
83:5 (2021) 101–108|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI:
https://doi.org/10.11113/jurnalteknologi.v83.16967|

Jurnal
Teknologi

Full Paper

FPGA IMPLEMENTATION OF CNN FOR DEFECT
CLASSIFICATION ON CMP RING
Ng Wai Kin, Mohd Shahrimie Mohd Asaari*, Bakhtiar Affendi Rosdi,
Muhammad Firdaus Akbar

School of Electrical and Electronic Engineering, Universiti Sains
Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang,
Malaysia

Article history
Received

29 April 2021
Received in revised form

19 July 2021
Accepted

19 July 2021
Published online
20 August 2021

*Corresponding author
mohdshahrimie@usm.my

Abstract
Defect inspection is a crucial part of industrial manufacturing. However, it relies heavily on human effort on manual
visual inspection. Various machine vision techniques have been introduced to replace human labour and to improve
inspection quality and efficiency. The limitation of these techniques is that the algorithms need to be engineered again
with each different use case. In this work, a Convolutional Neural Network (CNN) is used to classify the defects of the
Chemical Mechanical Planarization (CMP) ring. The trained CNN model achieved an accuracy of 91% and the time
taken for each inference process is around 1800 msec. To achieve computational efficiency, the CNN model is
performed on the embedded device. The previous implementation of embedded CNN deploys OpenCL-based high-
level synthesis accelerator on a high-end Field Programmable Gate Array (FPGA) board. In this work, the model
inference is accelerated by PipeCNN FPGA implementation on Cyclone-VSE DE1-SoC, a low-end embedded FPGA
board. Several configurations of hardware parameters are tested to search for the best setup of the FPGA resources.
The hardware implementation has improved approximately seven times faster, as the inference time for each
classification has improved from 1800 msec to 250 msec. However, the model implemented using the hardware is
observed to produce lower inference accuracy as the accuracy drops from 91% to 81%. In conclusion, despite a slight
decrease in accuracy, the implementation using FPGA manages to accelerate the inference performance of the CNN
model up to 4 frames/sec, confirming the high potential of this approach to be used for high-throughput defect
classification on CMP ring.

Keywords: Convolutional Neural Network, Deep learning, Field Programmable Gate Array, Defect Classification, Automatic
visual inspection

Abstrak
Pemeriksaan kecacatan ialah perkara yang penting dalam industri pembuatan tetapi ia bergantung kepada usaha manusia
dalam pemeriksaan visual secara manual. Kebanyakan teknik penglihatan mesin telah diperkenalkan untuk menggantikan
buruh manusia dan pada masa yang sama dapat meningkatkan kualiti dan kecekapan pemeriksaan visual. Penggunaan
teknik-teknik ini terbatas dari segi algoritmanya, yang mana ia perlu sentiasa direkabentuk untuk disesuaikan dengan setiap
kes penggunaan yang berbeza. Dalam kajian ini, algoritma rangkaian saraf konvolusional (CNN) yang digunakan untuk
mengelaskan kecacatan pada cincin pelarasan mekanikal kimia (CMP) telah dibina dengan menggunakan gambar
kecacatan cincin CMP. Model yang dilatih telah mencapai ketepatan setinggi 91% dan masa yang diperlukan untuk setiap
proses inferensi adalah sekitar 1800 milisaat. Bagi mencapai kecekapan pengiraan, model CNN dilaksanakan pada peranti
terbenam. Terdahulu, pelaksanaan CNN tertanam adalah menggunakan pemecut sintesis peringkat tinggi berasaskan
OpenCL pada papan tatasusunan get boleh aturcara medan (FPGA) kelas tinggi. Dalam kajian ini, inferensi model
dipercepat oleh pelaksanaan PipeCNN FPGA pada Cyclone-VSE DE1-SoC, iaitu papan FPGA terbenam kelas rendah.
Beberapa konfigurasi parameter perkakasan diuji untuk mencari persediaan sumber FPGA yang terbaik. Pelaksanaan
perkakasan model tersebut telah menghasilkan peningkatan sekitar 700% dari segi prestasi inferensi, kerana masa inferensi
untuk setiap pengelasan telah berkurang dari 1800 ms kepada 250 ms ketika dilaksanakan dengan papan DE1-SoC FPGA.
Namun begitu, model yang dilaksanakan dengan perkakasan menghasilkan ketepatan inferensi yang lebih rendah apabila
ketepatan menurun dari 91% sehingga 81%. Kesimpulannya, walaupun ketepatan menurun, implementasi menggunakan
FPGA mampu mempercepatkan prestasi inferensi model CNN yang digunakan untuk klasifikasi kecacatan pada cincin CMP.

