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NUMERICAL ANALYSIS OF CARRIER STATISTICS IN LOW-
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Abstract. The carrier statistics for low-dimensional nanostructure is elaborated. The density of
state (DOS) is proportional to d

Dλ  where d is the dimensionality of the nanostructure and Dλ  is the De-
Broglie wavelength proportion of Fermi-Dirac (FD) integral that covers the carrier statistics to all
degeneracy level. In the non-degenerate regime the results replicate what is expected from the Boltzmann
statistics. However, the results vary in degenerate regime. The results for all dimensions are numerically
analyzed and compared for all three Cartesian directions. With appropriate DOS, the carrier concentration
in all dimensions is obtained based on the FD statistic. Fermi energy with respect to band edge is a
function of temperature that is independent of the carrier concentration in the non-degenerate regime.
In the strongly degenerate regime, the Fermi energy is a function of carrier concentration appropriate
for given dimensionality, but is independent of temperature.

Keywords: Carrier statistics; carrier concentration; one dimensional devices; degenerate and non-
degenerate carrier

Abstrak. Statistik pembawa bagi dimensi-bawah strukturnano adalah diperjelaskan. Ketumpatan
kawasan (DOS) adalah bersamaan dengan d

Dλ , di mana d ialah dimensi bagi strukturnano dan Dλ
ialah gelombang De-Broglie bersamaan dengan kamiran Fermi-Dirac yang merangkumi statistik
pembawa bagi semua tahap kemerosotan. Pada regim tak-merosot, hasil kajian menunjukkan
pengreplikanan apa yang ditafsirkan dari statistic Boltzman. Akan tetapi, pada regim merosot hasilan
adalah berubah-ubah. Hasilan bagi semua dimensi telah dianalisis secara berangka dan dibandingkan
bagi kesemua tiga arah Cartesian. Dengan menggunakan DOS yang sepadan, kepekatan pembawa
pada semua dimensi telah didapati berdasarkan statistik Fermi – Dirac. Tenaga Fermi yang berlandaskan
hujung jalur adalah berfungsi kepada suhu yang tidak bergantung pada kepekatan pembawa pada
regim tak-merosot. Di regim merosot yang tinggi, tenaga Fermi adalah berfungsi kepada kepekatan
pembawa bersesuaian dengan dimensi tersebut tetapi tidak bergantung pada suhu.

Kata kunci: Statistik pembawa; kepekatan pembawa; peranti satu-dimensi; pembawa merosot dan
tak merosot

1.0 INTRODUCTION

As devices are being scaled down in decananometer regime, the physics-based
analytical interpretation of carrier statistics in a low-dimensional nanostructure device
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is essentially needed [1–3]. The quantum confinement effect (QCE) and ballistic (B)
carrier transport in nano-devices have been heavily investigated and modeled to spur
proper understanding of insight of the nano-electronics circuits [4–10]. The numerical
analysis of carrier statistics that invoked QCE and B phenomenon of a nanostructure
device is elaborated in this paper. The appropriate approximation of Boltzmann and
Fermi-Dirac statistics applied to non-degenerate (ND) and degenerate (D) regime for
all dimensionality was employed and explained intuitively. The fundamental physics
of energy spectrum in the low-dimensional system for quasi 3D, 2D and 1D is presented
in Section II. The computation of carrier statistics that leads to proper approximation
in all degeneracy level is elucidated in Section III. Section IV provides the results and
analysis of carrier statistics in all dimensions of degeneracy and its dependency on
carrier concentrations. Major findings of this work are summarized in the concluding
Section V.

2.0  LOW-DIMENSIONAL ENERGY SPECTRUM

In low-dimensional system as shown in Figure 1, the energy spectrums of the respective
system that consists of potential and kinetic energy is given by [6]
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where P is the momentum, kx,y,z is the wave vector in three directions and d is the
dimensionality of respective system. For quasi 3 dimensional (Q3D) or bulk
semiconductors as depicted in Figure 1(a), all the three Cartesian directions are much
larger than the de Broglie wavelength (Lx,y,z >> λD ≅ 10 nm). Therefore the energy
spectrum is analog-type in x, y and z-direction given by
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This wavefunction describes the propagating waves in all three directions. In Q3D
system the traveling wavelength in all 3 directions are traveling waves as shown in the
wave function of equation (3). kx,y,z are the wave vector components with momentum
p k= . Eco is the unaltered conduction band edge, m* is the carrier effective mass
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assumed isotropic for all three dimensions and Ω = LxLyLz is the volume of the samples
with LxLyLz is the length in each of the three Cartesian directions.

