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Abstract 
 

The identification of change points in statistical process control (SPC) data is the critical criterion for multivariate techniques 

when output is out-of-control condition. Therefore, monitoring all independent variables is essential and demands targeted 

attention to avoid errors at the systems control stage. However, estimating change-point in multivariate control charts is the 

main problem when these correlated quality characteristics monitor together. Therefore, we proposed a combination of an 

ensemble learning-based model of artificial neural networks with support vector machines to monitor process mean vector 

and covariance matrix shifts simultaneously to estimate the change point in a multivariable system. The performance of the 

final model indicated an estimated changing point with one sample over 6,000 simulated cases with a probability of 98 

percent, which is a significantly high accuracy rating. Finding suggests the outcome of the project confirms that the proposed 

model can provide a precise estimating the change point by monitoring the mean vector and the covariance matrix 

simultaneously and, helps to identify those variable(s) responsible for an out-of-control condition. For further validation of the 

model, the performance of the proposed model has been compared with previous reported which confirms a better 

performance of the proposed model. Finally, the model was applied to monitor the performance of the solar hydrogen 

production system and the model identify the variables which have negative effects on the performance of the system.  

 

Keywords: Multivariate normal process, simultaneous covariance matrix and mean vector, artificial neural networks (ANN), 

support vector machine (SVM), change point 

 

Abstrak 
 

Pengenalpastian titik perubahan dalam data kawalan proses statistik (SPC) adalah kriteria kritikal untuk teknik multivariate 

ketika output berada di luar kawalan. Oleh itu, memantau semua pemboleh ubah bebas adalah penting dan menuntut 

perhatian yang tepat untuk mengelakkan kesilapan pada tahap kawalan sistem. Walau bagaimanapun, mengira titik 

perubahan dalam carta kawalan multivariat adalah masalah utama apabila ciri-ciri kualiti berkorelasi ini dipantau bersama. 

Oleh itu, kami mencadangkan gabungan model berasaskan rangkaian saraf tiruan berasaskan pembelajaran ensemble 

dengan mesin vektor sokongan untuk memantau proses vektor dan perubahan matriks kovarians secara serentak untuk 

menganggarkan titik perubahan dalam sistem berbilang variabel. Prestasi model akhir menunjukkan titik perubahan yang 

dianggarkan dengan satu sampel lebih dari 6.000 kes simulasi dengan kebarangkalian 98 peratus, yang merupakan 

penilaian ketepatan yang sangat tinggi. Penemuan menunjukkan hasil projek mengesahkan bahawa model yang 

dicadangkan dapat memberikan anggaran tepat titik perubahan dengan memantau vektor min dan matriks kovarians 
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secara serentak dan, membantu mengenal pasti pemboleh ubah yang bertanggungjawab untuk keadaan di luar kawalan. 

Untuk pengesahan lebih lanjut model, prestasi model yang dicadangkan telah dibandingkan dengan laporan sebelumnya 

yang mengesahkan prestasi model yang dicadangkan lebih baik. Akhirnya, model ini digunakan untuk memantau prestasi 

sistem pengeluaran hidrogen suria dan model mengenal pasti pemboleh ubah yang mempunyai kesan negatif terhadap 

prestasi sistem tersebut. 

 

Kata kunci: Proses normal multivariat, matriks kovarians serentak dan vektor min, rangkaian neural buatan (ANN), mesin 

vektor sokongan (SVM), titik perubahan 

 

© 2022 Penerbit UTM Press. All rights reserved 

 

  

 

 

1.0 INTRODUCTION 
 

In recent years competitive market and industry, the 

quality of a product or service is no longer measured 

by a single variable; however, several variables define 

the final product or service quality. It has known that 

these quality variables of products or services have 

correlated with each other, and it is essential to 

monitor them simultaneously. One of the main 

challenges in deploying multivariate control charts is 

identifying which elements are responsible for the 

control charts' out-of-control signal and identifying 

delay time as named change-point [1-4]. 

In the last decades, statistical process control (SPC) 

charts were the most popular tools to monitor the 

stability and variability of the industrial application [5-

8]. The SPC charts have been utilized to identify either 

method is statistically under or out of control condition; 

however, the presence of autocorrelation and a 

specific pattern in the data cannot provide the 

possibility of correctly, quickly detecting, and 

classifying the existing fault [9-11].  It is crucial  a quick 

detection of these shifts, and their causes for 

promoting required action at earlier stage of 

production [12, 13]. Many researchers proposed 

alternative monitoring processes like integrating SPC 

with ANNs to solve the SPC method's limitation. ANNs 

are enormously parallel computational systems that 

simulate a human brain. It has been reported that 

ANNs showed acceptable performance for a wide 

range of applications [14-16]. Furthermore, the highly 

reliable ANNs results provide a new platform for SPC 

during the last decade [17]. Applying ANNs in the 

detection of mean and/or variance shifts in the 

process assists in the interpretation of automating SPC 

plots [18]. Therefore,researchers have paid excellent 

attention to the ANNs to determine the change point 

by varying the mean vector because of its quite 

satisfying efficiency compared to other techniques. 

