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Abstract 

 

Parameter estimation is one of nine phases in modelling, which is the most challenging task that is used to 
estimate the parameter values for biological system that is non-linear. There is no general solution for 

determining the nonlinearity of the dynamic model. Experimental measurement is expensive, hard and time 

consuming. Hence, the aim for this research is to implement Particle Swarm Optimization (PSO) 
intoSBToolbox to solve the mentioned problems. As a result, the optimum kinetic parameters for simulating 

essential amino acid metabolism in plant model Arabidopsis Thaliana are obtained. There are four 

performance measurements used, namely computational time, average of error rate, standard deviation and 
production of graph. As a finding of this research, PSO has the smallest standard deviation and average of 

error rate.  The computational time in parameter estimation is smaller in comparison with others, indicating 

that PSO is a consistent method to estimate parameter values compared to the performance of Simulated 
Annealing (SA) and downhill simplex method after the implementation into SBToolbox. 

 

Keywords: Parameter estimation; PSO; SBToolbox; Arabidopsis Thaliana 
 

Abstrak 

 
Anggaran parameter adalah salah satu daripada sembilan fasa dalam model, yang merupakan tugas yang 

paling mencabar yang digunakan untuk menganggarkan nilai parameter bagi sistem biologi yang tidak 

linear. Tiada penyelesaian am bagi menentukan ketidaklurusan model yang dinamik. Eksperimen yang 
dijalankan dalam makmal adalah mahal, sukar dan menggunakan masa yang lama. Oleh itu, tujuan kajian 

ini adalah untuk melaksanakan Particle Swarm Optimization (PSO) ke SBToolbox bagi menyelesaikan 
masalah-masalah yang diyatakan. Terdapat empat ukuran prestasi yang digunakan, iaitu masa, pengiraan, 

purata kadar kesilapan, sisihan piawai dan pengeluaran graf. Sebagai keputusan penyelidikan, PSO 

mempunyai sisihan terkecil standard dan purata kadar kesilapan. Masa pengiraan dalam anggaran parameter 
adalah lebih kecil berbanding dengan algorithm lain, menunjukkan bahawa PSO adalah kaedah yang 

konsisten untuk menganggarkan nilai-nilai parameter berbanding prestasinya dengan Simulated Annealing 

(SA) dan ‘downhill simplex method’ dalam SBToolbox.   
 

Kata kunci: Anggaran parameter; PSO; SBToolbox; Arabidopsis Thaliana 
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1.0  INTRODUCTION 

 

It is complex to understand the regulation, structure and 

organization of the underlying biological system because it needs 

quantitative assessment and reliable understanding of the system 

functions [1]. 

  Modelling is a process to transform the symbol model into a 

numerical model which enables us to understand the model deeply.  

It converts the biological system into a simple analogy that is easier 

to analyze, interrogate, predict, extrapolate, manipulate, and 

optimize than the biological system itself. There are 9 phases in 

mathematical modelling as shown in Figure 1 according to Chou 

and Voit [2]. 

  At molecular level, the variables represent the concentration 

of chemical species such as protein, mRNA and so on. With the 

known pathway structure, we are able to write down the equation, 

which depends on several parameters. The parameters might be the 

reaction rate, production and decay coefficient, approximation or 
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reduction that is satisfied by the structure of the system. Normally, 

the parameters are unknown. The measurement, if done 

experimentally, is expensive, hard and time consuming [3, 4]. 

 

Figure 1  Phases of mathematical modelling [2] 

 

 

  Estimation of parameter values is one of the steps in the 

modelling process. Parameter estimation helps to determine 

appropriate numerical parameter values that can convert the 

symbolic model into a numerical model that consistent with 

experimental observations [2, 5]. Among the nine phases, 

parameter values estimation is the most challenging task. This is 

due to the previous phases of parameter estimation that will affect 

the difficulties of the estimation. Examples are like the selection of 

modelling framework, the size and complexity of the hypothesized 

model and so on. It will be easier if the model is an explicit linear 

model that uses linear regression methods. Nevertheless, as soon as 

the model becomes nonlinear, many of these methods will become 

inapplicable [2]. 

