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Abstract 
 

The main problem from autonomous robot for navigation is how the robot able to 

recognize the surrounding environment and know this position. These problems 

make this research weakness and become a challenge for further research. 

Therefore, this research focuses on designing a mapping and positioning system 

using Simultaneous Localization and Mapping (SLAM) method which is 

implemented on an omnidirectional robot using a LiDAR sensor. The proposes of this 

research  are mapping system using the google cartographer algorithm combined 

with the eulerdometry method, eulerdometry is a combination of odometry and 

euler orientation from IMU sensor, while the positioning system uses the Adaptive 

Monte Carlo Localization (AMCL) method combined with the eulerdometry 

method. Testing is carried out by testing the system five times from each system, 

besides that testing is also carried out at each stage, testing on each sensor used 

such as the IMU and LiDAR sensors, and testing on system integration, including the 

eulerdometry method, mapping system and positioning system. The results on the 

mapping system showed optimal results, even though there was still noise in the 

results of the maps created, while the positioning system test got an average RMSE 

value from each map created of 278.55 mm on the x-axis, 207.37 mm on the y-axis, 

and 4.28o on the orientation robot. 

 

Keywords: Autonomous Robot, Mapping and Positioning System, SLAM, Google 

cartographer, AMCL 
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1.0 INTRODUCTION 
 

The main problem in an autonomous robot is how the 

robot manage to move automatically toward its 

specified destination without damaging the 

environment in which the robot passes. In the case of 

the human In the maze, human need a map of the 

maze to move out of the room, and it was necessary 

for the human to know this position on the map so 

that the human could determine which way to move 

out of the room. Autonomous robot also like that, the 

biggest challenge for robot to find a map of their 

environment operate and also get to know their own 

position on the map.  

Autonomous robot has a system that able to 

detect and compute quickly, move automatically 

and can also communicate between robot or with 

operator. The ability to compute and combine 
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information is a challenge for a robot, where the 

robot must detect the surrounding environment and 

count the steps of the robot simultaneously to be 

able to form a map which is commonly called the 

Simultaneous Localization and Mapping (SLAM) 

method [1]. Meanwhile, the fundamental problem 

for autonomous robot to move or navigate is the 

knowledge of the robot's position in its environment. 

Many researchers have developed various systems, 

sensors, and techniques to determine the position of 

a robot which can be categorized as follows, namely 

odometry, inertial navigation, magnetic compass, 

active beacon, Global Positioning System (GPS), 

landmark navigation, and map matching [2]. With 

these two basic problems, autonomous robot need a 

method or system that can create a map of the 

robot environment and can also determine its own 

position on the map. Simultaneous Localization and 

Mapping (SLAM) is a technique or method applied to 

mobile robots to explore conditions in various 

environments [14]. SLAM is used to build and 

generate maps of the environment being explored 

(mapping). The resulting map is then used to 

determine the location of the robot and its 

surrounding landmarks and is also used to plan 

appropriate pathways for the robot (localization). 

The mapping and localization processes in SLAM are 

carried out simultaneously where the mobile robot 

relatively creates maps. Where the map that has 

been made is used to calculate and estimate the 

position of the landmark and the trajectory of the 

mobile robot [14]. 

The SLAM method has many variants depending 

on the use of the spatial dimensions of the sensors 

used, in two-dimensional (2D) space there are 

several variants such as Gmapping, HectorSLAM, 

TinySLAM, Karto, Google Cartographer, and others. 

Meanwhile, in three-dimensional (3D) space, there 

are several variants such as ORB-SLAM, LSD-SLAM, 

RTAB-MAP, and others [15-19]. The sensor used are 

also of various kinds, the LiDAR sensor is one of them. 

Light Detecting And Ranging (LiDAR) is a remote 

sensing technology that can obtain high density and 

high accuracy geographic reference data about 

the shape of the environment. LiDAR operates by 

scanning the field of view with one or more laser 

beams. The laser beam is generated to scan the 

measured area, when a wall or object is hit by a laser 

beam, the laser light will bounce back to the sensor 

and the sensor device will calculate the detected 

distance by measuring the time difference between 

sending the signal and receiving the signal. Because 

of these characteristics LiDAR is considerably suitable 

in autonomous vehicle applications and other similar 

applications, which of course are also suitable for use 

as input on the SLAM method [3-5]. Currently the 

google cartographer method is well-known among 

researchers in the scope of autonomous robot. The 

google cartographer method is based on the graph 

optimization approach, not the particle filter 

approach [20-22]. In the benchmark results that have 

been carried out in previous studies, mapping in 2D 

space shows that the use of the google cartographer 

method has the highest score and has the smallest 

error than the results of other methods [15-18].  