Kata kunci: Rangkaian Neural Konvolusional, Pembelajaran mendalam, Tatasusunan get boleh aturcara medan, Pengelasan
kecacatan, Pemeriksaan visual automatik

© 2021 Penerbit UTM Press. All rights reserved

102 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

1.0 INTRODUCTION

Chemical mechanical planarization (CMP) is a high-
precision and complex wafer manufacturing process
that removes material with chemical and
mechanical forces [1]. A standard design of a CMP
machine consists of a wafer carrier with a retaining
ring (CMP ring) and a rotating polishing pad
mounted on a rotatable platen. During the polishing,
the CMP ring is used to secure the wafer in the
rotating carrier and a downward force is applied to
press the wafer against the rotating pad. To ensure
that the wafer is always firm at the correct position
during the polishing process, the applied CMP ring
must be free of irregular defects to reduce the
occurrence of micro-scratches on wafers. Therefore,
to ensure the high quality and reliability of the CMP
ring, surface inspection is one of the vital processes
during the production lines.

Automated visual inspection systems [2, 3] are
used in industrial manufacturing to detect possible
defects on products. In these systems, defect
detection is one crucial part to ensure the good
quality of the finished product at the end of the
manufacturing process through various inspection
procedures. Prior to the introduction of machine
vision technologies into the industry, surface quality
control is done manually and the process is very time
consuming, inefficient and might cause serious
limitations to the production capacity of a
manufacturing system. Automated visual inspection
systems are designed to replace human effort in
performing such tasks. Classical machine-vision
methods have been used for many years and were
sufficient to detect manufacturing flaws [4, 5].
However, with the Industry 4.0 paradigm, the trend is
moving towards the generalization of the production
line. Production lines are required to adapt rapidly to
new products [6]. Classical machine-vision methods
are not flexible and require the features to be
handcrafted according to the respective knowledge
domain. If given different tasks, where the object or
defect to be recognized is different, development
cycles tend to be longer when machine-vision
methods must be manually adapted to different
products.

Deep learning approaches provide much
greater flexibility as the methods can be quickly
adapted to new types of products and their
respective defects. These approaches are proven to
be able to impact the field of visual inspection very
strongly as the prediction accuracy is promising and
sufficiently reliable to be implemented in industrial
manufacturing. In recent years, deep learning has
become the most common approach to solve
computer vision tasks [6]. Unlike conventional
methods, the state-of-the-art deep learning
approaches can learn from low-level data about its
features and possesses a relatively higher capacity to

represent complex structures, thus is gradually
eliminating traditional handcrafted engineering
methods. Furthermore, deep learning methods need
only a reasonable amount of raw data to achieve
accurate results and in some cases, the accuracy
even exceeds human levels. This makes the deep
learning approach practical for the industrial sector
since the classification performance is reliable.

The goal of defect classification is to determine
the presence of visual defects in digital imaging data
and categorize them accordingly. It involves
determining what type of defect is present. It is
difficult to develop a software program or algorithm
to instruct a computer on how to do it. There might
be considerable variations in terms of the size of the
defect, its orientation in the space, its attitude and its
location. The task to efficiently classify surface
defects is achievable by using Convolutional Neural
Network (CNN) algorithms. CNN algorithms have
been providing excellent performance on image
classification tasks [7, 8]. However, the general-
purpose computers used to execute these algorithms
have limited computation resources and strict power
consumption constraints [9 - 12]. The implementation
of the CNN architecture of an object classification
algorithm requires a large number of hardware
resources. Therefore, hardware alternatives are
needed to attain maximum performance in terms of
execution speed. Furthermore, the execution of CNN
models requires a large amount of matrix
computations and therefore, general-purpose
computers are not well adapted. Hardware
alternatives such as GPU, FPGA and ASIC are
experimented in various studies and have shown
improvements to the implemented model in terms of
performance.