  In addition, biological model is nonlinear and dynamic.  

Hence, parameter estimation is complex because there is no general 

solution exists due to the model’s nonlinearity. It is easier to 

analyze if it is a linear model since linear regression methods are 

used. The mentioned biological model describes the specific 

phenomena of biological system. It contains parameters that can 

alter the model behaviour and it can be measured directly or 

inferred from the data.   

  Optimization is a scientific discipline that deals with the 

detection of optimal solutions for a problem, among other 

alternatives. Optimization models the actual problem by building a 

proper mathematical function, or called as objective function.  

Among all feasible solutions where the solution fulfils all the 

constraints, global optimization tends to find the optimal one [6]. 

To estimate the parameter in a system, it is necessary to identify the 

objective function. Then, the objective function will be minimized 

by using appropriate optimization methods.   

  In order to simulate the biological system, parameter 

estimation is the most important phase because with complete and 

accurate set of parameter value, the system can be characterized.  

However, it is not always possible to measure these values in wet 

lab experiments due to high demands on cost and time, since there 

is no existing general solution to determine the nonlinearity of the 

dynamic model. Non-linear system is any problem that cannot be 

written as a linear combination of independent components and 

thus the result is not directly proportional to the input. As a result, 

it is difficult to obtain and researchers need to spend more time to 

solve the system since it needs to carry out the experiment within 

unknown time in order to get the best result. Furthermore, there are 

certain parameters which have no appropriate measurement method 

yet [7]. Exploration of several optimization techniques to minimize 

cost function is necessary to obtain the optimal value. Based on the 

research by Syed Murtuza Baker et al. [7] on the estimation of the 

kinetic parameters of upper part of glycolysis process [7], 

comparison of several methods were performed and the result 

stated that Simulated Annealing (SA) took the longest time in order 

to converge to the best solution. Even though Genetic Algorithm 

(GA) was able to complete the estimation in a shorter time, it 

tended to be stuck in local minima. Moreover, Particle Swarm 

Optimization (PSO) was able to produce better result compared to 

other methods.  

  There are several optimization methods in the SBToolbox 

such as GA [8], SA [9], downhill simplex method [10] and so on. 

However, there has been no implementation of PSO [11] to 

estimate kinetic parameters to simulate the essential amino acid 

metabolism in plant model Arabidopsis Thaliana yet. Arabidopsis 

thaliana, as a small plant in the mustard family that has turns into 

the selection for research in plant biology as model system. 

Focusing on the molecular genetics of this simple plant model has 

made significant improvements in analyzing plant growth and 

development. Since the focus of this research is the essential amino 

acid production, few brief introductions regarding the essential 

amino acid production process and selected essential amino acids 

are described. Essential amino acid production is the set of 

biochemical reactions by which the essential amino acids are 

generated from potential organisms. Besides, the selected amino 

acids are Lysine, Threonine, and Isoleucine. These essential amino 

acids are important to prevent and treat cold sores, to treat various 

nervous system disorders, and to promote muscle recovery, form 

haemoglobin, and assist in regulating of blood sugar levels. 

Furthermore, most of the parameter estimations used other 

http://en.wikipedia.org/wiki/Linear_combination
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algorithms such as SA, GA, EP (Evolutionary Programming) [7] 

and so on, and completed the set of kinetic parameters for aspartate 

metabolism by using appropriate method to estimate the kinetic 

parameter of aspartate metabolism which was not presented. 

  PSO is one of the methods based on swarm intelligence to 

estimate the kinetic parameter values. The concept of PSO is that 

the particles will fly in limited number of directions and have flying 

experience by their own or with their companion along the search 

space in certain velocity; and they are expected to fly to the best 

position.   

  In this research, PSO is proposed and implemented into 

SBToolbox in MATLAB to estimate the parameter values of 

aspartate metabolism in plant model Arabidopsis Thaliana. This 

method is inspired by bird flocks, fish schools and animal herds 

when foraging. The significance of the study is that there is no 

implementation of Particle Swarm Optimization (PSO) into 

SBToolbox to estimate kinetic parameters to simulate essential 

amino acid metabolism in plant model, Arabidopsis Thaliana, yet. 