Whereas in the problem of positioning the robot 

as mentioned above, there are several categories 

that can be used to solve it, but in a lot of literature 

there is still no solution that can really solve this 

problem. Some of the above categories are grouped 

into two, namely relative position measurement or 

dead-reckoning and absolute position measurement 

or Referenced-based System. So that some robot 

developers often combine two or more categories of 

combining the two groups [2]. In studies the most 

commonly used categories are odometry [9-13], 

inertial measurement [7-8], magnetic compass [7-8], 

and map matching [23-31].  

This odometry method is based on sensor readings 

computed with the robot kinematics formula of the 

type of robot used. Omnidirectional robot is a type of 

mobile robot that can move in any direction without 

changing the orientation of the robot, with the 

wheels used are omni wheels. Therefore, odometry 

calculations refer to the omnidirectional robot 

kinematics depending on the number of wheels and 

the type of omni wheel used in the robot [9-13]. 

Meanwhile, the method of Inertial Measurement and 

magnetic compass can be said to have the same 

characteristics because there are so many 

integrated circuits (IC) of the Inertial Measurement 

Unit (IMU) sensor, there are two components of the 

method, namely Accelerometer, Gyroscope, and 

Magnetometer [6-8]. In the map matching category 

there are many methods, one of which is the 

Adaptive Monte Carlo Localization (AMCL) method 

that is often used by autonomous robot developers. 

contrary to the google cartographer method, the 

AMCL method is based on a particle filter algorithm, 

which AMCL is one of the implementation variants of 

the Monte Carlo Localization (MCL) method. AMCL 

can dynamically adjust the number of particles 

based on Kullback-Leiber Divergence Sampling (KLD-

Sampling) [23-31]. According to the authors, AMCL is 

almost close to the SLAM method, because when the 

AMCL algorithm is localized, AMCL also forms its own 

submap so that it manage to understand the 

location of the submap. The difference is that AMCL 

does not create its own global map from its submap 

and AMCL uses map information from the mapping 

system results to strengthen location information from 

its submap. 

The researches above have not discussed 

combining the mapping system and positioning 

system on a global map and the implementation of 

combining the two systems on a robot. And also in 

previous research that still focuses on localization or 

determining the location of the robot in limited space 

or a local map or sub map of the environment 

detected by sensors, so the robot still does not know 

the coordinates of its position on the global map. 

The purposes of this research are the robot can 

create maps and can determine the position 

independently with different environmental 
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conditions, so that the robot can navigate 

autonomously based on data from the mapping 

system and positioning system. 

The originality of this research is, In the odometry 

method, the calculation of robot odometry data is 

combined with the euler orientation Inertial 

Measurement Unit (IMU) BNO055 data, where we 

can call this method the eulerdometry method. The 

Simultaneous Localization And Mapping (SLAM) 

method used is Hybrid, where the algorithm is used 

for the mapping system and the positioning system is 

different. The mapping system uses the google 

cartographer algorithm combined with 

eulerdometry, and the positioning system uses the 

Adaptive Monte Carlo Localization (AMCL) algorithm 

combined with eulerdometry. And all of these 

methods are implemented in an omnidirectional 

robot. 

This research is a part of paramedic assistant 

robot project for medical personnel for covid 

patients. The contribution of this research can be 

applied to paramedic assistant robot to help 

medical personnel work in caring for patients, with 

the advantage that robots can navigate 

autonomously without human control, so that they 

can ease the workload of medical personnel.  