A study [13] that investigates the power and
throughput among CPU, GPU, FPGA and ASIC shows
that although GPU is capable of producing high
throughput, it requires high power consumption. On
the other hand, FPGA can accelerate the inference
process of CNN models at much lower power
consumption. Some implementations are developed
to perform CNN models on FPGA [15, 16, 20 - 22].
Using High-Level Synthesis (HLS) tools is one of the
methods to implement a CNN model using FPGA
circuits. HLS tools can synthesis coding in hardware
description language from high-level language
algorithms. This method effectively shortens the
development cycle of designing an FPGA hardware
circuit.

LeFlow [14] is an open-source tool that utilizes
HLS tools to convert algorithms written in Tensorflow
into synthesizable hardware. Google’s Accelerated
Linear Algebra (XLA) compiler is used to generate a
Low-Level Virtual Machine-Intermediate
Representation (LLVM-IR) computational graph
description. The LLVM-IR is then processed using
LegUp, an HLS tool, to generate Verilog hardware
descriptions. Another common implementation of a

103 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

CNN model using FPGA hardware is using Open
Computing Language (OpenCL). OpenCL is a
framework designed to target program execution
across heterogeneous platforms such as CPU, GPU,
FPGA, etc. PipeCNN [15] is one of the implemented
frameworks applied in OpenCL-based FPGA
accelerator for large-scale CNN models.

A work proposed in [16] shows that the
implemented method is effectively optimized CNN-
based object detection algorithms on FPGA
platforms. The architecture used in the design was
formed with a convolutional kernel and a fully
convolutional kernel. The object detection algorithms
were evaluated across multiple hardware platforms,
including x86 CPU, ARM CPU, FPGA and GPU. In [17],
FPGAs are used to accelerate the CNN to perform
image classification of different plant leaves. The
work has developed an FPGA-based system which
able to identify plants through leaf venations. The
work adopted PipeCNN and OpenCL's methodology
as the main frameworks to develop the hardware
design.

This study aims to build a CNN defect
classification model to recognize the type of defects
on the CMP ring surface. Apart from that, this study
focuses on the hardware accelerator
implementation based on the FPGA platform. The
performance prior to and after the FPGA
implementation is evaluated to determine the
significance of the hardware accelerator.

2.0 METHODOLOGY

This section covers the overall flow of the project.
Generally, the project is divided into two major
phases. In the first phase, the focus is on building a
custom CNN model for defects classification on
images of CMP ring. The latter phase involves
implementing and testing the developed
classification model on hardware module by
exploiting FPGA as the CNN accelerator.

2.1 Data Preparation

The dataset preparation begins with collecting the
defect images on the CMP ring. There are three
common types of defects on CMP rings: scratch,
dent, and burr. Scratch and dent are the defects
found on the top-view of a CMP ring, while burr is the
defect found on the side-view images of a CMP ring.
Therefore, both the top-view image and side-view
image are required for classifying the defect patterns
on the CMP ring. The CMP ring images with no defect
from both sides and top surfaces are also considered
for reference purposes. Overall, three classes of
images are classified from the top surface (i.e.,
scratch, dent and no defect) and two classes from
the side surface (i.e., burr and no defect). For each
class, there are 20 images collected, and therefore in
total, the dataset consists of 100 images.

Figure 1 shows the image of a CMP ring and the
examples of surface images with the defect and no
defect pattern occur on top and side-view of the
CMP ring. The collected images are scarce in
numbers and relatively insufficient for training the
CNN model. Therefore, the standard method of
image augmentation is applied to reach a
considerably ample amount of training data and
improve data variations. The size of the original
dataset is improved to reach 1000 images, where the
original images are randomly augmented based on
horizontal flipping, cropping and padding. Out of
these 1000 images, 75% are assigned as training
images, 15% are assigned as validation, and 10% are
assigned as testing data.