For instance, Ahmadzadeh et al. [19]  add the 

sentence related their work Amiri et al. [20]  write a 

new sentence about Amiri work. have utilized an 

exponentially weighted moving average (EWMA) 

control chart to show out-of-control condition which 

was integrated with the supervised learning method 

to estimate the step-change point in the mean vector 

of a multivariate normal process. In another work, 

Atashgar [21] displayed a supervised learning ANN to 

detect the change point with a linear trend in the 

mean vector of the bivariate neural network. The 

primary outcome of these results showed that the 

modified ANNs could identify the step point change in 

the mean vector, recognize out-of-control situations, 

and the variable or variables that contributed in the 

changes. This strategy is also able to measure change 

point and deviation variables. However, all reported 

works only identify the change point with the mean 

vector without considering covariance matrix 

changes [14, 18, 22].  

Meanwhile, other researchers looked at changing 

points in the multivariate Covariance Matrix (MCM) 

using the ANN algorithm method  [19]. Control charts 

based on the sample covariance matrix, such as can 

presents only shifts that change the determinant's 

value. Thus, considerable work was dedicated to 

reviewing change points for the multivariate mean; 

however, detecting structural in the covariance 

matrix has not been studied in the literature.  

Aue et al. [20] developed nonparametric point of 

change estimates based on the well-known CUSUM 

method for a fixed dimension. Dette, H. and D. Wied 

[21] had proposed a general approach to identify 

essential change points in a time series parameter. 

Furthermore, Kao et al. [22] show that big dimensional 

stability tests of the significant covariance matrix, 

extreme size distortions result. On the other hand, 

Firouzi et al. [23] performed the first-ever inspection of 

control conditions using the MEWMS (multivariate 

exponentially weighted mean Square) construct, 

followed by the ANN algorithm, for appraising change 

points. Our team reported integrating the covariance 

matrix with the ANN algorithm without considering the 

mean vector. However, all stated models have not 

affected a practical approach. It is essential to 

consider changing the covariance matrix on the 

mean-vector in the multivariate process. A successful 

monitoring program requires monitoring both mean 

vector and covariance matrix shifts, the importance 

of simultaneously monitoring process mean and 

variability has been increased [24].  

This paper proposes a novel approach to estimate 

the change point's precise location by considering the 



87                                       Alireza Firouzi et al. / Jurnal Teknologi (Sciences & Engineering) 84:1 (2022) 85–96 

 

 

covariance matrix and mean vector simultaneity. 

Firstly, the MEWMS and MEWMA(multivariate 

exponentially weighted moving average control 

charts are utilized to identify the control or occ 

situation and compare it together. when each control 

chart has been shown a faster signal occ condition, 

then we can start estimating the change point and 

also investigate the assignable cause(s). Secondly, 

the ANN(fitting)-SVM(classifier) method is applied to 

determine the status of the change point. and finally 

with one illustrated example, can be the accuracy of 

this method. 

 

 

2.0 METHODOLOGY 
 

We present the machine learning algorithm 

procedure as a preliminary study on process 

simulation, a change-point estimation model, a 

support vector machine, classification for the cause of 

out-of-control conditions, an estimator algorithm, and 

the performance appraisal of a merged ANN method 

with SVM.  

 

2.1. Algorithm Procedure 

 

In general terms, a system is identified by its 

parameters, including  𝑀𝑒𝑎𝑛 (Μ) = [𝜇𝑖] and 

Covariance (Σ) = [𝜎𝑖𝑗]. The correlation matrix is 

defined by equation (1): 

 

 𝑟𝑗𝑘 =
∑ (𝑋𝑖𝑗

𝑛
1=1 −𝑋̅𝑗)×(𝑋𝑖𝑘−𝑋̅𝑘)

√∑ (𝑋𝑖𝑗
𝑛
1=1 −𝑋̅𝑗)2×√∑ (𝑋𝑖𝑘

𝑛
1=1 −𝑋̅𝑘)2

                      (1)                                                                             

 

Here, it is assumed that the correlation matrix is 

constant during the process control. When the 

correlation matrix is constant, then there are (2n) 

independent variables, n mean (M) and n sigma (∑) 

values in the system.  