PSO is a consistent method in estimating parameter values. It takes 

a shorter time to converge to the best value. It has the ability to find 

the optima in fast pace. Besides that, very few parameters are 

needed to adjust in order to obtain the optimal value.  PSO is 

computationally inexpensive in terms of memory requirements and 

speed [12]. 

 

 

2.0  METHOD 

 

Previous works have implemented GA, SA, downhill simplex 

method, and so on in parameter estimation. In this paper, we 

propose PSO as a new approach for parameter estimation. In this 

section, the details of the proposed PSO for estimating parameter 

values are discussed. The steps involved to obtain optimal 

parameter values are summarized in Figure 2. 

 

2.1  Initialization  

 

Initially, the population array of particles with random positions 

and velocities on D dimensions in search space was initialized. 

Then, we defined the number of iterations, inertia weight, positive 

constant and swarm size. In this study, the inertia weight is 1.0, the 

positive constant is 2.0, and the number of iteration is 100. Next, 

the desired optimization fitness function in d variables for each 

particle was evaluated. 

 

2.2  Iteration  

 

In this part, a loop function was used to search and update the best 

position. There were two values being updated if best values were 

found in each iteration which were global best- gbest and best 

solution (fitness solution)- pbest value. 

 

 

 

 

 

 

 

 
 

Figure 2  Three steps involved to estimate parameter values using PSO  

 

 

  Initially, the particles’ fitness evaluation was compared with 

particles’s pbest. If current value is better than pbest, then set pbest 

value is equal with the current value and the pbest location equal to 

the current location in d-dimensional space. Then, we compared 

fitness evaluation with the population’s overall previous best. If 

current value is better than gbest, then the gbest is reset to the 

current value. After being updated using Equation 2.1 and 2.2, the 

optimization fitness function in d variables for each particle was 

evaluated again. 

 

𝑥𝑖𝑑  = 𝑥𝑖𝑑 + 𝑣𝑖𝑑                  (2.1) 

𝑣𝑖𝑑  =𝑤𝑣𝑖𝑑 + 𝑐1𝛾1(𝑃𝑖𝑑- 𝑥𝑖𝑑) +𝑐2𝛾2(𝑃𝑔𝑑-𝑥𝑖𝑑)   (2.2) 

 

  Where  𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, …, 𝑋𝑖𝐷): ith particle’s position in search 

space, 𝑉𝑖 = (𝑉𝑖1, 𝑉𝑖2,…, 𝑉𝑖𝐷): ith particle’s velocity, 𝑃𝑖 = (𝑃𝑖1, 𝑃𝑖2,…, 

𝑃𝑖𝐷): Best position of the ith,  𝑃𝑔 = (𝑃𝑔1, 𝑃𝑔2,…, 𝑃𝑔𝐷): Best position 

in the whole swarm, i = 1, 2 ,…, m, indicates each particle in one 

population. d = 1,2,…, D, indicates the number of dimension,𝑐1, 

𝑐2: Acceleration constant representing the pulling of each particle 

toward pbest and gbest.𝛾1, 𝛾2: Random number between 0 and 1, 

𝑣𝑖𝑑∈ [-𝑣𝑚𝑎𝑥,𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥: maximum velocity decided by user and 

𝑤 = inertia weight that provides the balance between global and 

local exploration and exploitation to find a sufficient optimal 

solution. 

 

2.3  Termination 

 

The loop continues until a criterion is met where optimum 

parameter values are obtained or a maximum number of iteration is 

reached. 
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2.3  Dataset 

 

In this research, the dataset used was the aspartate metabolism [13] 

of Arabidopsis Thaliana. In this research, the kinetic parameters for 

Lysine, Threonine and Isoleusine were estimated using PSO in 

SBToolbox [14]. There were 9 kinetic parameters, 16 kinetic 

parameters, 6 kinetic parameters respectively. Table 1, Table 2 and 

Table 3 show the list of kinetic parameters that needed to be 

estimated, experimental values, the kinetic parameters values 

estimated using SA, downhill simplex method and PSO. The 

mentioned kinetic parameters play important roles in generating the 

time series data. With the presence of time series data, we can 

observe the production for selected amino acids. 