Figure 1 Images of CMP ring (a) and some examples of
surface defects from the top (b-d) and side views (e-f)

2.2 CNN Model

CNN is a class of deep neural network models that
has made a great breakthrough in image
classification and retrieval [16 - 18], target detection
[19, 23, 24] and so on. In CNN, the network is made of
a sequence of layers, and every layer of CNN
transforms one volume of activations to another
through a differential function. In this work, AlexNet
CNN architecture is used to develop the classification
model of the surface defect on the CMP ring.

104 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

AlexNet is considered because of its obvious
advantages, namely superior performance, less
training parameters and strong robustness [18]. The
architecture of AlexNet is comprised of five
convolutional layers, three pooling layers, two fully
connected hidden layers and one fully connected
output layer as depicted in Figure 2.

Figure 2 The framework of Alex-Net CNN architecture [18]

At the lower layers of AlexNet, the model learns
feature extractors that resembled traditional filters.
The fully connected layer at the last part of the
AlexNet outputs to a 1000-way softmax that performs
computation on a distribution for the 1000 class labels.
In this work, Caffe deep learning framework is used to
develop the CNN model. The default setting of
AlextNet architecture is used, except that the original
AlexNet that target for classification task involving
1000 classes are modified accordingly to match our
task. Therefore, the last output layer is changed to 5,
as we only target five defect types as described in
Section 2.1. Within the Caffe framework, a solver
definition is used to optimize the generated model
during the training phase. The parameters in the
solver definition include the number of test iteration,
base learning rate, training and validation batch sizes,
display and snapshot, which are all set to the default
setting. During the training process, the training loss,
validation loss and validation accuracy are recorded
for every 100 iterations. Training loss is the probability
that indicates how good or bad the learning model
performs prediction based on the validation set. The
smaller the training loss, the higher the probability of
the model to predict correctly. The loss is calculated
based on the cross-entropy measure

where, M is the number of classes, p is model
prediction and q is the class label.

2.3 FPGA Implementation of CNN Model

The CNN model is implemented on the FPGA
development board (Cyclone-VSE DE1-SoC) using an
OpenCL code and a host program. These
components are built using the OpenCL
development environment. The OpenCL code,

which defines multiple parallel compute units in the
form of kernel functions, is compiled and synthesized
to run on the FPGA accelerator. In this
implementation, the considered kernel function is
based on the PipeCNN framework [15]. This kernel
utilizes pipelined CNN functional kernels to achieve
improved throughput in inference computation. The
core part of the convolution layer is a 3-Dimensional
multiply-accumulate operation that can be defined
by

where, Di(fi,y,x) and Do(fo,y,x) denotes the neuron at
position (x,y) in the input feature map fi and output
feature map fo, while Wl(fo,fiy,x) represents the
corresponding weights in the l-th layer that gets
convolved with fi. In fully connected layers,
computation of each output neuron is done by using
the weighted summation of all input neurons as

The architecture of PipeCNN consists of four
major kernels, linked together by OpenCL extension
channel or pipes as shown in Figure 3. The
Convolution (Conv.) kernel performs both the 3-D
multiply-accumulate operation of Eq. (2) and the
inner product operation of Eq. (3). Subsampling is
executed by the pooling kernel on the data streams
generated by the Conv. kernel. MemRD and
MemWR are the two data mover kernels involved in
transferring the feature weights and data to and
from the global memory, respectively. The cascaded
kernels form a deep computation pipeline that
allows the execution of a series of basic CNNs
operations, hence can omit the process of storing
interlayer data back to global memory. The Local
Response Normalization (LRN) function is established
separately from the pipeline since its input can be
the data from adjacent feature maps or the same
feature map, which requires a multitude of memory
access patterns [15].

105 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

Figure 3 CNN Accelerator architecture in PipeCNN [15]

To use the OpenCL development environment on
a host computer, the Intel FPGA software
development kit (SDK) for OpenCL is needed and
being setup beforehand. In addition, since the DE1-
SoC board is an ARM-based device, the Intel SoC
FPGA Embedded Design Suite (EDS) is required to
compile an ARM-based host program. Minicom, the
terminal emulator used to communicate with the
board, is then installed in the host computer and
configured according to the communication
specification of the board.