If in control, statistics are expressed by zero indices, 

then a change in µ and Ʃ causes a change in all 

statistics elements since the parameters are 

correlated. Equations (2) and (3) help us make a new 

distribution, utilizing simulation where 𝜎 is a vector of 

change in standard deviations and 𝛿 is a standard 

deviation shift. 

 

𝑀 = 𝑀0 + ∆𝑀 × 𝑃            (2)

                                         

 

Ʃ = [
δ1

2σ1
2 ρδ1δ2σ1σ2

ρδ1δ2σ1σ2 δ2
2σ2

2 ]                   (3)              

                                        

The assumptions of the simulation are: (i) out of 

control does not alter the probability distribution of the 

variables, and (ii) variables follow a multivariate 

normal distribution. The new statistics were calculated 

using the formula mentioned earlier to simulate new 

random numbers when a change in statistics 

happens. The multivariate standard distribution as 

seen with Equation (4) is as follows: 

 

  𝑁(𝑀, Σ) = (2𝜋)−
𝑛

2|Σ|−
1

2 𝑒(𝑋−𝑀)𝑇Σ−1(𝑥−𝑀)
  (4)

                                                                 

 

In mathematical form: 𝑋0 ∼ 𝑁(𝑀0,  Σ0)  and 

after the change: 𝑋 ∼ 𝑁(𝑀, Σ).These are (2n) 

independent variables in which their variations 

change the distribution parameters mean and n 

standard deviation changes at constant correlation 

assumption to determine the changes' scenarios. 

Therefore, there are 22n-1 scenarios of changes, 

excluding the no-change procedure. 

 

2.2. Preliminary Study on Process Simulation 

 

The MATLAB multivariate normal random generator 

was used to simulate the process. This function helped 

yield random numbers with a multivariate normal 

distribution, with a given M and σ. A set of random 

numbers was developed, and the mean and the 

covariance matrix are evaluated and recorded for 

each sample size. There were two sections for the 

simulation algorithm: (1) simulating an under-control 

system and (2) simulating the system after changing 

standard deviation or means value. The first part had 

a run the length of 50 samples, and the only simulation 

run for the process remained under control, and the 

data was kept final calculations. We explored these 

sample sizes, either process is in-control or out of 

control condition, by two statistics of MEWMA and 

MEWMS [23]. MEWMS has monitored variability in the 

multivariate process. Let 𝑋1, 𝑋2, . . . . , 𝑋𝜏 , 𝑋𝜏+1, . . . , 𝑋𝑇 are 

independent vectors from observations in which X is a 

normal distribution with p variables. the control chart 

of MEWMS discovered the occurred shift in the mean 

and  Variability the control statistic in equations (5) 

and (6) of the chart as follow see Firouzi et al. (2020):  

 

𝑌𝑖𝑗 = ∑ (𝑋𝑖𝑗 − 𝜇0

−
1

2
0 )                                              (5) 

 

𝑆𝑡 = (1 − 𝜆)𝑆𝑡−1 +
𝜆

𝑛
∑ 𝑌𝑖𝑗𝑌𝑖𝑗

′𝑛
𝑗=1                        (6) 

 

After the change is triggered in the second step, a 

new random of 100 samples are generated, and 

control chart statistics are evaluated.  

 

2.3. Change Point Estimation Model 

 

For the main algorithm, 22n-1 scenarios for each 400 

sample are generated and followed by determining 

control chart statistics, mean vector, and covariance 

matrix. For each sample runs, two sets of machine 

learning inputs (I1 and I2) were chosen. I1 inputs 

entailed the vector of mean and covariance matrix. 

Meanwhile, I2 inputs comprised entirely of the vector 
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of control chart statistics, as shown in Equations (7) 

and (8) below:  

 

𝐼1 = [𝑀1:100
𝑇   (Σij)(1:100)

]    (7) 

𝐼2 = [𝑇𝑀𝐸𝑊𝑀𝐴1:100
  𝑇𝑀𝐸𝑊𝑀𝑆1:100

]   (8) 

 
2.4. Support Vector Machine (SVM) 

 

Supervised Learning is the most common paradigm for 

performing the machine learning (ML) process. It has 

widely used for data where there is an accurate 

mapping between input-output data. The Supervised 
Learning algorithm identifies the features explicitly 
and carries out predictions or classification 

accordingly [25]. As the training period progresses, the 

algorithm can identify the relationships between the 

two variables to predict a new outcome. It shows that 

supervised learning algorithms are task oriented. SVM 

is a supervised learning algorithm that analyses data 

for classification and regression analysis [26]. A 

supervised learning algorithm that consists of the 

Gaussian process (GP) can predict the value of an 

unseen point from training data by employing 'lazy 

learning' and measuring the similarity between those 

points in question (the kernel function) [27, 28]. 

