is able to integrate with other bioCADs and software platforms.
12

3.4 iBioSim

iBioSim is a tool for constructing synthetic biological systems

which can be used for two purposes: to analysis a natural

genetic circuit and to design a new synthetic genetic circuit.13

 To analysis a circuit, the following procedure must be

pursued:

1. Gathering gene expression data (by means of for

example microarrays).

2. Analyzing the data and generating the Genetic Circuit

Model (GCM).

a. GCM is a graphical specification language

which describes a circuit at a higher level of

abstraction than SBML, by including just the

important species and resections.

b. GCM tuple is: <S, P, G, I, Sd>

i. S: Proteins.

ii. P: Promoters.

iii. G: Species that are produced by a

promoter.

iv. I: Influences of species on a

promoter (A: activation, R:

representation).

v. Sd: These species only influence

other species after forming a dimer.

3. Converting GCM to SBML to be ready for simulation

tools.

 To design a new synthetic genetic circuit, the user starts

with a GCM and modifies it iteratively to reach the desired

behavior. IBioSim will generate the DNA sequence of the

GCM.

3.5 j5

j5 is a web-based software tool which automates the design of

scar-less multipart DNA assembly protocols including SLIC,

Gibson, CPEC, and Golden Gate. The key innovations of the j5

design process are cost optimization, using DNA synthesis when

it is cost-effective, the enforcement of design specification rules,

hierarchical assembly strategies to remove likely assembly

errors, and the instruction of manual or automated construction

of scar-less combinatorial DNA libraries. These innovations

save researchers time and effort, reduce the frequency of user

design errors and off-target assembly products, decrease

research costs, and enable scar-less multipath and combinatorial

DNA construction of scales impractical without computer-aided

design14.

3.6 ProMoT

ProMoT is a tool for modular model design. Genetic circuit

design is done by placing biological parts on a canvas and by

connecting them by means of ”wires” that enable flow of signal

carriers. ProMoT supports two different modeling approaches,

qualitative and quantitative. The qualitative approach is a

description of the system by logical equations where the

quantitative method is based on differential algebraic equations

(DAEs). The final code associated with a circuit, can be

exported into MATLAB or SBML format (Level-1 and Level-2)

to be simulated.15, 16

3.7 SynBioSS

SynBioSS is a tool for synthetic network construction. It builds

a kinetic model of the desired construct, retrieves required

kinetic information and simulates the model. The results are

probability distributions of dynamic biological phenotype. The

components of the SynBioSS are Designer, WIKI and Simulator

which are described below:17-19

- Designer:

o The user builds a construct from BioBrick parts.

o The designer generates all the reactions (kinetic

model) representing transcription, translation,

regulation, induction and degradation, in SMBL

or NetCDF files. It has simple rules of how

molecules interact in regulatory networks.

- WIKI: It is a database in wiki format and an extension of

MediaWiki software, to store, retrieve, view and edit of

species and reaction data.

- Simulator: There are two types of simulations in

SynBioSS, both based-on the Hy3S; desktop and

supercomputer.

3.8 TinkerCell

TinkerCell is a CAD tool to construct biological networks

graphically and analyze their behavior. It takes advantage of

third-party programs’ functions and has a flexible and extensible

design to adapt itself to the future changes in the synthetic

biology field. Features of TinkerCell’s Design are 20-22:

- Providing mathematical description of the models

(parameters, equations of dynamics of the part, etc.).

- Providing several modeling methods (different ways

of defining the dynamics of the model).

- Extracting dynamics of a model automatically.

- Component based modeling. It allows the user to build

models by choosing and connecting components from

the parts catalogue.

- Ability to reuse existing smaller circuits in order to

build larger ones.

- Extensibility. Extensions are programs (C++) which

can be added to the TinkerCell without modifying it.

They can be removed or replaced. Most of the works

are done by extensions in TinkerCell, like driving rate

equations and graphical user interfaces.

- Supporting the third-party functions (e.g. Analysis) by

providing a rich API which is callable from C and

Python programs.

- Layered architecture:

o Layer 1: Core library.

o Layer 2: C++ extensions.

o Layer 3: C and Python extensions.

- Supporting standard data models like SBOL.