Figure 4 Process flow of CNN implementation on DE1-SoC
FPGA

The workflow to implement the CNN model on DE1-
SoC FPGA is shown in Figure 4. The trained CNN
model weights are first quantized with 8-bit precisions
before implementing on the DE1-SoC board. For the
weights quantization, the fixed-point weights are
assumed to be in the form of N x 2-m, where N is an
integer with n-bit word length and m is fractional bits
of the quantized weights. The process of extracting
and quantizing the weights of the CNN model is
done by using Matlab. The Fixed-Point Toolbox in
Matlab is used to quantize the extracted weights
according to the word lengths and fractional bit
length. Finally, all the quantized weights and biases
are combined and written in a single binary file.

The FPGA kernel is then developed using
Quartus and OpenCL SDK. During the build process,
the hardware resources utilization is displayed to the
command log by including the -v option in the ‘aoc’
command in the OpenCL SDK. This is done to ensure
that the hardware resource utilization does not
exceed the available resources in the DE1-SoC FPGA
board and causing the build to fail. Then, the host
program is cross-compiled using the GCC cross-
compiler of the Intel SoC EDS to facilitate the
inference process. The host program first loads the
trained CNN model and then loads the test images
from given paths and resizes them to fit the model's
input. Finally, the built kernel and compiled host
program is transferred to the DE1-SoC board. The
FPGA module on the SoC board is reprogrammed to
execute inference on test images.

3.0 RESULTS AND DISCUSSION

The model is trained and tested using the allocated
proportion of the dataset, as explained in Section 2.1.
The training loss, validation loss, and validation
accuracy are recorded at intervals of 100 iterations
to obtain the best possible performance. A learning
curve is plotted to visualize the model performance
parameters. The training process is halted after 1600
iterations to prevent the model from overfitting as the
training dataset is relatively scarce in number. Figure
5 shows the plot of the model loss and accuracy
obtained from the independent training and
validation images. After 400 iterations, the model has
reached the accuracy of 88% and has been
fluctuating at a very small interval between 75% and
90% and maintains since then. At 900 iterations, the
validation loss is recorded at the lowest at around
0.22, and the validation accuracy reached the
highest compared to other iteration numbers.
Moving towards to 2000 iterations, the training loss
seems to stabilize to reach low saturation level of 0.18;
however, validation loss deviated to a higher loss,
approximately at 0.4. On the other hand, the
validation accuracy stabilized and did not recorded
new improvement. the training results obtained at
900 iterations have the highest validation accuracy

106 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

with the lowest validation loss, this model is selected
for the the final implementation model.

Figure 5 The model loss and accuracy plot obtained from
the independent set of training and validation data

Table 1 shows the overall and breakdown of the
classification accuracy of the selected CNN model
when performed on five different classes of CMP ring
images from the test dataset. The evaluation of the
inference time for the software implementation is
measured as the time interval between when an
input image is loaded and when the CNN model
produces classification results. This inference process
is executed on 2.5 GHz Intel Core i5-7200 processor
with 8 GB RAM machine. The average inference time
for the model is around 1.828 seconds. This means
that the software implementation executes the
inference at the rate of 0.55 fps, making it virtually
impossible to be deployed for industrial application
that requires real-time processing.

Table 1 Classification result of the CNN model based on
software implementation

Defect Class True
Positive

Actual
Positive

Accuracy (%)

No Defect (Top) 20 20 100.0

Scratch 19 20 95.0
Dent 18 20 90.0

No Defect (Side) 17 20 85.0
Burr 17 20 85.0

Overall 91 100 91.0

The CNN model trained earlier is compiled into
the kernel code and deployed on the DE1-SoC FPGA
board, and the hardware inference is performed on
the same test dataset. After testing with all the test
images, the host program determines the correct
predictions to calculate the test accuracy and
display on the serial console. Table 2 summarizes the
results of the hardware inference, where a final test
accuracy of 81% is achieved. From Table 2, it is

evident that the model accuracy decreases by 10%
from 91% to 81% when switching from software
implementation to hardware implementation. One of
the reasons that cause this to happen can be related
to the weights used in both implementations.
Software implementation uses floating-point weights,
while the FPGA uses fixed-point weights. The weights
used in FPGA are quantized to 8-bit. This is done to
save on the hardware resources needed for the CNN
computation. This can cause the model accuracy to
decrease as the CNN model relies heavily on the
matrix computations using the network weights.