Therefore, Equation (9) leans on the provisions of the 

Gaussian construct for representation regarding the 

probability density function of a normally distributed 

random variable with the expected value μ  and 

variance σ2  set as follow: 

 

    𝑔(𝑥) =
1

𝜎√2𝜋
exp (−

(𝑥−𝜇)2

2×𝜎2 )               (9) 

 

2.5. Classification for the Cause of Out of Control 

 

A classifier model is required to clarify whether the 

cause is a change in mean vector only, standard 

deviation vector, or both mean and standard 

deviation. Because a control chart sometimes fails to 

prompt an out-of-control (OOC) signal. Therefore, 

there is not a record for length of change, which a 

program should chart instead of landing at a finite 

length of value. The cause of out-of-control must be 

evaluated at the initial stage to diminish the 

condition's effects on the predictor's accuracy. 

.. , n... Here, we applied different sets of classifiers to 

SVM data to achieve the highest level of accuracy 

with all cases. Two inputs (I1 and I2) were designed to 

classify the cause. To create an accurate model, we 

set the classifier with several approaches, including 

whether a set of input relates to (1) a mean (M) 

changes only or (2) standard deviation (σ) changes 

only or (3) change in both parameters. Table 1 shows 

the overall strategy, including the input of symbols and 

targets for each approach. 

 

 

 

Table 1 The details of classifiers for each cause of OOC 

 

Symbol 
Input 

variable 
Target 

A         I2 Whether the cause  only changes in M 

B         I2 

Whether the cause  only changes in 𝝈 

vector 

C         I2 Whether the cause  changes in both 

D         I1 Whether the cause  only changes in M 

E         I1 

Whether the cause  only changes in 𝝈 

vector 

F         I1 Whether the cause changes in both 
I: input, M: mean, and σ: sigma 

 

 

2.6. Design Estimator Algorithem  

 

The MATLAB classification toolbox is applied to 

examine all existing classifiers to indicate the best 

classification model. Upon designing the models for all 

three classifiers, finding fitters for each designated 

classifier is necessary. Therefore, ANN is utilized per the 

rules Levenberg and Bayesian. Furthermore, the 

number of hidden layers is varied to identify the effect 

on the accuracy of output. The number of one and 

three layers are for the Bayesian rule.Meanwhile, three 

and five hidden layers are for the Levenberg rule. The 

R square (R2) for test and train is measured to evaluate 

the accuracy. Training (classifiers and fitters) and 

testing are applied for 85% and 15% of all models' 

data, respectively.  

After developing the models, the distance or 

length (L) between the first out-of-control point on the 

chart and the change trigger point were recorded for 

each simulated sample run. Length of change on 

MEWMS and MEWMA control charts were labelled LS 

and LM, respectively. The following algorithm is used for 

estimating the size as follow: 

 

• Construct the input I2 based on the statistics of 

the control charts. 

• Using the M only classifier (SVM), monitor if the 

cause of change in M only. 

• If the cause of change is M only, calculate the 

L using the corresponding fitter. 

• If the cause is not M only, detect with 𝜎 only 

classifier (SVM) if the reason is 𝜎 only. 

• If the cause is 𝜎 only, calculate L using the 

corresponding fitter.  

• Using both case classifiers (SVM), detect if the  

Figure 1: Algorithm of the estimator 

• change is in both parameters.  

• If the change is in both parameters, using the 

corresponding fitter, estimate L.  
 

If none of the cases above is detected, then calculate 

the length, as shown in Equation (10): 

 

𝐿 =
𝐿𝑀 𝑜𝑛𝑙𝑦+𝐿𝜎 𝑜𝑛𝑙𝑦+𝐿𝑏𝑜𝑡ℎ

3
                                (10) 
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The above procedures are visualized in Figure 1. The 

simulated data is applied for the testing procedure; 

however, actual data can be utilized from a process 
 

 
 

Figure 1 Algorithm of the estimator 

 

 

2.7 Evaluating the Estimation Performance 

 

Upon completing the estimator model, its 

performance should be appraised, as illustrated in 

Figure 2. Hence, a large sample set is simulated, which 

is different from the training sample set, and the length 

of change is estimated using the developed model. 

Then, the error is assessed, and from the estimated 

error, the probability density function (PDF) of the error 

is calculated. After calculating the error PDF, the 

confidence interval for the error is estimated. 

 

 
Figure 2 Algorithm of the estimator 

3.0 RESULTS AND DISCUSSION 
 

3.1 Analysis of the Outcomes of SVM Gaussian 
 

Multiple models were used to locate the most suitable 

classifier with two sample sizes of 100 and 400 for 15 

scenarios, as illustrated in Figures 3 and 4. Notably, 

increasing the sample size affected the performance; 

however, the SVM Gaussian with medium size 

revealed robust performance in both cases. 
 

