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Abstract 
 
In this article, a nonlinear dynamical investigation of porose functionally 
graded cylindrical panels using a proposed analytical model is carried 
out. The material's properties are considered to be porosity-dependent 
and graded in the thickness direction, corresponding to a power-law 
distribution. The classical shell theory, with the geometrical shape of 
nonlinear in von Karman–Donnell, is employed to get the Lagrange 
motion equations. By applying the Galerkin procedure, the system of 
nonlinear dynamic vibration equations is found. The natural frequencies 
and dynamic amplitude vibrations are obtained by using the fourth-
order Runge–Kutta approach. In numerical analyses, the effects of 
porosity factor, power-law index, porous FGM thickness, frequency–
amplitude relation, and excitation force on the dynamic response of 
thin functionally graded porous cylindrical panels are investigated. 
Through the obtained results, it is discovered that the porosity 
coefficients have important effects on the natural frequencies and 
amplitude of the nonlinear dynamic response of the FG structures. It 
leads to a reduction in natural frequencies by 5.74 % at 10% pores. 
 
Keywords: Non-linear vibration, Galerkin technique, porous functionally 
graded Materials, shell theory, cylindrical Panels  
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1.0 INTRODUCTION 
 
The cylindrical shell structures are numerously used as 
structural common components in different 

engineering areas involving aircraft engineering, 
aerospace engineering, and nuclear reactors [1]. In 
general, "functionally graded materials (FGMs)" can 
be divided into three categories: microstructural 
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gradients, chemical composition gradients, and 
porosity gradients [2]. The porous functionally graded 
material (PFGM) is one of the promising materials for 
these applications because it has excellent 
properties compared to other compounds, such as 
energy absorption potential, high strength, and low 
thermal conductivity [3]. Previous investigations 
studied the behavior of the mechanical properties of 
laminated composites and isotropic cylindrical shells 
[4]–[7]. Free vibration of a cylindrical shell is of 
significant interest for manufacturing and 
engineering design and has been considerably 
investigated by extant studies [8]–[11]. Loy et al. [12] 
investigated the vibration behavior of the cylindrical 
shells made of FGM, consisting of nickel and stainless 
steel. Bach [13] has an analytical study and used 
some well-known principles of nonlinear shallow shells 
to derive the governing equations. Chorfi and 
Houmat [14] adopted the first-order shear 
deformation theory (FSDT) with Von Karman’s 
assumptions, to study the non-linear free vibration of 
the FGM thick elliptical plan-form shallow shell by 
utilizing the (p-version) finite element method (FEM) 
and the blending function method. Mouthanna et al. 
[15] provided an analytical examination of the non-
linear natural frequencies of FG cylindrical panels 
subjected to the influence of various stiffeners' 
geometric shapes. Shi-Rong Li et al. [16] studied the 
free vibration of the circular shell with simply 
supported boundary conditions, the core formed of 
FGM, and the two outer surfaces made from the 
same homogeneous material. Bich et al. [17] 
presented an analytical approach to examine 
critical dynamic loads or stability and nonlinear 
dynamical responses of smeared eccentrically 
stiffened functionally graded material (ES-FGM) of 
cylindrical panels. Duc and Quan [18] investigated 
the nonlinear response of eccentrically stiffened 
cylindrical panels affected by mechanical loads 
resting on elastic foundations. Di Wu et al. [19] 
offered a numerical method to study the free and 
forced vibration of FG porous beams by using the 
finite element method. Akbaş [20] employed the 
Hamilton method and the finite element method to 
analyze forced vibration responses for FG porous 
beams subjected to dynamic load with porosity 
influences. Haichao Li [21] offered a semi-analytical 
solution by adopting Jacobi polynomials and Fourier 
series to investigate the characteristics of free 
vibration of the FG porous cylindrical shell under 
various boundary conditions. Barati and Zenkour [22] 
presented an analytical approach to investigate the 
characteristics of free vibrational for cylindrical shells 
formed of FG porous reinforced with graphene 
platelets resting on Winkler and Pasternak 
foundations. Akbaş et al. [23] conducted a 
numerical approach to analyze the vibration 
response of porous functionally graded thick beams 
subject to sine pulse load, including the damping 
influence, by applying a finite element model. 
Shahgholian et al. [24] adopted first order shear 