 

 
Table 1  List of kinetic parameters with measured kinetic parameter values for Lysine 

 

       Kinetic parameter  Measured kinetic 

parameter values 

SA Downhill simplex 

method 

PSO 

Vdhdps1_DHDPS1_k_app_exp 1 0.7019 0.9384 0.4726 

Vdhdps1_DHDPS1_Lys_Ki_app_exp 10 10.1627 12.0480 10 

Vdhdps1_DHDPS1_nH_exp 2 1.8208 1.9279 1.7768 

Vdhdps2_DHDPS2_k_app_exp 1 1.0846 10 1 

Vdhdps2_DHDPS2_Lys_Ki_app_exp 33 33.3325 34.5784 32.0637 

Vdhdps2_DHDPS2_nH_exp 2 2 20 0.9687 

VlysTRNA_Lys_tRNAS_Lys_Km 25 15.0701 22.8179 35.1274 

VlysKR_LKR_kcat_exp 3.1000 0.3430 3.1305 10.0065 

VlysKR_LKR_Lys_Km_exp 13000 121600 12350 60575 

 

 
Table 2  List of kinetic parameters with measured kinetic parameter values for Threonine 

 

Kinetic parameter Measured kinetic 

parameter values 

SA Downhill 

simplex 

method 

PSO 

Vts1_TS1_kcatmin_exp 0.42 2.9 0 3 

Vts1_TS1_AdoMet_kcatmax_exp  3.5 8.5 0.6 7 

Vts1_TS1_nH_exp  2 1.6 1.4 0 

Vts1_TS1_AdoMet_Ka1_exp 73 19.9 160.4 526 

Vts1_TS1_AdoMEt_Km_no_AdoMet_exp  250 628.4 25.8 312 

Vts1_TS1_AdoMet_Ka2_exp 0.5 0.8 0.3 3 

Vts1_TS1_AdoMet_Ka3_exp 1.09 1.4 1.6 4 

Vts1_TS1_AdoMet_Ka4_exp 140 243.1 14.1 1045 

Vts1_TS1_Phosphate_Ki_exp 2000 2496.3 5127.8 4844 

Vtd_TD_k_app_exp 0.0124 0 0 0 

Vtd_TD_Ile_Ki_no_Val_app_exp 30 3.8 57.2 139 

Vtd_TD_Val_Ka1_app_exp 73 7.4 29 436 

Vtd_TD_Val_Ka2_app_exp 615 4269.4 724.1 924 

Vtd_TD_nH_app_exp 3 29.6 7.8 10 

Vtha_THA_kcat_exp 1.7 0.4 0.5 2 

Vtha_THA_Thr_Km_exp 7100 792.9 9178.7 57469 
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Table 3  List of kinetic parameters with measured kinetic parameter values for Isoleucine 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

3.0  RESULTS AND DISCUSSION 

 

In this study, PSO was implemented into SBToolbox in 

MATLAB to estimate parameter value. Three algorithms; SA, 

downhill simplex method and PSO were used to estimate the 

parameters and the result produced by two algorithms were 

compared. To evaluate the consistency and accuracy of both 

algorithms, the average of error rate and standard deviation were 

compared. There were 50 runs for estimating all the kinetic 

parameters and the formulas used to calculate the standard 

deviation are as follow: 

 

 𝑒 =  ∑ (𝑦 − 𝑦𝑖)2𝑁
𝑖=1                                           (3.1) 

 𝐴 =  
𝑒

𝑁
                                                                 (3.2) 

 𝑆𝑇𝐷 =  √
𝑒

𝑁
                                                 (3.3) 

 

  The Equation 3.1 and 3.2 were used to calculate the error 

rate and average of error rate. Then, the standard deviation was 

obtained using Equation 3.3, where  𝑦𝑖 is simulated results, 𝑦 is 

measurement result, e is error rate, A is average of error rate and 

N is the number of sample. This equation was used to compare 

the performance of PSO with other methods. The best 

performance among the methods could be the method with the 

lower average of error rate and the standard deviation value close 

to 0 which indicated that PSO was able to produce high accuracy 

result.   