 

 

2.0 METHODOLOGY 
 

2.1 Hardware Design 

 

2.1.1  Mechanical Design 

 

The robot used is a holonomic robot, the robot can 

move in any direction without changing the direction 

of the robot's orientation. The mechanical design of 

the robot used has a configuration of four DC motor 

drives by forming an angle of 45 degrees with an X-

axis and a Y-axis with dimensions of the robot chassis 

50cmx50cmx25cm which can be seen in Figure 1(a), 

where the wheels used are omni wheels. For the 3D 

Robot Design, it can be seen in Figure 1(b). 
 

 
 

(a)     (b) 
 

Figure 1 (a) Motor Configuration, (b) 3D Robot Design 

 

 

2.1.2 Electronic Design 

 

The electronic design used is illustrated in the block 

diagram as follows. 

 

 
Figure 2 Electronic Block Diagram 

 

 

The robot uses several components, have two 

microcontrollers and one minimum PC or mini PC. The 

microcontroller used is the Arduino Nano with an IC 

based on ATMega and STM32F4-Discovery with an IC 

based on ARM Cortex M4, while the mini PC used is 

the Intel NUC with the 10th generation Intel Core I7 

processor. The sensors used are the rotary encoder 

built in the DC motor and the IMU BNO055 sensor to 

determine the direction towards the robot, and the 

two-dimensional (2D) LiDAR sensor with a 

measurement range of + -30m with a frequency of 

20Hz. As for the drive control, four H-Bridge-based DC 

Motor Drivers are used to drive four DC motors. 

STM32F4-Discovery as the master or control center 

on the robot. The MCU controls the input from the 

sensor and the mini PC instructions with the output of 

the robot actuator. Rotary Encoder is accessed by 

STM32F4-Discovery via an interrupt pin which will be 

combined with IMU data into an eulerdometry 

system. Meanwhile, the IMU BNO055 sensor is 

accessed by Arduino Nano via I2C communication 

and the data is forwarded to the STM32F4-Discovery 

and mini PC via serial communication. For 

communication between the STM32F4-Discovery and 

the mini PC via serial communication so that the mini 

PC can find out the robot data information which will 

be combined with the LiDAR sensor which is directly 

connected to the mini PC via ethernet 

communication which is processed to form a 

mapping system and positioning system. 
 

2.2 System Method 
 

2.2.1  Eulerdometry 
 

The eulerdometry method is a combination of the 

odometry method with euler orientation data from 

the IMU sensor. The odometry method is a method for 

estimating changes in the coordinates of the relative 

position over time from the actuator movement. In a 

wheeled robot, the sensor used for the odometric 

method input is a rotary encoder to detect the 

number of wheel rotations. 
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This odometry method is based on robot kinematic, 

robot kinematic functions to define the direction and 

speed of the robot. The robots used are included in 

the holonomic robot so that the robot can move in 

any direction without changing the robot's 

orientation. The following is an illustration and 

equation of an omnidirectional robot with a four-

wheel configuration. 

 

 
(a) 

 
(b) 

 

Figure 3 (a) Robot Kinematic configuration, (b) Robot 

Orientation 
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where, 

),,( yx   = Local position of the robot 

))(),(),(( ttVtV yx   = Linier velocities on the static axis 

))(),(),(( ttVntV   = Linier velocities on the robot axis 

 

In robot kinematic, the terms forward kinematic 

and inverse kinematic are known, forward kinematic 

is a method for determining the orientation or 

distance of a robot based on wheel speed, while 

inverse kinematic is the opposite of forward 

kinematic, which is a method for determining the 

value of the velocity of each wheel from the 

reference distance and orientation to be addressed 

[9-13]. Equation (4) of robot kinematic equations are 

as follows. 
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where, 

),,,( 3210 VVVV  = Wheel velocities 

d   = Distance between the center point of 

the robot and the wheel 

 
Referring to Equation (6), the position of the robot 

obtained still refer to the local position of the robot, 

so it need to be converted from the local position of 

the robot to the global position. At the local position 

the origin point (0,0) is located at the midpoint of the 

robot when the calculation is started, while the origin 

point (0,0) of the global position is located at the 

location from where the robot operates when the 

robot starts working. Figure 4 is used to illustartes 

about the equation. 
 

 
Figure 4 Robot Position Reference 
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where, 

),,( gg yx  = Global position of the robot 

),,( ll yx  = Local position of the robot 

 

To get the real robot distance value, value of the 

rotary encoder pulse needs to be converted using 

the following equation. 