deformation theory and the Rayleigh-Ritz approach 
to examine the critical buckling load of the 
cylindrical shell formed of porous nanocomposite 
strengthened with graphene platelets. Zhang [25] 
examined the behavior of damping and free 
vibration for sandwich plates made of porous 
functionally graded materials corresponding to the 
modified Fourier-Ritz method. Heidari et al. [26] 
proposed an analytical method for studying the 
conduct of free vibration in small-scale circular 
cylindrical shells made of uniformly graded material 
and surrounded on both sides by a piezoelectric 
array. Akbaş et al. [27] investigated dynamic 
responses of a thick beam rested on the two 
viscoelastic supports formed of porous functionally 
graded layers under sine pulse load. Ebrahimi et al. 
[28] described an analytical solution to explain the 
characteristic behavior of free vibration for sandwich 
plates manufactured from three layers; the middle 
layer is made of functionally graded carbon 
nanotubes strengthened with composites, and the 
other two layers are made of porous magneto-
electro-elastic (MEE) functionally graded. Cong and 
Duc [29] displayed an analytical approach to 
explain the amplitude of non-linear dynamic 
vibrations for double-curved shallow shells 
surrounded on one face by porous eccentrically 
stiffened placed on the Visco-Pasternak foundation 
under the influence of thermal environments. Njim et 
al. [30-31] presented an analytical and numerical 
study of the free vibration and buckling 
characterization of the sandwich plate with an FG 
porous metal core. According to the authors’ 
knowledge and literature, it was found that a few 
works have been conducted previously to 
investigate the behavior of nonlinear vibration 
responses of porose FGM cylindrical panels, and most 
researchers considered that the structure is in the 
form of a sandwich and the porosity is either in the 
core or in the two outer layers. Therefore, the 
originality of this research is that the cylindrical panels 
consist of a single layer made of FGM that includes a 
regular distribution of porosity. In this study, an 
analytical method was developed to predict the 
characterization of the nonlinear dynamic’s response 
for porous FGM cylindrical shells. Based on the 
classical shell theory, equations of motion are 
obtained. In the numerical approach, the Galerkin 
technique and the fourth-order Runge-Kutta are 
conducted to provide the expression of natural 
frequencies and amplitudes of nonlinear vibration 
response by writing a code in MATLAB software. 
Several factors that affect free and force nonlinear 
vibration are looked at, such as the porosity 
parameter, power-law index, porous FGM thickness, 
Frequency–amplitude relation, and the force that is 
used to move it. The numerical results are compared 
to the approximate solution to see if the method 
used is correct. 
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1.1 Porous Functionally Graded Cylindrical Panel 
 
A schematic of the porous FG cylindrical panel 
utilized in the present analysis is displayed in Figure 1. 
The uniform thickness h, the length of the edges a 
and b, and the radius of curvature R of the cylindrical 
panel. There's also a coordinate system set up 
between the outside and inside of the panel: (x,y,z). 
 

 

 

a) Cartesian coordinate system b) Porosity with even distribution 

 

 
Figure 1 A schematic of the PFGM cylindrical panel 

 
 

To achieve the condition of the functionally 
graded material, there are several laws, including 
power-law, exponential law, and sigmoid law 
variation. In this study, it is assumed that FGMs are a 
mixture of ceramic and metal according to the 
power-law distribution [32]: 

  2z+ hV + V =1,V = V z = ,m c c c 2h

k 
 
 

                    (1) 