TinkerCell can be used to query parts DBs, biological

models and connect and analysis functions. In

90 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

addition, TinkerCell can connect mathematical models to biological parts.

Table 1 Synthetic biology CADs and their features

CAD Description

1 BIOJADE - The first tool to design genetic systems using graphical notations of genetic components, inspired by

similar tools in Electrical engineering.
- Its key concept: “genetic component prototype”; an abstract representation of a set of circuits (e.g.

inverter) with similar function.

- Being able to translate the abstract representations to phenotypes and simulate the resulted phenotypes.
- Including a database for genetic parts which finally evolved to MIT Registry of Biological Parts.

2 CLOTHO - Inspired by Electronic Design automation.

- Having “Platform-based Design (PBD)” architecture.

- Including the following structural modules: ClothoCore, ClothoHubs, ClothoConnections, ClothoData,
ClothoAlgorithms and PoBolBindings.

3 DEVICEEDITOR - A web-based and graphical bioCAD to simulate the visual whiteboard design process.

- Being able to integrate with other bioCADs and software platforms.
- Its main novelties:

o Visual combinatorial library design.

o Integration with DNA assembly automation.
o A graphical user interface for the creation and modification of design specification rules.

4 IBIOSIM - A tool to construct synthetic biological systems.

- Circuit analysis steps:
o Gathering gene expression data (e.g. By means of microarrays).

o Analyzing the data and generating the Genetic Circuit Model (GCM) which is a graphical

specification language to describe a circuit at a higher level of abstraction than SBML.
o Converting GCM to SBML to be ready for simulation tools.

- Procedure to design a new synthetic genetic circuit:

o Starting with a GCM.
o Modifying GCM to reach the desired behaviour.

o Generating the DNA sequence of the GCM by iBioSim.

5 J5 - A web-based software tool to automate the design of scar-less multipart DNA assembly protocols

including SLIC, Gibson, CPEC, and Golden Gate.

- The key innovations:

o Cost optimization.

o Using DNA synthesis when it is cost-effective.
o The enforcement of design specification rules.

o Hierarchical assembly strategies to remove likely assembly errors.

o The instruction of manual or automated construction of scar-less combinatorial DNA libraries.

6 PROMOT - A tool for modular model design.

- Providing genetic circuit design by placing biological parts on a canvas and by connecting them by means

of wires that enable flow of signal carriers.
- Supports two modeling approaches: qualitative and quantitative.

- Being able to export a circuit’s code into MATLAB or SBML format for deterministic and stochastic

simulation.

7 SYNBIOSS - A tool for synthetic network construction.
- Its components:

o Designer:
 The user builds a construct from BioBrick parts.

 The designer generates all the reactions (kinetic model) representing transcription,

translation, regulation, induction and degradation, in SMBL or NetCDF files.
o WIKI: is a database in wiki format to store, retrieve, view and edit of species and reaction data.

o Simulator: There are two types of simulations in SynBioSS based-on the Hy3S; desktop and

supercomputer.

8 TINKERCELL - A tool to construct biological networks graphically and analyze their behavior.
- Its features:

o Providing mathematical description of the models.

o Providing several modeling.
o Extracting dynamics of a model automatically.

o Component based modeling.

o Ability to reuse existing smaller circuits in order to build larger ones.
o Extensibility by C++ programs.

o Supporting the third-party functions by providing a rich API which is callable from C and

Python programs.
o Layered architecture.

o Supporting standard data models like SBOL.

o Being able to query parts DBs, biological models and connect and analysis functions.

91 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

4.0 LANGUAGES

The idea behind high-level languages is automating problem

solving by connecting sub-problems’ solutions. High-level

languages hide details of programmers to bring accessibility

(requiring less knowledge), scalability and reliability to the

programming task.5

 A high-level language for bio-molecular systems is any

system description language where the choice of actual parts

may be left unspecified. There are a few developed languages,

each one focuses on different aspects of design and automates

different stages. Selecting a grammar for describing biological

sequences is a trade-off between expressivity and the

compilation complexity.

 Despite their usefulness, high-level languages for synthetic

biology have two main drawbacks as well:

1. The programmer gives up control of some aspects of the

system.

2. The results are less efficient relative to hand-tuned

designs.