Table 2 Classification result of the CNN model based on
hardware implementation

Defect Class True
Positive

Actual
Positive

Accuracy (%)

No Defect (Top) 18 20 90.0
Scratch 17 20 85.0
Dent 16 20 80.0

No Defect (Side) 15 20 75.0
Burr 15 20 75.0

Overall 81 100 81.0

The implementation of the CNN model using
PipeCNN requires the hardware parameters such as
VEC_SIZE and LANE_NUM to be configured as part of
the hardware setup of the FPGA resources. The
different combinations of these parameters are
experimented to determine the best possible
configurations to obtain the best inference
performance. Table 3 shows the results of FPGA
inference tested on seven different configurations of
PipeCNN parameters. The DE1-SoC FPGA board
consisted of approximately 85,000 logic elements.
The logic element utilization must not exceed the
logic elements available to implement the CNN
model using the FPGA hardware resources. Therefore,
it is justifiable that the configuration E and F have
failed to build as the logic utilization is too high.
However, configurations B and G, with logic utilization
of 96% and 87%, respectively also failed despite the
well-constrained logic utilization. This is due to the
usage of logic array blocks exceeds the available
resources in the DE1-SoC FPGA. The successful state
of hardware build is with the parameter configuration
of A, C and D, which are then considered for further
analysis. All three of the configurations yielded the
same test accuracy, which is 81% when tested using
the test images. In terms of the runtime, configuration
A takes an enormous amount of time to execute the
inference. This configuration probably did not utilize
any parallelism and the input data is not buffered.
On the other hand, C and D yielded relatively
reasonable inference performances, with each takes
450 msec and 250 msec, respectively. At the same
test accuracy, configuration D outperforms
configuration C with around 200 msec shorter
inference time. Hence, configuration D is chosen to

107 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

be implemented for hardware deployment.
Therefore, for hardware implementation using the
DE1-SoC FPGA board, the model has achieved a test
accuracy of 81% and an inference speed of 4 fps.

Table 3 Performance of hardware inference based on
different configurations of PipeCNN parameters

Conf VEC
SIZE

LANE
NUM

Logic
Utilization

(%)

Build
Status

Test
Accuracy

(%)

Inference
time per
image
(msec)

A 4 8 77 S 81 5000
B 4 12 96 F - -
C 8 4 67 S 81 450
D 8 8 80 S 81 250
E 8 12 102 F - -
F 12 8 120 F - -
G 16 8 87 F - -

S = Success, F = Fail, Conf = Configuration

Referring to Tables 1 and 3, it is evident that the
model accuracy decreases by 10% from 91% to 81%
when switching from software implementation to
hardware implementation. One of the reasons that
cause this to happen is related to the weights used in
both implementations. Software implementation uses
floating-point weights while the FPGA uses fixed-point
weights. The weights used in FPGA are quantized to
8-bit. This is done to save on the hardware resources
needed for the CNN computation. It was expected
that the configuration A, C and D are affected by
similar floating-point weights patterns. This situation
can cause the model accuracy to decrease as the
CNN model relies heavily on the matrix computations
using the network weights.

The accuracy of the developed CNN model
can be further improved if more ground truth images
are available. In difficult situations where the image
data is not abundant, the accuracy of the CNN
model will reduce significantly. Implementing the
CNN model using FPGA is constrained by the board's
hardware resources as the DE1-SoC FPGA board only
contains around 85,000 logic elements. This limits the
acceleration of the implemented model as the
optimization of the model is greatly dependent on
the available hardware resources to be utilized. It is
also observed that there is a decline in the
classification accuracy when the CNN model is
implemented using FPGA due to the adaptation of
fixed-point model weights into the hardware.