Where (Vc and Vm) refer to volume fractions of 
ceramic and metal, respectively. In addition, an 
important parameter (k) is called the volume fraction 
index, and the value of this parameter is [0,  α), non-
negative, where the value is equal to infinite, it 
means a fully metallic shell, whereas zero denotes a 
fully ceramic shell. The FGM cylindrical panel is 
supposed to carry porosities that are distributed 
unevenly or evenly along the thickness direction of 
the cylindrical shell. The properties of the materials of 
the FGM cylindrical panel with porosities are graded 
continuously toward the thickness direction of the 
shell corresponding to the power-law distribution. The 
material properties such as Young's modulus E (z), the 
mass density for the even or uniform distribution of 
porosities of the imperfect FGM shell can be defined, 
respectively, as [33]: 
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2.0 METHODOLOGY 
 
In this study, the classical shell theory (CST) is 
employed to derive the governing equations of 
motion for the non-linear dynamic response of porous 
FGM cylindrical panels. The displacement field of the 

porous FGM cylindrical panels that are based on the 
CST can be sold as a service as [34]: 
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Where (u,v,w) denote the displacement components 
concerning the coordinates (x,y,z) respectively; and t 
is the time. Employing the above displacements, the 
strain–displacement relations of the system, taking 
into account the von Karman nonlinearity, is shown 
as [35]: 
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                            describe the normal strains and 
shear strain respectively of the cylindrical panels. 
According to equation (4), the strains must be 
comparable to the compatibility deformation 
equation. 
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For a cylindrical shell, Hooke's law is defined by [36]: 
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Integrating the equations for stress-strain and their 
moments through the thickness directions of a 
cylindrical shell made of porous FGM can help figure 
out the force and moment resultants of the shell. 
 

10 20 11 21 ,x x y x yN I I I I                                                   (8a) 

20 10 21 11 ,y x y x yN I I I I                                                    (8b) 

30 312 ,xy xy xyN I I                                                            (8c) 

11 21 12 22 ,x x y x yM I I I I                                                    (9a) 

21 11 22 12 ,y x y x yM I I I I                                                    (9b) 

31 322 ,xy xy xyM I I                                                              (9c) 
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The coefficients in equations (8 & 9) are explained in 
Appendix. The relations of the strain-force resultant 
reversely are got from Equation (8): 
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Substituting Equation (10) into Equation (9) we obtain: 
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The coefficients , , )( ij ij ijA B D  are illustrated in 

Appendix. 
 
The nonlinear equations of motion of the porous FGM 
cylindrical shell according to (CST) and the 
assumption u≪w, and v≪w [37], [38] led to: 
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The first two equations are solved directly after 
employing the stress function as follows [15]: 
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Now substituting equation (10) into the compatibility 
equation (6), and equation (11) into the third part of 
the equation (12), taking into account the terms of 
equation (5), we obtain:  
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Hereafter, the above two equations (14 and 15) are 
applied to analyze the behavior of the nonlinear 
vibration response of the porous cylindrical panels. It 
indicates that they are nonlinear equations with two 
dependent unknowns. 
 
2.1 Decoupling Procedure 
 
In this paper, the simply supported boundary 
conditions (SSSS) for the porous FG cylindrical panel 
subjected to uniformly distributed pressure (q°) are 
applied [17]: 
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The above conditions can be fulfilled identically if the 
mode shape is expressed by [17]: 
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Where, m, n=1, 2… represents the natural number of 
half-waves in the axial and circumferential directions, 
respectively. By substituting equation (17) in equation 
(14), and solving the equation for the unknown (f), 
we get: 
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Where 
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 and (ψ1, ψ2, ψ3) are 

defined in Appendix. 
 
Equations (17 and 18) are substituted into equation 
(15), a complex differential equation will be 
produced. In order to simplify the resulting equation, 
we use the Calerkin method. This method converts a 
continuous operator problem, such as a differential 
equation, commonly into a weak formulation as: 
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Next, we solve this equation by utilizing Galerkin’s 
procedure as follows: 
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All coefficients in equation (20) are displayed in the 
Appendix. The above equation is used to study and 
analyze the non-linear behavior of cylindrical panels 
made of porous FGM. It is the main equation for this. 
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2.2 Vibration Analysis 
 