 The most mature and well-known languages for synthetic

biology are (from the lowest level to the highest level)

GenoCAD, Eugene, GEC and Proto. Beside mentioned

languages, there are other ones which are mentioned in a review

on synthetic biology’s languages by Beal J. et al.5 Piegon is

another recent language developed by S. Bhatia et al.23

 The major languages are described in the following sub-

sections. A summary of the languages’ features can be found in

Table 2.

4.1 Antimony

Antimony is a simple, modular and text-based language which

allows the user to create and combine biological models.

LibAntimony is a library which provides the facility for other

softwares to transfer the Antimony modules to their own

formats. Antimony syntax is based-on the Jarnac 24. Its features

include:25

- Chemical reactions

o Example:

- Modularity

o Example 1: Using “is” to associate two

variables together.

import “model1.xml”

import “model2.xml”

model multiModule()

A: test1(); //from model1.xml

B: test2(); //from model2.xml

 A.PYR is B.pyruvade;

o Example 2: Using input and output to

associate two variables together.

 test1(glucose,pyruvate);

 test2(pyruvate,co2);

- Genetic Networks

o The elements are listed in order:

--P1--RBS1--G1--stop--

o The rate Law of each element could be

defined or calculated based-on the up-

stream elements.

o If a module has a part inside, it can be used

in a new network.

o Example:

 F2620 : bba_f2620(AHL);

 -- F2620--GFP--

- Other features: Ability to define variables, constants,

interactions, components, events, rate rules and

assignment rules.

4.2 Eugene

Eugene is a programing language for synthetic biology which is

inspired by languages like Verilog and VHDL. Main capabilities

of Eugene are26-28:

- Flexible part and device specification and

composition.

- Design space exploration using a rule system.

- Interfacing with other simulation and assembly tools.

Eugene is composed of primitives, constructs, rules and

functions:

- Primitive: txt, num, Boolean, txt[], num.

- Construct

o Property: A name and a primitive type:

Property strength(num);

o Part

 Definition: Part Promoter(ID,

sequence, strength);

 Declaration:

Promoter P1(1,”TATATA”, 30);

o Device: Including parts and other devices.

Devices are ordered 5’ to 3’:

Device BBa_1(P1,GFP);

- Rule

o Declaration: Describing the constraints on

devices using rules operators: Rule R1(P1

BEFORE GFP);

o Assert and Note:

 Assert: Throws an exception:

Assert(R1);

 Note: Prints error messages:

Note(R2);

 Header file: Contains properties

and part definitions, as well as

part instantiations.

- Function: For instance print and permute. Permute

generates all the permutation of a device by changing

each part with its other instances.

At present, small molecule interactions cannot be defined in

Eugene. But if sequences of parts are proper, these interactions

will occur naturally in the physical device.

4.3 GEC

GEC is a language to represent the interactions between

(potentially unspecified) proteins and genes in a modular way.

Using GEC, the designer only should know the basic part types

like RBS and determine the constraints (for example “at this

point I need a negatively regulated promoter”). The compiler

determines the actual parts from a DB. If there are several

design options, GEC will find them and user can simulate them

to select the best one and to refine the model by adding some

constraints. Syntax and semantic definition of GEC is

independent of choice of part types and properties, but

translation to reactions is based on the part types and

properties.29

 GEC has a database of parts with their properties and a

database of reactions. Reactions in GEC are represented by

Language for Biochemical Systems (LBS).30 In addition,

stochastic and deterministic simulations are available (using

Systems Biology Workbench or third-party tools). A graphical

92 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

tool is developed which includes a database editor, a GEC editor

and a GEC compiler.29

GEC’s basics are summarized as follows:

- Part types:

o Example:

r0040:prom; b0034:rbs; c0040:pcr;

b0015:ter

- Part variables and properties:

o Example: Rewriting the previous example

which results in 4 designs:

X1: prom<neg(Y)>;

X2:rbs;

 X3:pcr<codes(Y)>;

 X4:ter;

- Parameterized modules.

- Comportments and reactions: Reactions as additional

constraints on parts and compartments (location of parts

like a specific cell) can be defined in GEC.

4.4 GenoCAD

GenoCAD 31-37 is a framework, based-on the attribute grammars

and is developed to:

- Represent the biological functions of genetic parts.

- Formalize the dependency of parts’ functions on their

context.