 
Wheel circumference = wheel diameter x π  (7) 
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Distance = 

revolutionencoder

encoderpulse

_

_  x wheel circumference (8) 

 

In the eulerdometry method, the robot 

orientation data is obtained from reading the euler 

orientation of the IMU. As a result, this odometry 

method only considers the x- and y-axis positions, as 

well as the orientation data used to convert the 

robot's local position to a global position using the 

IMU euler orientation data. The algorithm flow of the 

eulerdometry method is illustrated in Figure 5. 

 

 
Figure 5 Eulerdometry Flowchart 

 

 

2.2.2 Mapping System 

 

The method used for the mapping system is the 

google cartographer method combined with the 

eulerdometry method. The Google cartographer is a 

method based on the graph optimization approach 

by matching the scans of the surrounding 

environment obtained by the sensor to the submap 

for its best position estimate and matching scans that 

are only related to that submap at that time. After 

the submap has been successfully formed, partial 

loop closure will be carried out using the previously 

calculated branch and grid positions. And after all 

the submaps have been completed, the global map 

will be compiled. 

The cartographer system consists of two parts, 

Local optimization and global optimization, local 

optimization runs the matching part of the LiDAR 

scanning frame and its submap, after which the 

submap is optimized. Meanwhile, global optimization 

performs global map optimization according to the 

position relationship between frame scans after 

finding the closed-loop frame scan. 

Local optimization is the process of matching the 

scan of the LiDAR frame with the submap, and 

iteratively aligning the scan of the LiDAR frame and 

the reference of the submap frame to create the 

submap. Multiple iterations of the frame scan create 

a probability grid submap of resolution r, with each 

grid point the system determines the corresponding 

pixel. Each time a new scan is entered into the 

probability grid, a set of grid points that are hit or miss 

will be counted. Before submitting the map scan to 

the submap, the frame scan position is optimized by 

the ceres application in the current submap, and the 

scan point mapping is superimposed by the 

nonlinear least squares optimization, and the total 

value of the scan reaches the hit value. After 

changing positions and pairing with the probability 

value in the submap, each place that matches the 

display should be a big probability to be hit. Since 

the least squares problem is a local optimization 

problem, a good initial value will have a large 

influence on the solution. Therefore, the use of IMU or 

odometry can be used to provide a variable rotation 

or position that matches the scan for initial 

initialization values. 

Global optimization is achieved through closed 

loop detection. Since each LiDAR frame scan only 

matches the submap containing the most recent 

frame scans, errors accumulate slowly. To eliminate 

accumulated errors, the Sparse Pose Adjustment 

(SPA) method is used to optimize all positions of the 

scan and submap. The scan position of the LiDAR 

frame that is inserted into the submap is stored in 

memory. When the submap is created, the 

corresponding frame and submap scans are 

computed for closed-loop detection. All matching 

scans are performed on the back (back-end), and 

once a good closed-loop match is found, it is added 

to the global optimization. The flow of the algorithm 

from the mapping system method is illustrated in 

Figure 6. 

 

 
 

Figure 6 Google Cartographer Flowchart [14-22] 

 

 

2.2.3  Positioning System 

 

The purpose of the positioning system is to determine 

the current position of the robot on the map, and 

positioning accuracy directly affects the accuracy of 

subsequent navigation. The methods for positioning 
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commonly used are divided into relative positioning 

and absolute positioning. Relative positioning 

determines the current position by measuring the 

distance and direction of the robot relative to the 

initial position. However, time drift may occur due to 

relative positioning based on the accumulation of 

measured values to achieve accurate positioning, 

which is not suitable for long distance and time 

positioning. Absolute positioning determines position 

based on a single reference. Generally, this method 

is intended for navigation purposes, because the 

resulting value has high accuracy even though it still 

has a few errors [2]. Therefore, the positioning system 

used is to try to combine the relative and absolute 

methods, namely using the Adaptive Monte Carlo 

Localization (AMCL) method with the eulerdometry 

method. 