4.0 CONCLUSION

In this paper, a CNN model for classifying surface
defects on CMP ring is developed and performed on
hardware implementation. At the software level, the
model has achieved a classification accuracy of 91%.
When the model is implemented using the DE1-SoC
FPGA board, the test accuracy slightly decreased to
81%. Despite the decrease in test accuracy, the
hardware implementation demonstrated a much

better inference performance in terms of inference
speed. The hardware implementation has gained an
improvement of around seven times faster than the
software implementation. The improvement is
significant as the model implemented in the
hardware approach can of performing image
classification at a rate of 4 fps. This shows that the
FPGA implementation can accelerate computation-
intensive CNN model inference and, therefore, allow
a much efficient classification process. In the future,
different hardware platforms with more hardware
resources can also be considered to achieve better
performance improvement in terms of both inference
speed and accuracy. Apart from the classification
task, a detection framework can also be integrated
to detect the defects of CMP rings by exploring the
most recent CNN algorithms, such as the Faster R-
CNN algorithm.

Acknowledgement

The authors fully acknowledged School of Electrical
and Electronic Engineering, Universiti Sains Malaysia
for the support in term of hardware equipment and
lab facility which makes this research work viable
and effective.

References

[1] Sundararajan, S., Thakurta, D. G., Schwendeman, D. W.,
Murarka, S. P., and Gill W. N. 1999. Two-Dimensional Wafer-
Scale Chemical Mechanical Planarization Models Based
on Lubrication Theory and Mass Transport. Journal of The
Electrochemical Society. 146 (2): 761-766.
DOI: https://iopscience.iop.org/article/10.1149/1.1391678.

[2] Chin, R. T., and Harlow, C. A. 1982. Automated Visual
Inspection: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 4(6): 557-573.
DOI: https://doi.org/10.1006/cviu.1995.1017.

[3] Huang, S. H. and Pan, Y. C. 2015. Automated Visual
Inspection in the Semiconductor Industry: A Survey.
Computers in Industry. 66 (2015): 1-10.
DOI: https://doi.org/10.1016/j.compind.2014.10.006.

[4] Tabernik, D., Šela, S., Skvarč, J., Skočaj, D. 2020.
Segmentation-based Deep-learning Approach for
Surface-defect Detection. Journal of Intelligent
Manufacturing. 31(3): 759-776.
DOI: https://link.springer.com/article/10.1007/s10845-019-
01476-x.

[5] Wang, C. C., Jiang, B. C., Lin, J.Y. and Chu, C. C. 2013.
Machine Vision-based Defect Detection in IC Images
Using The Partial Information Correlation Coefficient. IEEE
Transactions on Semiconductor Manufacturing.
26(3): 378-384.
DOI: https://ieeexplore.ieee.org/document/6513319.

[6] Oztemel. E. and Gursev, S. 2020. Literature Review of
Industry 4.0 and Related Technologies. Journal of
Intelligent Manufacturing. 31(1): 127-182.
DOI: https://link.springer.com/article/10.1007/s10845-019-
01476-x.

[7] Zeiler, M. D. and Fergus, R. 2014. Visualizing and
Understanding Convolutional Networks. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T., Editors. Computer Vision –

108 Ng Wai Kin / Jurnal Teknologi (Sciences & Engineering) 83:5 (2021) 101–108

European Conference on Computer Vision. Lecture Notes
in Computer Science. Springer. 818-833.
DOI: https://link.springer.com/chapter/10.1007/978-3-319-
10590-1_53.

[8] Hijazi, S., Kumar, R., and Rowen, C. 2015. Using
Convolutional Neural Networks for Image Recognition.
Technical Report.
Online: http://ip.cadence.com/uploads/901/cnn-wp-pdf.

[9] Ghaffari, A. and Savaria, Y. 2020. CNN2GATE: Toward
Designing a General Framework for Implementation of
Convolutional Neural Networks on FPGA.
DOI: https://arxiv.org/abs/2004.04641.

[10] Lian, X., Liu, Z., Song, Z., Dai, J., Zhou, W., and Ji, X. 2019.
High-performance FPGA-based CNN Accelerator with
Block-Floating-Point Arithmetic. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. 27(8): 1874-1885.
DOI: 10.1109/TVLSI.2019.2913958.

[11] Shi, J., Tian, X., Zheng, Z., and Zhang, T. 2020. Application
Research of CNN Accelerator Design Based on FPGA in
ADAS. IOP Conference Series: Materials Science and
Engineering. 768(7): 072014.
DOI: https://iopscience.iop.org/article/10.1088/1757-
899X/768/7/072014/meta.