Taking into account that porous FGM cylindrical 
panels are exposed to uniformly distributed load (q= 
Q sin Ωt), the non-linear Equation (19) becomes: 
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Using Equation (21), three important and main 
parameters are taken into account: natural 
frequencies, nonlinear free vibration, and the 
frequency–amplitude) relation of the nonlinear 
response of a porous FGM shell. The responses of 
porous FGM shells can be determined by solving the 
above equation with the initial conditions W (0) =0 by 
adopting the Runge–Kutta technique. For free 
vibration, Equation (20) is rewritten as: 
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The linear fundamental natural frequencies of porose 
FGM cylindrical panels can be calculated as: 
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The equation of non-linear for free vibration can be 
obtained as follow: 
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The Galerkin’s method is used to figure out how the 
frequencies and amplitudes of nonlinear free 
vibration are related. We do this by putting equation 
(23) in the same way of equation (20): W(t)=η cos 
(ωt). 
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Where (ωNL) Expresses the nonlinear frequencies of 
free vibration, and (η) describes the amplitude of 
nonlinear vibration. 
 
 
3.0 RESULTS AND DISCUSSION 
 
3.1 Comparison Studies 
 
Since no current study has been conducted on 
characterizations of the nonlinear vibration of the FG 

layer made of the porous ceramic-metal cylindrical 
shell, the comparison of the dimensionless natural 
frequency offered by the current analysis with the 
result of Matsunaga [39] based on the (2D) higher-
order theory, Chorfi and Haumat [40] based on the 
(FSDT), Alijani et al. [41]based on Donnell’s non-linear 
doubly curved shallow shell theory, and Duc [42] 
based on classical shell theory for the perfect 
unreinforced (FGM) cylindrical shells are conducted 
for validation of the present technique. The results in 
Table 1 were gained with [a/b=1, h/a=0.1 
,Ec=380×10^9  N/m^2 ,Em=70×10^9  N/m^2 ,ρc= 
3800  kg/m^3 ,ρm=2702  kg/m^3   ]. A very good 
agreement in this comparative investigation can be 
seen in Table 1. 
 
Table 1 Comparison of the dimensionless natural frequency 
with results reported by Matsunaga [39], Chorfi and Houmat 
[40], Alijani et al. [41], and Duc [42] 
 
a/R k Ref 

[39] 
Ref 
[40]  

Ref 
[41] 

Ref 
[42] 

Present 
 

FGM plat 
0 

0 
0.5 
1 
4 

10 

0.0588 
0.0492 
0.0403 
0.0381 
0.0364 

0.0577 
0.0490 
0.0442 
0.0383 
0.0366 

0.0597 
0.0506 
0.0456 
0.0396 
0.0380 

0.0562 
0.0502 
0.0449 
0.0385 
0.0304 

0.0597 
0.0506 
0.0456 
0.0396 
0.0381 

FGM 
cylindric
al panel 
0.5 

0 
0.5 
1 
4 

10 

0.0622 
0.0535 
0.0485 
0.0413 
0.0390 

0.0629 
0.0540 
0.0490 
0.0419 
0.0395 

0.0648 
0.0553 
0.0501 
0.0430 
0.0408 

0.0624 
0.0528 
0.0494 
0.0407 
0.0379 

0.0648 
0.0553 
0.0501 
0.0430 
0.0409 

 
 
3.2 Free Vibration and Dynamic Response of 
Cylindrical Porous FG Cylindrical Panels 
 
In this part, some numerical models are presented to 
examine the nonlinear dynamic response and 
characteristics of the natural frequency of porous FG 
cylindrical panels. The porous FG layer considered 
here consists of aluminum and alumina, and the 
material properties are detailed in Table 2. 
 