 
 

Figure 3 Accuracy of different classifiers (refer to Table 1) with 

a sample size of 100 for each scenario 
 

 
 

Figure 4 Accuracy of different classifiers (refer to Table 1) for 

the sample size of 400 for each scenario 
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The outcome of Figures 3 confirm that SVM medium 

Gaussian shows the best accuracy, and thus  it was 

applied in the models for what. Afterward, the cause 

of the change was identified by modelling and 

adopting three classifiers. These charts revealed that 

the I2 input has higher accuracy and is 

computationally less expensive for classification than 

I1. Therefore, it stands that the MEWMS control chart 

charts were accurately modelled as a part of the 

relationship shared dimension reduction [18]. 

For the next step, we applied the best classifier to 

determine the best regression model and settings. The 

multiple models were developed using an ANN fitter 

with different settings, with a similar procedure used for 

the classifier. We compared Levenberg-Marquardt , 

Bayesian rules and the number of hidden 

layerstogether  R2 test, R2 train, and R2 validation are 

shown in Tables 2 and 3 for Levenberg and Bayesian 

rules, respectively. The results confirm that a lower 

number of hidden layers show better performance on 

the R2 test, signaling possible overfitting in a high 

number of hidden layers [23]. 

 

 

Table 2 R2 results for ANN model with Levenberg rules 
 

Model No. Input Target Cause of out of control R2
train R2

validation R2
test 

The number of hidden layers: 3 

1 I1 LS Change in M only 90.04 87.04 88.70 

2 I1 LM Change in M only 94.33 81.16 80.90 

3 I1 LS Change in σ only 90.25 54.30 47.60 

4 I1 LS Change in both 86.28 63.63 64.69 

5 I1 LM Change in both 86.05 80.00 80.01 

6 I2 LM Change in M only 96.93 93.42 93.38 

7 I2 LS Change in M only 94.96 90.06 90.5 

8 I2 LS Change in σ only 92.48 87.49 86.88 

9 I2 LM Change in both 95.45 92.87 93.03 

10 I2 LS Change in both 96.85 92.60 94.10 

The number of hidden layers: 5 

1 I1 LS Change in M only 86.01 52.65 53.27 

2 I1 LM Change in M only 90.40 74.23 72.95 

3 I1 LS Change in σ only 90.90 42.91 34.51 

4 I1 LS Change in both 81.40 58.19 54.17 

5 I1 LM Change in both 87.00 78.48 78.71 

6 I2 LM Change in M only 96.87 94.18 94.14 

7 I2 LS Change in M only 96.03 85.80 84.78 

8 I2 LS Change in σ only 92.60 85.95 84.56 

9 I2 LM Change in both 95.03 93.93 92.73 

10 I2 LS Change in both 97.39 94.25 94.03 

I: input, M: mean, and σ: sigma 

 

Table 3 R2 results for ANN model with Bayesian rules 

 

Model No. Input Target Cause of out of control R2 
train R2

validation R2
test 

The number of hidden layers: 1 

1 I1 LS Change in M only 83.11 0 66.52 

2 I1 LM Change in M only 92.45 0 86.82 

3 I1 LS Change in σ only 80.58 0 56.00 

4 I1 LS Change in both 91.70 0 61.8 

5 I1 LM Change in both 85.61 0 81.77 

6 I2 LM Change in M only 88.29 0 87.93 

7 I2 LS Change in M only 95.45 0 93.13 

8 I2 LS Change in σ only 90.14 0 92.44 

9 I2 LM Change in both 92.25 0 90.98 

10 I2 LS Change in both 97.72 0 92.36 

The number of hidden layers: 3 

              1    I1   LS Change in M only 96.85 0 57.05 

              2    I1   LM Change in M only 93.75 0 80.63 

              3    I1   LS Change in σ only 96.84 0 38.76 

              4    I1   LS Change in both 93.95 0 36.23 

              5    I1   LM Change in both 95.02 0 87.00 

              6    I2   LM Change in M only 94.78 0 90.32 

              7    I2   LS Change in M only 97.81 0 93.91 

              8    I2   LS Change in σ only 100.0 0 42.98 

              9    I2   LM Change in both 100.0 0 60.01 

            10    I2   LS Change in both 99.95 0 82.76 
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Figures 3 and 4 illustrate R2 test  for the different number 

of hidden layers based on Tables 2 and 3, respectively. 