[12] Liu, B., Zou, D., Feng, L., Feng, S., Fu, P., and Li, J. 2019. An
FPGA-based CNN Accelerator Integrating Depthwise
Separable Convolution. Electronics. 8(3): 281.
DOI: https://doi.org/10.3390/electronics8030281.

[13] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa R., Bates, S., Bhatia. S., Boden, N. et al. 2017. In-
Datacenter Performance Analysis of a Tensor Processing
Unit. Proceedings of the 44th Annual International
Symposium on Computer Architecture, Toronto, Canada.
DOI: https://dl.acm.org/doi/10.1145/3079856.3080246.

[14] Noronha, D. H., Salehpour, B., and Wilton Steven, J. E. 2018.
LeFlow: Enabling Flexible FPGA High-level Synthesis of
Tensorflow Deep Neural Networks. 5th International
Workshop on FPGAs for Software Programmers. Dublin.
DOI: https://arxiv.org/abs/1807.05317.

[15] Dong, W., Jianjing, A., and Ke Xu. 2016. PipeCNN: An
OpenCL-based FPGA Accelerator for Large-scale
Convolution Neuron Networks.
DOI: https://arxiv.org/abs/1611.02450.

[16] Zhao, R., Niu X., Wu Y., Luk W., and Liu, Q. 2017. Optimizing
CNN-based Object Detection Algorithms on Embedded
FPGA Platforms. In: Wong S., Beck A., Bertels K., and Carro
L., Editors. Applied Reconfigurable Computing. ARC 2017.
Lecture Notes in Computer Science. Springer. 255-267.

DOI: https://link.springer.com/chapter/10.1007/978-3-319-
56258-2_22.

[17] Linsangan, N. B., and Pangantihon, Jr R. S. 2018. FPGA-
Based Plant Identification through Leaf Veins. Proceedings
of the 2018 5th International Conference on Biomedical
and Bioinformatics Engineering, Okinawa, Japan.
DOI: https://dl.acm.org/doi/10.1145/3301879.3301905.

[18] Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012.
Imagenet Classification with Deep Convolutional Neural
Networks. Proceedings of the 25th International
Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, USA.
DOI: https://dl.acm.org/doi/10.1145/3065386.

[19] Wang, J., and Zheng, T., Lei, P., and Bai, X. 2019. A
Hierarchical Convolution Neural Network (CNN)-based
Ship Target Detection Method in Spaceborne SAR
Imagery. Remote Sensing. 11(6): 620.
DOI: https://doi.org/10.3390/rs11060620.

[20] Phan-Xuan, H., Le-Tien, T. and Nguyen-Tan, S. 2019. FPGA
Platform Applied for Facial Expression Recognition System
Using Convolutional Neural Networks. Procedia Computer
Science. 151: 651-658.
DOI: 10.1016/j.procs.2019.04.087.

[21] Anderson, J. H., Brown, S. D., Canis, A. and Choi, J. 2013.
High-level Synthesis with Legup: A Crash Course for Users
and Researchers. Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate,
Monterey California USA.
DOI: https://doi.org/10.1145/2435264.2435269.

[22] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y.,
Vrudhula, S., and Seo, J. S., and Cao, Y. 2016. Throughput-
Optimized Opencl-based FPGA Accelerator for Large-
scale Convolutional Neural Networks. Proceedings of the
2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey California USA.
DOI: 10.1145/2847263.2847276.

[23] Cai, Z, and Fan, Q., and Feris, R. S., and Vasconcelos N.
2016. A Unified Multi-scale Deep Convolutional Neural
Network for Fast Object Detection. European Conference
on Computer Vision.
DOI: https://link.springer.com/chapter/10.1007/978-3-319-
46493-0_22.

[24] Kim, H., Lee, Y., Yim, B., Park, E. and Kim, H. 2016. On-Road
Object Detection Using Deep Neural Network. IEEE
International Conference on Consumer Electronics-Asia,
Seoul, South Korea.
DOI: https://ieeexplore.ieee.org/document/7804765.

https://dl.acm.org/doi/proceedings/10.1145/2435264
https://dl.acm.org/doi/proceedings/10.1145/2435264