Figure 1(b) shows the Q2D of a nano-MOSFET system where the carriers are
confined in the z-direction with Lz is much less than the de Broglie wavelength (D)
which is approximately 10 nm. The other two dimensions, the x and y-dimensions are
still in analogue characteristics with the length Lx and Ly are consider larger than de
Broglie wavelength. The energy spectrum for Q2D system is given by
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and the wave function given by
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Equation (6) shows the wavefunction of a Q2D system where Lz is the effective
length of confinement due to the penetration of the wavefunction in the classical
forbidden region. In Q2D system, the wavelength in the z-direction becomes standing
wave due to the quantum confinement (QC) leaving the other two x and y-direction
retains as traveling waves as shown in the wavefunction expression. kx,y are the wave
vector components with momentum p k=  and Ec is the modified band edge that is
lifted by the zero-point quantum energy due to QC effects. The wave-vector is digitized
in the z-direction with the value kz = nπ /Lz with only n = 1 digit being considered in
the quantum limit when most electrons occupy the lowest level of band edge. Due to

Figure 1 Low-dimensional system for (a) quasi 3D (b) quasi 2D (c) quasi 1D
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QC effects in the z-direction of Q2D system the modified energy band diagram is
expected as shown in Figure 2. The energy band gap has been increased by the
quantized band edge in z-dimensions for both conduction and valence band edge
with either electron or hole carriers given by

( )
( )
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22oze h
ze hm L

πε ∗= (7)

For Q1D of a nanowire system only one dimension is larger than the de Broglie
wavelength. The other two dimensions is quantum confined to the length less than de
Broglie wavelength. This system is illustrated in Figure 1(c) in which the length of Lz
and Ly is confined. Thus, the energy spectrum of Q1D device is only analogue in the
x-direction. The energy spectrum for nanowire with a rectangular cross-section is given
by

2 2

1 1
12
x

k c

k
E E

m∗= + (8)

with
2 2 2 2

1 2 2
1 32 2c co

y z

E E
m L m L
π π

∗ ∗= + + (9)

and the wave function given by

( ) ( )
1

2
sin sinxj k .x

k
y z

y z
x , y ,z e

L L
π πψ

   
=     Ω   

(10)

As depicted in equation (10), for Q1D system the quantum waves are standing wave
in z and y-direction while in x-direction its remains as traveling waves. Ec1 is the band

Figure 2 The modified energy band diagram of Q2D system due to quantum confinement in
z-direction
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edge in the quantum limit of a nanowire that is lifted from bulk conduction band edge
Eco by the zero-point energy in the y and z-direction.

3.0  Low-Dimensional Carrier Statistics

The number of carriers available for conduction determines the electrical properties
of the semiconductor devices. This number is found from the density of allowed
states and the probability that these states are occupied. The probability that an available
state with energy E is occupied by an electron under thermal equilibrium is given by
the Fermi-Dirac probability density function ℑ (E) defined as
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where EF is the Fermi energy level defined as the energy level at which the probability
of finding an electron, for T > 0°K, is exactly one-half. EF is purely mathematical parameter
and provides a reference with which other energies can be compared. If E = EF,
ℑ (E) = ½, this means that the electron is equally likely to have an energy above Fermi
level as well as below it. If ℑ (E) = 1 at T = 0 K, this means all energy levels below EF
are filled and all above it are empty. kB is the Boltzmann’s constant and T is
semiconductor lattice temperature. If E – EF > kBT, the solution of equation (11)
becomes much simpler since we can neglect the ‘1’ and the function ℑ (E) can be
approximated by the Boltzmann density function
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The utilization of Boltzmann density function makes subsequent calculation much
simpler and normally is justified in semiconductor device theory. However, Fermi-
Dirac distribution function is necessary for certain properties of a very highly doped
(degenerate) material. Due to recent advanced devices was purportedly to be
degenerately doped for the suppression of short channel effects (SCE), the exact solution
of Fermi-Dirac distribution function is necessary. The solution is known as Fermi-
Dirac Integral of order i and is given by
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and Γ is the gamma function that can be approximated by
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( ) ( )1i i iΓ + = Γ (15)
The number of electrons per unit volume with energies between E and E + dE has