For both Figures, models 1 to 5, corresponding to I1, 

demonstrate lower accuracy than models 6 to 10, 

relating to I2. Moreover, it can be observed that I1 has 

a lower accuracy than I2. Therefore, choosing I2 input 

is more promising than I1. Figure 3 and Table 2 

represent three hidden layers with a higher R2 test than 

five hidden layers in the Levenberg rules. Furthermore, 

five hidden layers modes also show R2 train results, 

which are a sign of overfitting. Thus, three hidden 

layers are chosen because both the R2 train and R2 test 

are high; typically, it means the model is well trained 

with little chance of overfitting [29]. Figure 4 and Table 

3 show the analysis of the data for the Bayesian 

model. In this model, there is no R2 validation, and one 

hidden layer model shows much better values in terms 

of the R2 test than the three hidden layers model. 

Figure 5  displays the compare R2 test to 3 and 5 

hidden layers for Levenberg rules. As we can see, 3 

hidden layers are better than 5 hidden layers. 

 

 
Figure 5 R2 test for different modelsfrom Levenberg rule 

 

 
 

Figure 6 R2 test for different models from  Bayesian rules 

 

 

Figure 6 reveals the compare R2 test to 3 and 5 

hidden layers for Bayesian rules as shown that one 

hidden layer is better than 3 layers. 

The error histogram graph, extracting from Tables 2 

and 3, are presented in supplementary information 

Figures 1S, 2S, and 3S. Error distribution for Levenberg 

models are flatter than Bayesian rules; however, both 

cases become sharper when hidden layers increase. 

Additionally, the mean change for each model only 

shows more extended distributions. The MEWMA chart 

is less sensitive to the changes, and the length of 

change is significantly larger, increasing or extending 

the possible error values over a larger domain[30]. 

Moreover, the training error is more sharply distributed 

over a small amount around the origin, and the test 

errors are more widely distributed with a lower R2 test. 

The sign of overfitting is observed on higher hidden 

layers more than a lower number of hidden layers. The 

Levenberg rule models are more accurate than 

Bayesians and more stable when the number of layers 

changes. Therefore, selecting the Levenberg rule with 

three hidden layers for models' numbers 6 to 10 with 

better input is possible. R2 test data, one may choose 

the best predictor for input I2 for models' number 6 to 

10 except for model number 8, which corresponds to 

change in standard deviation only. Therefore, a 

Bayesian model with one hidden layer is selected for 

model number 8. Table 4 and Figure 7 (a) to (c) show 

the models chosen for each estimator area.  

 
Table 4 Selected fitting models for each cause of change 

 

 
Figure 7 The selected error histogram for each estimator 

areas in where (a) run number 7, (b) run number 8, and (c) 

run number 10 

 

 

 

 

 

 

 

 

 

Model 

No. 

Cause of  

out of control 
Target 

Number 

of layers 
Rule 

7 Change point if  

M changes only 
Ls 3 Levenberg 

8 Change point if  

σ changes only 
Ls 1 Bayesian 

10 Change point of  

both are changing 
Ls 3 Levenberg 
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3.2 Fitting PDF Error and Evaluate CI  

 

It is worth mentioning that model number 6 with target 

LM with higher R2test was not chosen since LS target 

shows better performance than LM even for changes 

in M only. Two sets of error data are calculated to 

compare these two models. In the first set, the error is 

calculated when the fitter with Lm target is used for 

change in mean only, which is model number 6 in 

Table 2. The corresponding error and pdf for this case 

are shown with subscript 1 (set1). The second set is the 

error data when model 7 is used, denoted with 

subscript 2 (set2). Figure 8 shows the probability 

distribution for error for each case. One exciting fact is 

that, despite the higher R square, the error distribution 

for model 6 is flatter than 7, and the confidence 

interval for 7 is better than 6. The fact is that the R 

square shows the correlation, while the plot here is the 

error itself. MEWMA is less sensitive to the change than 

MEWMS, and the absolute value of error for MEWMA is 

higher than MEWMS. For this reason, all selected 

models include Ls unless the control chart MEWMS 

does not show any out of control. 

 

 
Figure 8 PDF and error histogram for the two error sets 

 

 

The confidence intervals are plotted in Figure 9 

and Table 5 for two sets based on the obtained 

probability distribution for error. Set2 shows higher 

values for a reason discussed earlier. The Z is the value 

that in Equation (10) a follow: 

 

𝑃(|𝑒| ≤ 𝑍) = 𝛾               (10) 

 

 

The graph shows that with the confidence of 98%, 

the estimated length of change is only one sample 

apart from the real change point, which is a significant 

accuracy.  