Adaptive Monte Carlo Localization (AMCL) is an 

implementation variant of the Monte Carlo 

Localization (MCL) method where AMCL can 

dynamically adjust the number of particles based on 

Kullback-Leiber Divergence Sampling (KLD-

Sampling). MCL or it can be called a particle filter 

uses the distribution of the sample particles to 

represent the actual position, and continuously 

updates the particles and their weights according to 

the motion and the robot's observation model to 

realize the filter particle estimation. The flow of the 

MCL is illustrated in Figure 7. 

 
Figure 7 Monte Carlo Localization Flowchart 

 

 

However, the MCL method still has shortcomings, 

namely the conventional MCL method will 

experience serious particle degradation, particle 

shortages and other phenomena, so that it cannot 

solve the problem for robot navigation. Therefore, 

AMCL is conceptualized by combining conventional 

MCL with the KLD-Sampling method to adjust the 

number of particles over time based on the 

distribution of the weight values of the particles to 

form an adaptive system. 

In the implementation of the odometry method, 

there are weaknesses in the odometry method when 

the floor or ground surface is uneven or the wheel 

slips, the data error will get bigger over time, so this 

causes big problems in the position of the robot. So to 

solve the problem of positioning the robot, we tried 

to combine the AMCL method with eulerdometry. By 

providing the value of the change in position and 

also the position data of the robot based on the 

eulerdometry method as a comparison of the 

estimated value of the robot's position on the map so 

that it can provide additional reference values for 

the AMCL method in calculating the estimated 

position of the robot. The flow of the positioning 

system algorithm is illustrated in Figure 8. 

 

 
Figure 8 Flowchart From Combination of AMCL and 

Eulerdometry 

 

 

The limitation in this research is that the testing 

place used is an indoor room by presenting 

environmental conditions such as in a hospital, the 

LiDAR angle range used is 270 degrees, and the 

robot used is still a prototype with a robot shape that 

is made similar to a real robot. which is still in the 

manufacturing stage so that the system created can 

be directly applied to real robots. 

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 IMU BNO055 Test Results 

 

The BNO055 IMU test is carried out to determine the 

direction of the robot's orientation, the data will be 

utilized by the eulerdometry method. For the test as 

shown in Figure 9(a). 

In this test, the reference data used for testing is to 

use an orientation sensor on a smartphone, at first the 

direction is adjusted to the direction of the robot's 

orientation. The data tested on the robot is yaw data 

from the euler orientation sensor of the IMU BNO055, 

namely the orientation data which refers to the z-axis 

which is illustrated in Figure 9(b). 
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(a)   (b) 

Figure 9 (a) IMU BNO055 Test, (b) Orientation Reference 
 

 

Because the IMU BNO055 sensor is almost in the 

middle of the robot in Figure 9(a) the data 

generated by the IMU sensor is expected to have a 

high level of accuracy. While the smartphone used 

to compare the test data is placed near the sensor, it 

is expected that the orientation data from the 

smartphone has high precision and low deviation, 

resulting in more optimal test data. 

The test is carried out by rotating the robot at a 

certain angle, then observing and recording the 

output value from the sensor. The results of yaw data 

testing from the euler orientation IMU BNO055 are 

presented in Table 1. From the data obtained during 

the test, it is obtained the Root Mean Square Error 

(RMSE) value or a frequently used measure of the 

differences between values (sample or population 

values) predicted by a model or an estimator and 

the values observed The RMSE equation is shown in 

equation (9). 
 

N

Error
RMSE

2
)(

=     (9) 

Where, 

N = number of sample data 

 
Table 1 Euler Orientation Yaw IMU BNO055 Results 

 

Orientation 

(Degree) 

Euler Orientation IMU 

BNO055 (Degree) 

Error 

(Degree) 

0 359,94 0,06 

19 19,12 0,12 

36 36,44 0,44 

54 54,19 0,19 

72 71,75 0,25 

90 89,25 0,75 

108 107,3 0,69 

126 124,81 1,19 

144 143,12 0,88 

162 160,81 1,19 

180 178,81 1,19 

198 197,06 0,94 

216 214,12 1,88 

234 232,81 1,19 

252 250,94 1,06 

270 268.62 1,38 

288 287,00 1,00 

306 304,25 1,75 

324 322,06 1,94 

342 339,69 2,31 

RMSE (Degree) 1,19 

The RMSE value in the test is 1.19o. When the robot 

rotates with a degree below 90o, it still has an RMSE 

below 1.19o, the RMSE is higher if the robot rotates 

above 90o. This is because the electromagnetic field 

affects the magnetometer reading on the IMU sensor 

and the speed when the robot rotates affects the 

accelerometer and gyroscope readings, so the Euler 

orientation readings will affect the RMSE. 