- Translate a DNA sequence to a model to predict their

behavior.

 GenoCAD includes a formal semantic model which

represents the dynamics of the DNA sequence using attribute

grammars. The proposed compiler translates the syntactic

information coded by DNA sequences to a dynamic model of

phenotype. The workflow of GenoCAD is as follows:

1. Converting the sequence to a series of genetic parts by

lexer (scanner).

2. Checking the structural consistency of the sequence with

the syntax by parser and generating pars trees for valid

sequences.

3. Translating the sequence to a mass action model of the

molecular reactions using the parse tree, attributes

(properties of individual parts or combination of parts)

and semantic actions (associated with the production

rules).

4.5 Proto

Proto has proposed an automatic compilation technique to

convert a high-level description into an abstract genetic

regulatory network. The compiler optimizes the network and

generates a simulation of it. For this purpose, Proto includes

motif-based compilation. The networks are organized into a set

of promoter-genes-terminator functional units. Each unit has a

known input-output relation. Parts in units can be selected from

a database in a way that are compatible with each other and with

their input-output characteristics. Proto currently uses ODE for

mathematical modeling, but in the future, stochastic modeling

will be added.38-40

 Regarding the motif-based compilation, each primitive has

an associated motif. To convert the graph to an abstract

network, the compiler first replaces each operator/primitive with

its motif and each edge and variables (of motifs) to a regulatory

protein. Then, all are connected together. Choice of molecules

and sequences is left which can be made by GEC, Eugene or

MatchMaker.

 Proto relation with other similar tools can be summarized

as follows:

- It can integrate with “assembly-level languages” like

SBML, SBOL and CellML.

- It simplifies model building of antimony, Little B and

ProMoT.

- It uses Eugene 26-28 and GenoCAD 31-37 to improve the

analyzing and converting networks to physical

implementation.

Table 2 Synthetic biology languages and their features

Language Description

1 ANTIMONY - Simple, modular and text-based.

- Allowing the user to create and combine biological models.

- Providing LibAntimony, a library for other softwares to transfer the Antimony modules to their own formats.

- Based-on the Jarnac’s syntax.

- The capability to define:
o Chemical reactions

o Genetic Networks

o Variables, constants, interactions, components, events, rate rules and assignment rules.

2 EUGENE

- Inspired by languages like Verilog and VHDL.
- Composed of primitives, constructs, rules and functions.

- Main capabilities:

o Flexible part and device specification and composition.
o Design space exploration using a rule system.

o Interfacing with other simulation and assembly tools.

3 GEC - A language to represent the interactions between potentially unspecified proteins and genes in a parameterized modular
way.

o The designer only should know the basic part types like RBS and determine the constraints (e.g. a negatively

regulated promoter). The compiler determines the actual parts from a DB.

o If there are several design options, GEC will find them and user can simulate them to select the best one.

- Independence of the GEC’s syntax and semantic definition of choice of part types and properties (but the translation to

reactions is based on the partition types and properties).
- Including a database of parts with their properties and a database of reactions (represented by LBS).

- Including stochastic and deterministic simulations using Systems Biology Workbench or third-party tools.

- Including a graphical tool: a database editor, a GEC editor and a GEC compiler.

4 GENOCAD - A framework based-on the attribute grammars which is designed to:

93 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

o Represent the biological functions of genetic parts.

o Formalize the dependency of parts’ functions on their context.

o Translate a DNA sequence to a dynamic model to predict their behavior.

5 PROTO - A technique to convert a high-level description into an abstract genetic regulatory network. The compiler optimizes the

network and generates a simulation of it.

- Including motif-based compilation:
o Each primitive has an associated motif.

o The compiler first replaces each operator/primitive with its motif and each edge and variables (of motifs) to a

regulatory protein.
o Choice of molecules and sequences is left which can be made by GEC, Eugene or MatchMaker.

o It uses ODE for mathematical modeling (Stochastic modeling will be added later).

- Proto relation with other similar tools:
o It can integrate with “assembly-level languages” like SBML, SBOL and CellML.

o It simplifies model building of antimony, Little B and ProMoT.

o It uses Eugene and GenoCAD to improve the analyzing and converting the networks to physical implementation.