 

 

 
Figure 9 Confidence intervals (CI) corresponding to the 

discrete error 

 
Table 5 Discrete values for confidence intervals 

 

 𝐞 = 𝟎 |𝐞| ≤ 𝟏 |𝐞| ≤ 𝟐 |𝐞| ≤ 𝟑 |𝐞| ≤ 𝟒 

Set1 0.5810 0.9847 0.9999 0.9999 0.9999 

Set2 0.6630 0.9960 0.9999 0.9999 0.9999 

 

 

3.3 Validation of Proposed Model  

 

The change point estimators were verified for a 

designed continuous solar hydrogen production 

system (Figure 4S)  to control the electrolyte 

concentration and temperature on system 

performance.[31] Two critical quality characteristics 

are considered: temperature (X1) with a specification 

of 75oC ± 1 and glycerol concentration (X2) with a 

specification of 5M ±1.  To apply the model, we 

organized all hydrogen production data in 100 sample 

sets in which each sample contains ten points of data 

simulated for two parameters. The total accumulative 

data size is 2000 data points; thus, presenting all data 

is not possible, and only control charts statistics are 

shown for each sample in Table 6. Figures 10 and 11 

show the comparison between proposed change 

point estimators for MEWMS and MEWMA control 

charts, respectively. 
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Table 6 Control Chart Statistics for all data 

 

Sample MEWMA MEWMS Sample MEWMA MEWMS Sample MEWMA MEWMS 

1.000 0.220 2.158 35.000 0.064 1.981 69.000 39.132 12.027 

2.000 0.170 2.083 36.000 0.176 1.974 70.000 47.427 12.882 

3.000 0.007 2.167 37.000 0.078 2.081 71.000 47.475 12.507 

4.000 0.031 2.109 38.000 0.148 2.067 72.000 54.597 13.111 

5.000 0.068 2.171 39.000 0.045 2.117 73.000 53.138 13.708 

6.000 0.031 2.124 40.000 0.009 2.071 74.000 54.821 13.202 

7.000 0.164 2.093 41.000 0.118 2.070 75.000 50.872 13.093 

8.000 0.060 2.138 42.000 0.060 2.130 76.000 54.539 13.741 

9.000 0.122 2.022 43.000 0.020 2.173 77.000 55.176 13.828 

10.000 0.210 2.135 44.000 0.030 2.239 78.000 55.410 13.664 

11.000 0.167 2.151 45.000 0.067 2.221 79.000 54.488 13.137 

12.000 0.070 2.224 46.000 0.034 2.126 80.000 55.939 13.401 

13.000 0.062 2.215 47.000 0.066 2.005 81.000 63.141 13.657 

14.000 0.008 2.236 48.000 0.082 1.980 82.000 65.082 13.546 

15.000 0.196 2.164 49.000 0.229 2.000 83.000 69.195 13.698 

16.000 0.065 2.125 50.000 0.137 2.005 84.000 70.978 13.278 

17.000 0.001 2.143 51.000 0.194 2.975 85.000 59.042 12.612 

18.000 0.039 2.045 52.000 0.752 3.860 86.000 53.627 13.040 

19.000 0.124 2.060 53.000 2.871 5.325 87.000 60.694 13.290 

20.000 0.183 2.084 54.000 7.300 6.487 88.000 57.566 13.684 

21.000 0.096 2.103 55.000 9.055 7.175 89.000 64.195 14.734 

22.000 0.047 2.034 56.000 12.777 7.622 90.000 65.873 14.778 

23.000 0.048 1.999 57.000 15.411 8.248 91.000 77.515 15.490 

24.000 0.026 2.012 58.000 15.872 8.483 92.000 76.902 16.103 

25.000 0.163 2.182 59.000 18.247 8.965 93.000 72.515 15.272 

26.000 0.140 2.219 60.000 22.643 9.217 94.000 68.343 15.110 

27.000 0.367 2.358 61.000 24.484 9.948 95.000 66.492 15.246 

28.000 0.138 2.361 62.000 25.560 9.687 96.000 67.842 15.274 

29.000 0.109 2.263 63.000 31.523 10.660 97.000 67.247 15.633 

30.000 0.036 2.180 64.000 31.923 10.841 98.000 68.954 15.511 

31.000 0.013 2.068 65.000 34.527 10.635 99.000 64.949 15.795 

32.000 0.013 1.974 66.000 38.468 10.656 100.000 63.087 15.758 

33.000 0.042 1.885 67.000 43.173 11.025    

34.000 0.021 1.951 68.000 42.789 11.708    

 

 

Both charts show out-of-control (OOC) conditions, 

upper control chart limit (UCL)  control chart statistics, 

and OOC detected. The CPA is an actual change 

point at set sample 50, and CPE is an estimated 

change point by the model developed here. The error 

is less than one, so considering the integer value, the 

accuracy of ±1 sample here. In this case, the 

calculated value is precisely 50 if the bracket function 

applies to the result. In both charts, the distance 

between OOC and CPA is the length of change 

(actual).  The results show that hydrogen production 

performance gradually dropped after increasing the 

temperature by more than 75oC, while glycerol 

concentration negatively affected hydrogen 

production in Figure 10 shown changepoint in the 

MEWMS control chart in out-of-control conditions. 
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Figure 10 MEWMS Control Chart shows the estimate change 

point after out-of-control condition 

 

 

Figure 11 presents change point estimation to 

consider using the MEWMA control charts. To 

compare about two control charts, MEWMS is better 

than MEWMA to control conditions. 
 