The solution offered to reduce the RMSE value is to 

keep the sensor away from the electromagnetic 

source by a certain distance, this requires further 

research. Another solution is to reduce the speed 

when the robot rotates, with the consequence that 

the speed of the robot will be reduced. From these 

data, it can be concluded that the data obtained is 

optimal and in accordance with the specifications of 

the BNO055 IMU sensor [6]. So that the sensor can be 

used in the next process. 
 

3.2  LiDAR Test Results 
 

LiDAR testing is carried out to determine the data 

from the distance measurement results from the 

center point of the LiDAR sensor. For the test as 

shown in Figure 10(a). 

In this test, an obstacle is placed with a certain 

distance and angle according to the LiDAR reading 

reference. For the LiDAR angle reading shown in 

Figure 10(b). 
 

 
(a)    (b) 

Figure 10 (a) LiDAR Test, (b) LiDAR Reference 
 

 

Due to the LiDAR angle robot used is 270o, 

therefore, the angles used for the test are angles 0o, 

45o, 90o, 270o, and 315o. The reason for using a 270o 

LiDAR angle on this robot is that it adjusts the design 

of a real robot that is still in the manufacturing 

process, and that angle can already cover the real 

robot environment. The LiDAR distance reading is in 

millimeters (mm) and the angle reading is in degrees 

in the LiDAR test. 
The results of testing the LiDAR distance data are 

presented in the Table 2. From the data obtained 
during the test, the RMSE value on the test was 23.14 
mm. From these data, it is concluded that the data 
obtained is optimal and in accordance with the 
specifications of the LiDAR sensor because the 
resulting RMSE value is very small with 23.14 mm or 
approximately 2 centimeters (cm), with this value it 
can be said that the LiDAR sensor used has a high 
accuracy. So that the sensor can be used in the next 
process 
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Table 2 LiDAR Results 

 

Real LiDAR Error 

Azimuth 

(Degree) 
DIstance (mm) 

Azimuth 

(Degree) 
Distance (mm) Distance (mm) 

0 500 1000 1500 0.00 548 1016 1516 48 16 16 

45 707 1414 2121 45.00 680 1396 2144 27 18 23 

90 500 1000 1500 90.00 504 980 1484 4 20 16 

270 500 1000 1500 270.00 524 988 1476 24 12 24 

315 707 1414 2121 315.00 672 1396 2132 35 18 11 

RMSE (mm) 23,14 

 

.

3.3 Eulerdometry Results 

 

Eulerdometry testing is carried out by changing the 

position of the robot from the origin (0,0) to a certain 

point, and then to other points. For reference to the 

origin point and the definition of the initial x and y 

axes can be seen in Figure 11. 

 

 
 

Figure 11 Eulerdometry Test 

 

 

In this test, the direction of the robot's orientation is 

set at a value of 0o, so that the value tested is only 

the position value on the x-axis and the y-axis with 

the units used are millimeters (mm). The results of the 

eulerdometry data test are presented in Table 3. 

From the data obtained during the test, the RMSE 

value in the test on the x-axis is 48.37 mm and the y-

axis is 66.68 mm. These data indicate that the 

eulerdometry method produces optimal data even 

though it still has a large enough RMSE value, 

because basically the odometry method has 

drawbacks with poor accuracy because it 

calculates the estimated displacement of the 

distance with the number of revolutions of the robot 

wheel, so many factors affect the resulting value 

such as wheel slipping, wheel rotation frequency 

reading and others. With an RMSE value of 48.37 mm 

on the x-axis and 66.68 mm on the y-axis, the data 

can still be categorized as optimal. And also in Table 

3, it can be concluded that the farther robot moves, 

the resulting error is also greater. 