5.0 DATA MODELS

Because of the diversity and size of biological data (large

number of components, interacting physically and chemically at

multiple time and spatial scales) standardization is required to

design and analysis synthetic biological circuits by means of

computational tools. The case is similar to Bioinformatics field

which can be a reference to learn from its successes and

failures.6 In the following sub-sections, available data models

for synthetic biology are explored and a summary is presented

in table 3.

5.1 Visual Representation Standards

Visual standards are required in the fields which use diagrams to

exchange information. There are two approaches to define the

required symbols 6:

1. Selecting the used symbols in the community (e.g.

SBGN (systems biology graphical notion) 41).

2. Creating new symbols (e.g. SBOLv 42).

5.2 Software Data Models

Most of the synthetic biology’s softwares, have their own data

model and use import and export functions to support standard

formats. Some of them have standards which allow adding

customs information (e.g. GeneBank and SBML). However,

there are some softwares with completely different data models,

so they cannot use standard formats. Examples are TinkerCell

(diagrams) and GenoCAD (grammars).6

5.3 SBOL

SBOL is proposed by “Synthetic Biology Data Exchange

Group”. The goal is describing data in a standard but extensible

outline to make the electronic information exchange possible.

SOBL is the successor of ProBol (Provisional BioBrick

Language), an initial attempt at defining a minimal data model

for BioBrick repository entries.1, 6 SBOL includes two main

projects: SBOL-Semantic and SBOL-Visual.42

 SBOL-Semantic uses information technology for data on

the web. Its base is a core ontology which is a set of

fundamental synthetic biology concepts and their relationships

including Part, Sequence Features and Assembly Standards, as

well as how they connect to each other. The ontology conforms

to the W3C recommended technology for semantic web

(RDF/OWL) and it is written in OWL, the W3C standard for

ontology definition.

 SBOL-Visual (SBOLv) 42 is a symbolic representation

based on symbols which are already in use in the community.

The most important feature of a standard is reducing the

ambiguities such as synonymy (multiple terms for the same

concepts) and homonymy (one symbol for multiple concepts).

The key contribution of SBOL is limiting the number of

symbols for a concept. The metric for the success of a standard

is the amount of community’s acceptance. Regarding the use of

SBOL in tools like Clotho, DeviceEditor, GenoCAD, SynBioSS

and TinkerCell, it could be considered successful.

Table 3 Synthetic biology data models and their features

Data Model Description Example(s)

1 Visual representation

standards

Visual standards in order to use diagrams for exchanging the

information.

SBOLv

2 Software data models Data models which are designed specifically for each

software.

TinkerCell’ diagrams, GenoCAD’s grammar

3 SBOL The successor of ProBol and a modeling approach to describe

data in a standard but extensible outline.

SBOL-Semantic, SBOL-Visual (SBOLv)

94 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

6.0 DISSCUSSION

Regarding the data models for synthetic biology, it seems that

tools designers are shifting gradually from software-specific

data models to the standard models like SBOL. It makes

interoperability between softwares even more possible.

According to the mentioned design methodology (Figure 1), the

tools and languages explored in this paper, can be categorized

based-on the stage that they can be used for. Table 4 shows this

kind of categorization.

 The advantages of existing CADs and languages and are

presented in table 5 and 6 respectively.

Table 4 Categorization of the tools based-on the design stage they can be used for it

Function CAD/Language

Stage 1: Specification Eugene, DeviceEditor.

Stage 2: Design Antimony, BioJADE, Clotho,
DeviceEditor, GEC, GenoCAD, iBioSim,

ProMoT, Proto, SynBioSS, TinkerCell.

Stage 3: Mathematical Analysis No specific tool for synthetic biology.

Usually tools from “Systems Biology” are

used.

Stage 4: Biological Part Composition GenoCAD, j5, TinkerCell

Stage 5: Assembly J5

Table 5 Comparing the CADs for synthetic biology

CAD Advantage(s)

1 BIOJADE - Included a database for genetic parts which finally evolved to the MIT

Registry of Biological Parts.

2 CLOTHO - Having “Platform-based Design (PBD)” architecture.

- Connecting users to repositories of biological parts.

- Making it easier to share data.

3 DEVICEEDITOR - A web-based tool.

- Being able to integrate with other bioCADs and softwares.
- Visual combinatorial library design.

- Integration with DNA assembly automation.