  After the discussion on the performance of PSO in 

estimating kinetic parameters of three amino acids, this section 

discusses and compares the performance of the three methods 

including PSO, SA and downhill simplex method. Based on 

Table 2, the standard deviation values of SA and downhill 

simplex method did not get close to 0 compared to standard 

deviation value of PSO. The values were 0.0733, 0.1211 and 

0.0113 respectively which PSO had the value that was the closest 

to 0. Based on Figure 3, the simulated line produced by PSO that 

was the closest to experimental line compared to SA and downhill 

simplex method. PSO had the smallest error rate with 0.0057 

while SA and downhill simplex method had 0.0318 and 0.1520 

respectively. Having the smallest average of error rate, standard 

deviation value closer to 0 and simulated line closest to 

experimental line shows that PSO is a more consistent method to 

estimate parameter values compared to SA and downhill simplex 

method. In addition, the computational time for PSO to estimate 

9 kinetic parameters was 315.9816 seconds which took a shorter 

time to complete compared to SA which took 4834.0581 seconds 

and 585.9037 seconds for downhill simplex method. We have 

conducted 50 runs with three algorithms and the STD values are 

shown in Table 2. The results showed that PSO has the lowest 

STD value; this indicates that the different between each run is 

small and this proved that it is a reliable estimation algorithm.  

  Figures 3, 4, and 5 are the production simulation graphs that 

are plotted based on the kinetic parameters retrieved from the 

literature review and mentioned estimation algorithms.   

 
Table 4  Comparison of average of error rate, standard deviation and 
execution time in seconds between SA, downhill simplex method and 

PSO for Lysine production from Arabidopsis Thaliana 

 

 

 

  Based on Figure 3, the simulated line produced by PSO that 

was the closest to experimental line compared to SA and downhill 

simplex method. Having the smallest average of error rate, 

standard deviation value closer to 0 and simulated line closest to 

experimental line shows that PSO is a more consistent method to 

estimate parameter values compared to SA and downhill simplex 

method. In addition, the computational time for PSO to estimate 

9 kinetic parameters was 315.98163 seconds which took a shorter 

time to complete compared to SA which took 4834.0581 seconds 

and 585.90371 seconds for downhill simplex method. The 

smaller average of error rate, standard deviation value closer to 0 

and simulated line closest to experimental line shows that PSO is 

a more consistent method to estimate parameter values compared 

to SA and downhill simplex method. In addition, the 

computational time for PSO to estimate 9 kinetic parameters was 

315.98163 seconds which took a shorter time to complete 

compared to SA and downhill simplex method.16 kinetic 

parameters had been estimated for the production of Threonine in 

aspartate metabolism.  

Kinetic parameter  Measured kinetic 

parameter values 

SA Downhill 

simplex 

method 

PSO 

Vtd_TD_k_app_exp 0.0124 561.1803  0.0229 0.0123 

Vtd_TD_Ile_Ki_no_Val_app_exp 30 23.7435 31.3420 75.5376 

Vtd_TD_Val_Ka1_app_exp 73 490.6059 224.0060 460.8398 

Vtd_TD_Val_Ka2_app_exp 615 561.1803 406.3449 352.7619 

Vtd_TD_nH_app_exp 3 23.7435 7.5509 11.0296 

VileTRNA_Ile_tRNAS_Ile_Km 20 10.6712 5.1853 19.9980 

      Method 

 

Feature 

 

SA 

Downhill 

simplex 

method 

 

PSO 

 

Computational 

time (second) 

 

4834.0581 

 

585.90371 

 

315.98163 

 

Average of 

error rate 

 

0.031796785 

 

0.152017 

 

 

0.005688298 

 