 
Table 3 Eulerdometry Results 

 

Real (mm) 
Eulerdometry 

Robot (mm) 
Error (mm) 

X Y X Y X Y 

500 0 490 -10 10 10 

1000 0 970 0 30 0 

1500 0 1450 0 50 0 

Real (mm) 
Eulerdometry 

Robot (mm) 
Error (mm) 

2000 0 1990 0 10 0 

3000 0 3010 -10 10 10 

0 500 0 470 10 30 

0 1000 0 940 10 60 

0 1500 0 1430 0 70 

0 2000 0 1940 0 60 

0 3000 10 2880 10 120 

1000 1000 940 1010 60 10 

1000 2000 910 2070 90 70 

2000 2000 1920 1990 80 10 

3000 2000 2930 1860 70 140 

3000 3000 2910 2880 90 120 

RMSE (mm) 48,37 66,68 

 

 

3.4 Mapping System Results 

 

Testing of the mapping system is carried out to test 

the results of the google cartographer method 

combined with the eulerdometry method. The test 

was carried out on the third floor of the Technology 

and Entrepreneurship Laboratory Building, Universitas 

Negeri Surabaya. Environmental conditions and the 

floor plan of the test site can be seen in Figure 12 and 

Figure 13 respectively. 

 

 

 
 

Figure 12 Mapping System Test Locations From All Sides 
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Figure 13 Ground Plan 

 

 

The test is carried out by giving keyboard 

instructions to move the motor to run around the 

room. The test was carried out five times, with the 

map results shown in Figure 14. There is a slight 

mismatch with the plan where when the robot 

crosses the staircase area and glass walls, so that 

when entering the hallway there is noise on the map. 

Since there are two stairs, the stairs up and down, so 

that the barrier from the stairs down is not detected 

which instead detects the outer wall of the stairs, 

while the glass wall cannot be detected because 

the glass can refract the laser from LiDAR so that the 

laser light can penetrate the glass and detect the 

wall or objects outside the glass wall. Noise is also 

found at the very end of the hallway because the 

reading of the comparison of the data from LiDAR 

with the orientation information from eulerdometry 

has different frequencies, so that when the robot 

moves rapidly the data obtained there is an error 

matching the scan when forming a submap. The 

following are the results of the map made during 

testing. 
 

  
a   b 

  
c   d 

 
(e) 

 

Figure 14 Mapping System Results, (a) First Map Created, (b) 

Second Map Created, (c) Third Map Created, (d) Fourth 

Map Created, (e) Fifth Map Created 

 

3.5 Positioning System Results 

 

Positioning system testing is carried out to test the 

results of the AMCL method combined with 

eulerdometry. This positioning test uses a map that 

has been generated in the previous mapping system 

test, with the intended position determined and can 

be seen in Figure 15. 
 

  
(a)    (b) 

  
(c)    (d) 

  
(e)    (f) 

 

Figure 15 Positioning System Test Locations, (a) Start Position, 

(b) First Position, (c) Second Position, (d) Third Position, (e) 

Fourth Position, (f) Fifth Position 

 

 

We designed a field robot like Figure 15, because 

this robot is used in certain hospitals. The fields that 

have been built have been adjusted to the actual 

field conditions. With adjustments according to 

actual conditions, the robot can be directly used in 

real conditions, with this field design the movement 

of the robot will be useful according to needs. 

For robot control, it is same as testing the mapping 

system using keyboard instructions to move to a 

predetermined position. Because the map used as a 

reference has various characteristics, each test yields 

different results, so the position value obtained varies 

as well. The results of this positioning system test can 

be seen in Table 4. From the data obtained during 

the test, the average value of the RMSE for each test 

map obtained is 278.55 mm on the x-axis, 207.37 mm 

on the y-axis, and 4.28o in the direction of the robot's 

orientation. These data indicate that the positioning 

system produces optimal data even though it still has 

a large enough RMSE value, because in this 

positioning system combines two methods with map 

characteristics data greatly affect the results of the 
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system. Each map that is used as a reference map 

has different results, so the resulting position data 

varies depending on the characteristics and shape 

of the map grid generated in the previous mapping 

system. With the average RMSE value on each map, 

it can be said that the data may still be tolerated 

because it does not surpass the robot's dimensions, 

thus the deviation is not too noticeable in real-world 

situations and this data can be a reference for the 

robot in navigation. 