 
 

Figure 11 MEWMA control chart shows the estimated change 

point after out-of-control condition 

 
 

3.4 Comparison with Another Estimator 

 

Comparison performance of the method current 

study with proposed ANN-SVM compare with 

Ahmadzadeh et al. [32] is estimating mean change 

with using ANN method and used MEWMA control 

chart is provided in Table 7.  

 
Table 7 comparison current study with Ahmadzadeh et al. 

[20] for p=2, ∆μ1 

 
 

 𝐞 = 𝟎 
|𝐞|
≤ 𝟏 

|𝐞|
≤ 𝟐 

|𝐞|
≤ 𝟑 

|𝐞| ≤ 𝟒 

My study ANN-

SVM 
0.663 0.9960 0.9999 0.9999 0.9999 

Ahmadzadeh 

et al [20]  

ANN 6E-10 0.9875 0.9999 0.9999 0.9999 

 

 

As it can be shown in Table 7, As we can be seen, 

the error of zero, to the estimator of this study 0.663 

and for another estimator near 0 and error of one is 

0.9960 better than 0.9875, because of their case 

estimator has a shift, while the estimator of this study is 

near zero, the accuracy of the method in this study is 

more precise. On the other hand, given that the other 

of the errors have equal probability, then, we 

conclude that our method is more accurate, because 

mean of error for our study has been zero, but the 

other study near 1.23. 

 

 

4.0 CONCLUSION 
 

In this study, the integration of Artificial Neural 

Networks (ANN) with Support Vector Machine (SVM) 

as one of the new methods of ML  showed significant 

accuracy to estimate the change point. The 

consequences of this study have been shown the 

MEWMS is much more sensitive to change in statistics 

than the MEWMA chart. Also, the SVM medium 

gaussian classifier illustrates significant performance in 

classifying the cause of change. On the other hand, 

ANN with the Levenberg rule with I2 provides better 

accuracy when mean changes are involved, but, 

ANN with the Bayesian rule with I2 shows higher 

accuracy for changes in standard deviation only. 

Hence, The Ls statistics fitting model with a  lower 

absolute error is more suitable for estimating the 

length. The model provided here can estimate the 

change point with one sample difference over 6000 

tested cases (simulated) with a probability of 98%, 

which is an accurate and reliable model for a 

practical approach.  The model has the potential for 

further study on other machine learning algorithms, 

which results in lower time and resource consumption 

is a considerable contribution the outcome of this 

project shows the combination of a theoretical and 

experimental method for solar hydrogen production is 

a step-stone toward practical application by 

monitoring parameters during the experiment and 

enhance the performance of the system. To 

comparison this study with Ahmadzadeh et al. 

method,  the estimator for this study performs, better 

than the that estimator in terms of accuracy and 

validity. 
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Appendix  
 

Figure 1S Error histogram for training models in Table 2 for 

Levenberg rule with 5 hidden layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2S Error histogram for training models in Table 3 for 

Bayesian rule with 1 hidden layer (Model 8 is presented in 

the manuscript) 

 

 

 

 

 

 

 

 
Figure 3S Error histogram for training models in Table 3 for 

Bayesian rule with 3 hidden layers 

 

Overview of Continuous Solar Hydrogen Production 

Setup The Photoelectrochemical Layer-Integrated 

Cell with Nafion Separator (PeLICANS) is integrated 

with Dye-Sensitized Solar Cell (DSC). Each layer of the 

cell is purposefully designed to carry their respective 

functions within the cell. This ‘layered’ cell 

configuration is chosen as an innovative approach to 

conventional PEC cells, which are largely built around 

physical electrolyte reservoirs and have restrictions on 

future modifications. The green and seamless solution 

to this is integrating an innovative and standalone 

solar panel consisting of photoelectrochemical (PEC) 

cell with highly efficient bimetallic photocatalyst and 

dye solar cell (DSC) which operates well in diffused 

light into the façade of the building as walls. Applying 

light source on the surface of photoanode produces 

electron-hole pairs in the PEC cell. The excited 

electrons transfer The excited electrons can migrate 

to DSC and feed them back to the PEC cell's counter-

electrode (Pt) without applying extra bias. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4S Different sections of continuous solar hydrogen 

production setup 