Standard 

deviation 

 

0.073336459 

 

0.121128 
 

 

0.011252726 
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Figure 3  Comparison of simulated line of SA, downhill simplex method 

and PSO with experimental line for Lysine production 
 

 

 

Figure 4  Comparison of simulated line of SA, downhill simplex method 

and PSO with experimental line for Threonine production  

 

 

  The comparisons of performance measurements are 

presented in Figure 4 above and Table 5 below. 16 kinetic 

parameters had been estimated for the production of Threonine in 

aspartate metabolism. The standard deviation values produced by 

SA and downhill simplex method were greater than PSO which 

were 4.44848E-07 and 0.160E-07 accordingly. The standard 

deviation of PSO was also the smallest- 0.001467E-07 compared 

to SA and downhill simplex method which had 4.44848E-07 and 

0.160E-07 accordingly. In term of computational time, SA 

consumed more time compared to downhill simplex method and 

PSO which took 5511.487444 seconds for a complete estimation.  

For the graph production, the simulated line produced by PSO is 

the nearest to the experimental line. All the above mentioned 

criteria indicate that PSO outperformed SA and downhill simplex 

method in estimating 16 kinetic parameters value of Threonine.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 5  Comparison of average of error rate, standard deviation and 

execution time in seconds between SA, downhill simplex method and 

PSO for Threonine production from Arabidopsis Thaliana  

 

 

Table 6 Comparison of average of error rate, standard deviation and 
execution time in seconds between SA, downhill simplex method and 

PSO for Isoleusine of production in Arabidopsis Thaliana 

 

 
 

  Table 6 shows the comparison of average of error rate and 

standard deviation for Isoleucine. The comparison table contains 

information such as computational time, average of error rate and 

standard deviation. The computational times of SA, downhill 

simplex method and PSO for estimating kinetic parameters were 

2910.885082 seconds, 285.011996 seconds and 45.777919 

seconds respectively. In addition, the averages of error rate for 

the three methods were 1.56E-15, 2.94E-15 and 0.192E-15.  

Meanwhile, the standard deviation values of three methods were 

2.70E-15, 5.08386E-15 and 0.168E-15. Among three methods, 

the performance of PSO was the most consistent method to 

estimate the kinetic parameters of Isoleucine. This statement is 

evident by the average of error rate which was the smallest and 

the standard deviation value of PSO closer to 0.  

  Even though Lysine biosynthesis pathway only involved 

nine kinetic parameters, but it used longest computational time 

than Threonine (16 kinetic parameters) and Isoleucine 

biosynthesis pathway (six kinetic parameters). The numbers of 

enzyme involve in Lysine biosynthesis pathway are higher than 

the other two biosynthesis pathways. This can be a factor that 

contributed to complex biosynthesis pathway which requires 

more computational time for estimation. The enzymes for Lysine 

       Method 

 

    Feature 

 

SA 

Downhill 

simplex 

method 

 

PSO 

 

Computational 

time 

(second) 

 

5511.487444 

 

2983.439710 

 

90.26 

 

Average of error 

rate 

 

1.92E-07 

 

0.162E-07 

 

0.00162E-07 

 

Standard 

deviation 

 

4.44848E-07 

 

0.160E-07 

 

0.001467E-07 

     Method 

 

 

Feature 

 

SA 

Downhill 

simplex 

method 

 

PSO 

 

Computational 

time  

(second) 

 

2910.885082 

 

285.011996 

 

45.777919 

 

Average of 

error rate 

 

 

1.56E-15 

 

2.94E-15 

 

0.192E-15 

 

Standard 

deviation 

 

2.70E-15 

 

5.08386E-

15 

 

0.168E-15 
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biosynthesis pathway are Aspartokinase, β-Aspartate 

semialdehyde dehydrogenase, Dihydropicolinate synthase, 

Piperidine-2,6-dicarboxylate dehydrogenase, N-succinyl-2-

amino-6ketopimelate synthase, Succinyl diaminopimelate 

aminotransferase, Succinyl diaminopimelate desuccinylase, 

Diaminopimelate epimerase, and Diaminopimelate 

decarboxylase [15], whereas there are only five enzymes 

(aspartokinase,β-aspartate semialdehyde dehydrogenase, homose 

rine dehydrogenase, homoserine kinase and threonine synthase) 

for Threonine biosynthesis pathway [15] and four enzymes 

(Acetolactate synthase (also known as acetohydroxy acid 

synthase), Acetohydroxy acid isomeroreductase, Dihydroxyacid 

dehydratase and Valine aminotransferase) for  Isoleucine 

biosynthesis pathway [15]. 