- Including a GUI for the creation of design specification rules.

4 IBIOSIM - Converting its internal data model representation into SBML to be

ready for simulation tools.

5 J5 - A web-based tool.

- Supporting several scar-less multipart DNA assembly protocols.
- Cost optimization.

- The enforcement of design specification rules.

6 PROMOT - Supports two modeling approaches: qualitative and quantitative.

- Being able to export a circuit’s code to MATLAB or SBML format for

simulation.

7 SYNBIOSS - A web-based and desktop-based tool.

8 TINKERCELL - Providing mathematical description of the models.

- Providing several modeling.

- Ability to reuse existing smaller circuits in order to build larger ones.
- Extensibility by C++ programs.

- Supporting the third-party functions.
- Layered architecture.

- Supporting standard data models like SBOL.

- Being able to query parts DBs, biological models and connect and
analysis functions.

95 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

Table 6 Comparing the languages for synthetic biology

Language Advantage(s) Limitation(s)

1 ANTIMONY - Simple.

- Modular.

- Providing LibAntimony to transfer the Antimony modules to other
software formats.

- Text-based.

2 EUGENE

- Design space exploration using a rule system.
- Interfacing with other simulation and assembly tools.

- Text-based.
- Small molecule interactions cannot

be defined in Eugene.

3 GEC - Modular.

- Graphical.

- Syntax and semantic independence of choice of parts.
- Including a database of parts and reactions.

- The designer only should know the basic part types and determine the

constraints. The compiler determines the actual parts from a DB.

- Being dependent on the availability

of detailed chemical reaction models

with precisely quantified rate
constants.

4 GENOCAD - Proving a web-based user interface.

- Using the attribute grammars to formalize the biological circuit
definition.

 - Being unfamiliar to non-computer

 Science users.

5 PROTO - Choice of molecules and sequences can be made by GEC, Eugene or
MatchMaker.

- Integration capability with some other languages.

 - Relatively hard to learn.

7.0 CONCLUSION AND FUTURE DIRECTION

Computational approaches and tools are vital for the success of

the emerging field of synthetic biology. Several tools have been

proposed and are already in use in the community. In-depth

understanding of such kind of tools provides opportunities for

the synthetic biologists to fully take advantage of them, and for

the researchers and developers to find the gaps which need to be

filled.

 The major difficulty in proposing and designing

computational tools for biology is that there are not recognized

methods in biology itself as well as full understanding of the

biological behavior. Hence collaborative efforts in the

community could be effective to tackle such difficulties.

Acknowledgement

This work was supported by the Ministry of Higher Education

of Malaysia [Grant No. KPT.B.600-18/3 (115) to N.Habibi];

and Universiti Teknologi Malaysia.

References

[1] M. Galdzicki, C. Rodriguez, D. Chandran, H.M. Sauro, J. H.Gennari.

2011. PLOS ONE. 6(2).

[2] J. T. MacDonald, C. Barens, R. I. Kitney, P. S. Freemont, G. B. Stan.

2011. Integr. Biology (Camb). 3(2): 97–108.

[3] P. E. M. Purnick and R. Weiss. 2011. Nature Reviews Molecular Cell

Biology. 10: 410–422.

[4] D. Chandran, F. T. Bergmann, H. M. Sauro and D. Densmore. 2011.

Design and Analysis of Bio-molecular Circuits. Springer-Verlag. 203–

224.
[5] J. Beal, A. Phillips, D. Densmore, and Y. Cai. 2011. Design and

Analysis of Bio-molecular Circuits. Springer-Verlag.

[6] M. Galdzicki, D. Chandran, J. H. Gennari and H. M. Sauro. 2011.

Design and Analysis of Bio-molecular Circuits. Springer-Verlag. 281–

293.

[7] L. Kahl and D. Endy. 2013. J Bio Eng. 10. 7(1): 13.

[8] G. H. McArthur and S. S. Fong. 2010. Journal of BioMed and
BioTech.

[9] J. A. Goler. 2004. CSAIL-MIT.

[10] D. Densmore, A. V. Devender, M. Johnson and N. Sritanyaratana.

2009. ACM.

[11] B. Xia, S. Bhatia, B. Bubenheim, M. Dadgar, D. Densmore, and J. C.
Anderson. 2011. Methods in Enzymology. 498.