been established to be D(E) ℑ (E)dE; therefore the total carrier concentration in a
band is obtained simply by integrating the Fermi-Dirac distribution function over
energy band that is [5]
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The carrier concentration (n3 per unit volume for bulk, n2 per unit area for 2D, and
n1 per unit length for 1D) as a function of normalized Fermi energy ηFd (d = 3, 2, 1)
with respect to the band edge is evaluated as [4, 6]
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Therefore, the electron concentrations for Q3D, Q2D and Q1D system are
respectively given as
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with the effective density of states respectively defined as
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The complexity of solving Fermi-Dirac Integral is reduced under the Boltzmann
approximation assumption and becomes (for non-degenerately doped devices)

( )i eηηℑ = (24)

However, as the modern devices are mostly in the degenerately-doped sample, the
exact solution of Fermi-Dirac integral is necessary and obtained as [6]
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4.0 RESULTS AND DISCUSSIONS

Figure 3 shows the plot of Fermi-Dirac integral of order one-half, zero and minus one-
half against fermi energy (eta – ηFd) for non-degenerately and degenerately doped
samples with d = 3, 2, 1. In non-degenerately region in which ηFd is small, the Fermi-
Dirac integral is well approximated by Equation (24) for all dimensions as indicated
by the black color line. Similarly, in degenerately doped devices (ηFd > 0), the blue,
green and red color lines represent the very well estimation of Fermi-Dirac integral of
equation (13) to its approximation in 3D (blue), 2D (green) and 1D (red) as can be
derived from equations (25) respectively.

Figure 4 shows the normalized Fermi energy ηFd as a function of normalized
carrier concentration for d = 3, 2, 1. As expected in the non-degenerate (ND) regime,
(EF –Ec)d as a function of (n/N)d is given by

( ) ( )lnF c B dd
E E k T n / N− = (26)

Figure 3 The approximation of Fermi-Dirac integral as a function of Fermi energy ηFd for non-
degenerately and degenerately doped devices in d = 3, 2 and 1-dimensional system
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(EF – Ec)d is a weak (logarithmic) function of carrier concentration, but varies linearly
with temperature in the ND regime. However, for strongly degenerate statistics, the
Fermi energy is independent of temperature and is a strong function of carrier
concentration:
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The Fermi energy is proportional to n3
2/3 for bulk (3D) configuration, n2 for 2D

nanostructure, and n1
2 for 1D nanostructure. The 1D nanowires approach degeneracy

at relatively lower values of carrier concentration as compared to 2D and 3D structures.
Induced and doped carrier density in most nanoscale devices are now in degenerate
regime generating a great interest in degenerate statistics that is extensively used in the
following section. Because of simplicity in the expressions for ND statistics, it is not
uncommon to base the findings on ND statistics that sometimes leads to erroneous
results.

Figure 4 The normalized Fermi energy as a function of carrier concentration. Approximation for
non-degenerate (ND) regime and degenerate regimes are also shown
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5.0 CONCLUSIONS

Based on the low-dimensional energy spectrum that invoked the effect of quantum
confinement comparable to the De Broglie wavelength in the respective Cartesian
directions of quasi 3D, 2D and 1D, the numerical analysis of nanostructure carrier
statistics was successfully done. For non-degenerately (ND) doped samples the Fermi-
Dirac (FD) integral is well approximated by Boltzmann statistics for all dimensions.
However, in degenerately doped quasi 3D, 2D and 1D device, the FD integral is
found to be approximated by order one-half, zero and minus one-half respectively.
The Fermi energy is revealed to be a weak (logarithmic) function of carrier
concentration, but varies linearly with temperature in the ND regime. However, for
strongly degenerate statistics, the Fermi energy is independent of temperature and is a
strong function of carrier concentration. The Fermi energy is proportional to n3

2/3 for
bulk (3D) configuration, n2 for 2D nanostructure, and n1

2 for 1D nanostructure. In
addition, the 1D nanowires approach degeneracy at relatively lower values of carrier
concentration as compared to 2D and 3D structures.
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