 

Table 4 Positioning System Results 

 

Real AMCL + Eulerdometry Error 

First Map 

X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) 

0 0 0 54 26 0,91 54 26 0,91 

5400 100 180 5810 284 175,52 410 184 4,48 

5400 4200 90 5539 3870 85,50 139 330 4,5 

600 12000 90 1162 12132 94,21 562 132 4,21 

-900 18000 -90 -874 18026 -92,99 26 26 2,99 

600 21000 90 1046 21115 88,37 446 115 1,63 

RMSE 342,97 170,66 3,42 

Second Map 

X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) 

0 0 0 -14 -68 0,91 14 68 0,91 

5400 100 180 5632 -338 177,47 232 238 2,53 

5400 4200 90 5360 4148 77,89 40 52 12,11 

600 12000 90 752 12262 86,26 152 262 3,74 

-900 18000 -90 -250 18316 -86,91 650 316 3,09 

600 21000 90 693 21369 71,10 93 369 18,9 

RMSE 291,51 247,86 9,43 

Third Map 

X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) 

0 0 0 -35 -105 -1,49 35 105 1,49 

5400 100 180 5701 -385 -176,87 301 285 3,13 

5400 4200 90 5519 3950 86,43 119 250 3,57 

600 12000 90 941 12001 91,21 341 1 1,21 

-900 18000 -90 -1061 18134 -96,08 161 134 6,08 

600 21000 90 596 21182 89,43 4 182 0,57 

RMSE 203,39 185,21 3,25 

Fourth Map 

X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) 

0 0 0 -70 -95 0,00 70 95 0 

5400 100 180 5939 -441 174,60 539 341 5,4 

5400 4200 90 5767 3926 87,56 367 274 2,44 

600 12000 90 847 12230 85,78 247 230 4,22 

-900 18000 -90 -493 18070 -89,59 407 70 0,41 

600 21000 90 892 21172 87,81 292 172 2,19 

RMSE 351,67 219 3,10 

Fifth Map 

X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) X (mm) Y (mm)  (Deg) 

0 0 0 -3 -52 -1,14 3 52 1,14 

5400 100 180 5564 -362 177,82 164 262 2,18 

5400 4200 90 5575 3820 86,51 175 380 3,49 

600 12000 90 882 12049 90,32 282 49 0,32 

-900 18000 -90 -1178 18152 -92,59 278 152 2,59 

600 21000 90 783 21184 92,02 183 184 2,02 

RMSE 203,23 214,12 2,20 

Average RMSE 278,55 207,37 4,28 

 

 

4.0 CONCLUSION 
 

Based on the results and test analysis, the following 

conclusions are obtained. This research presents a 

combination of several systems to get maximum 

results in creating a robot environment map and 

determining the position of the robot in its 

environment as a reference for the robot to 

navigate. From the results of the tests that have been 

carried out, the RMSE value on the yaw euler 

orientation IMU BNO055 data reading is 1.19o, the 

RMSE value on the LiDAR test is 23.14 mm, the RMSE 

value on the eulerdometry test is 48.37 mm on the x-

axis and 66.68 mm on the y axis. From the test results, 

it becomes a reference for testing the mapping and 

positioning system. The map produced by the 
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mapping system still has a little noise because the 

environmental conditions tested have a glass wall 

that can refract the laser light from the LiDAR sensor 

so that it can become noise data that can affect 

global map making, and also the frequency 

difference between the LiDAR data and the 

direction data towards the robot of the eulerdometry 

method can make a difference in matching scans 

when the robot is moving rapidly rotating. Whereas in 

testing the positioning system varies greatly 

depending on the map that is used as a reference, 

because the system compares the real scan data 

with map information with the average RMSE value 

for each test map of 278.55 mm on the x-axis, 207.37 

mm on the y-axis, and 4.28o in the direction of the 

robot's orientation. From these data, we conclude 

that the designed system can be used to make maps 

of the robot's environment optimally and the resulting 

position estimation can be a reference for the robot 

in navigation, and also this system can solve the main 

problem of autonomous robots in recognizing their 

environment and knowing their position. The system 

created in this study can be directly applied to 

robots to navigate autonomously which aims to assist 

medical personnel in handling COVID-19 patients, 

and this system can also be used on autonomous 

robots operating in other fields. 
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