[12] J. Chen, D. Densmore, T. S. Ham, J. D. Keasling and N. J. Hillson.

2012. Journal of Biological Engineering. 28: 6(1):1

[13] C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, N. P.

Nguyen. 2009. Bioinformatics. 25(21): 2848–9.

[14] N. J. Hillson, R.l D. Rosengarten and J. D. Keasling. 2012. ABC

Synthetic Biology. 1(1): 14–21.

[15] M. A. Marchisio and J. Stelling. 2008. Bioinformatics. 24(17). 1903–
1910.

[16] S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel and E. D. Gilles.

2009. Bioinformatics. 25(5): 687–689.

[17] A. D. Hill, J. R. Tomshine, E. M. B. Weeding, V. Sotiropoulos and Y.

N. Kaznessis. 2008. Bioinformatics.

[18] E. Weeding, J. Houle, Y. N. Kaznessis, 2010. Briefing in

Bioinformatics. 11(4): 394–402.

[19] Y. N. Kaznessis. 2011. Methods in Enzymology. 498.
[20] D. Chandran, F. T. Bergmann and H. M. Sauro. 2009. Biol Eng. 3: 19.

[21] D. Chandran, H. M. Sauro and D. Densmore. 2010. Bioeng Bugs. 4:

274–281.

[22] D. Chandran and H. M. Sauro, 2012. ACS Synthetic Biology. 1:

353−364

[23] S. Bhatia and D. Densmore. 2013. ACS Synthetic Biology.

[24] H. M. Sauro. 2000. Proceedings of the 9th International Meeting on
BioThermoKinetics. Stellenbosch University Press.

[25] L. P. Smith, F. T. Bergmann, D. Chandran and H. M. Sauro. 2009.

Bioinformatics.

[26] D. Densmore, J. T. Kittleson, L. Bilitchenko, A. Liu and J. C.

Anderson. 2010. IEEE.

[27] L. Bilitchenko, A. Liu., S. Cheung, E. Weeding, B. Xia, M. Leguia, J.

C. Anderson and D. Densmore. 2011. PLOS ONE. 6(4): e18882.

[28] L. Bilitchenko, A. Liu and D. Densmore. 2011. Methods in
Enzymology. 498.

[29] M. Pedersen and A. Phillips. 2009. Journal of the Royal Society.

[30] M. Pedersen and G. D. Plotkin. 2010. Trans. on Comput. Syst. Biol.

XII, LNBI 5945. Springer-Verlag. 77–145.

[31] Y. Cai, B. Hartnett, C. Gustafsson and J. Peccoud. 2007.

Bioinformatics. 23(20): 2760–2767.

[32] J. A. Goler, B. W. Bramlett and J. Peccoud. 2008. Trends in

Biotechnology. 26(10): 538–44.
[33] M. J. Czar. Y. Cai and J. Peccoud. 2009. Nucleic Acids Research. 37.

[34] Y. Cai, M. W. Lux, L. Adam and J. Peccoud. 2009. PLOS

Computational Biology. 5(10): e1000529.

[35] Y. Cai, M. L. Wilson and J. Peccoud. 2010. Nucleic Acids Research.

38(8): 2637–2644.

96 Narjeskhatoon Habibi et al. / Jurnal Teknologi (Sciences & Engineering) 63:1 (2013), 87–96

[36] Y. Cai. Ph.D. Dissertation. Virginia Polytechnic Institute and State

University. 2010.

[37] M. L. Wilson, R. Hertzberg, L. Adam and J. Peccoud. 2011. Methods

in Enzymology. 498.

[38] J. Bealand J.Bachrach. 2009. IEEE.
[39] J. Beal, T. Lu and R. Weiss. 2011. PLOS ONE. 6(8): e22490.

[40] J. Beal, R.Weiss, F. Yaman, N. Davidsohn and A. Adler. 2012. MIT-

CASIL.

[41] http://www.sbgn.org.

[42] J. Quinn, J. Beal, S. Bhatia, P. Cai, J. Chen, K. Clancy, N. Hillson, M.

Galdzicki, A. Maheshwari, U. P, M. Pocock, C. Rodriguez, GB. Stan,

and D. Endy. 2013. DOI: 1721.1/78249.