  In addition, the graph produced as in Figure 5 shows the 

comparison of experimental line with three simulated lines 

produced by PSO, SA and downhill simplex method.  Before the 

comparison was made, the lines were in steady-state to ensure the 

accuracy of the result. The simulated line produced by PSO is the 

closest to the experimental line. The standard deviation value that 

is closer to 0 and the small difference between standard deviation 

value and average of error rate show that the consistency of PSO 

was high when this method was used to estimate the kinetic 

parameters value of Isoleucine. 
 

 

Figure 5  Comparison of simulated line of SA, downhill simplex method 
and PSO with experimental line for Isoleusine production 
 

 

  PSO had the smallest average of error rate, standard 

deviation values closer to 0 and the simulated line closer to the 

experimental line. The results obtained show that PSO 

outperformed SA and downhill simplex method in estimating 

kinetic parameters of Lysine, threonine and Isoleucine. It also 

shows that PSO is the most consistent method used in this 

research. The use of GA to estimate the kinetic parameters easily 

gets stuck in local minima and as a result, the accuracy of the 

kinetic parameters values will be low. This can be solved by using 

PSO due to the inertia weight taken into account in PSO which 

was able to avoid being stuck into local minima by increasing the 

global search ability. The inertia weight produced the balance 

between the local and global exploration and exploitation. The 

computational time used to estimate the kinetic parameters is 

higher by using other algorithms and this can be solved by using 

PSO, proven by the short time taken in this research. This is the 

result of PSO which is inspired by bird flocking, fish schooling 

etc which does not require generation of new population for each 

iteration, which is time-consuming, but each particle from the 

same population will fly to better solution in each iteration. 

Hence, this decreases the time complexity. Furthermore, the steps 

involved in PSO are less complex compared to other algorithms 

such as GA which need to undergo selection, mutation and 

crossover. Besides that, the appropriate acceleration constant in 

PSO is able to ensure each particle fly towards pbest and gbest, 

which then lets PSO be able to converge to the best solution faster 

compared to other algorithms. If the constant value is too low, the 

particle will tend to move away from the best solution; at the same 

time the high value of acceleration constant will make the particle 

pass the target.   

 

 

4.0  CONCLUSION 

 

In conclusion, the performance of PSO in estimating parameter 

values is better than SA and downhill simplex method after the 

implementation of PSO into SBToolbox in MATLAB. The 

simulated results generated by PSO are more consistent, as the 

standard deviation value is closer to 0 compared to SA and 

downhill simplex method. The graph also shows that the 

simulated line of PSO is closer to experimental line. Moreover, 

the computational time to estimate parameter values for SA and 

downhill simplex method are longer compared to PSO. This is 

due to PSO which applies inertia weight to obtain a balance 

between the local and global exploration and exploitation to avoid 

getting stuck into the local minima. In addition, PSO takes a 

shorter time to converge to best solution. Besides that, the 

acceleration constant that is taken into account in the equation 

ensures that each particle is pulled towards the pbest and gbest 

positions. In this research, value 2 was applied. In conclusion, 

Parameter Estimation through experiment is time consuming, 

hard and expensive. However, the implementation of PSO into 

SBToolbox manages to reduce the computational time for 

parameter estimation. It also reduces the complexity and the cost 

needed to use to estimate the kinetic parameters since the 

estimation only involves the use of computer. For future work, 

the number of run may be increased to ensure the accuracy of the 

method and more different weight parameters can be 

implemented to enhance the performance of PSO. 
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