Table 2 Material properties utilized in the porous FG 
cylindrical panels 
 

Property  Aluminum 
(Al) 

Ceramic 
(Al2O3)  

Modula's of 
Elasticity, GPa  

 

70  
 

380  
 

Mass density, 
Kg/m3  

 

2702  
 

3800  
 

Poisson’s ratio  
 

0.3  
 

0.3  
 

 
 

Table 3 displays the effect of increasing the 
porosity and the power index on the natural 
frequencies of functionally graded cylindrical panels. 
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The porosity parameters (0, 0.1, 0.2, 0.3, and 0.4) and 
power-law indices (0, 0.5, 1, 2, 10). The FGM thickness 
h=0.008 m. It is evident from this table that increasing 
the porosity parameter yields decreasing in the 
natural frequency due to the reduction in the 
bending rigidity of the FG shell. In addition, the 
natural frequencies decrease with the increase of 
the power-law index and the reason for this is that 
when the value of the power-law index increases, 
the young modulus of the Aluminum will increase in 
this layer according to the equation (2, and as it is 
known that the modulus of elasticity of Aluminum is 
less than Alumina. As is anticipated, with an increase 
in the (k), the cylindrical shell's elasticity modulus and 
bending rigidity decrease. So, the material strength 
decreases. 

Figure 2 illustrates the influence of increasing the 
porosity on the displacement-time response. First, four 
values of porosity are analyzed (without porosity, 
10%, 20%, and 30%). This figure demonstrates that 
increasing the porosity leads to an increase in the 
amplitude of nonlinear vibration. In other words, the 
deflection will increase due to the decreased 
strength of the material as a result of increasing the 
voids. where the increase in the height of the curve 
reaches 32%. 

 
Table 3 Analytical results of the natural frequencies of (Al/ 
Al2O3) cylindrical panels for various parameters. a=b=1.5 m, 
R=3 m, h=0.008 m 
 
Porosity 

% 
Power-law index 

0 0.5 1 2 10 
0 1680.1 1506.8 1396 1261.4 995.8527 

0.1 1672 1481 1358 1206.6 896.9094 
0.2 1662.9 1452.9 1315.2 1142.4 771.7536 
0.3 1652.6 1420.3 1265.2 1065.9 599.6844 

 

 
 
Figure 2 Effect of porosity parameter on the nonlinear time-
displacement response for FGM cylindrical panel. R=3 m, h= 
0.01 m, a=b=1.5 m 
 
 

Another result can be found in Figure 3, which 
displays the influence of the increase in power index 
and porosity parameter on the time-displacement 
curve. The power index (0.5, 1, and 2), where the 
gradient condition is satisfied and at the same time 
the porosity values (0%, 10%, and 20%). The material 

distribution parameter (k) is significantly influential on 
the nonlinear dynamics response. An increasing 
volume fraction index leads to an increase in the 
amplitude of nonlinear vibration, meaning that the 
displacement will increase due to the increase in the 
percentage of metal in the layer of the shell. 

 

 
 
Figure 3 Influence of power index and porosity parameter 
on the nonlinear time-displacement response for FGM 
cylindrical panel. R=3 m, h= 0.01 m, a=b=1.5 m 
 
 

Figure 4 represents the effect of an increase in the 
thickness of the porous FGM layer on the nonlinear 
dynamic behavior of cylindrical shells. With a 
percentage of porosity of 20% and a value of 
material distribution parameter of 0.5 to achieve the 
condition of gradation between the two materials, it 
was found that increasing the thickness of the porous 
FGM layer from 0.01 m to 0.03 m leads to a decrease 
in the amplitude of vibrations. Therefore, the shell 
becomes more rigid and this indicates that the value 
of the natural frequencies will be increased. 

 

 
 
Figure 4 Effect of porous FGM layer on the nonlinear time-
displacement response of shell. R=3 m, a=b=1.5 m, β=20 %, 
k=0.5 
 
 

Figure 5 displays the relationship between the 
frequency and amplitude of nonlinear free vibration 
with the porosity effect of a cylindrical panel was 
evaluated according to equation (25) with k = 0.5, m 
= 1, and n=1. As expected, the nonlinear free 
vibration frequencies of panels without porosity 



65                                  Ahmed Mouthanna et al. / Jurnal Teknologi (Sciences & Engineering) 84:6 (2022) 59–68 
 

 

(perfect) panels are greater than those of panels 
with porosity. 

 

 
 

Figure 5 Frequency–amplitude relation 
 
 

The influence of the harmonic uniform load (Q) on 
the time-displacement response of porose FGM 
cylindrical panels is represented in Figure 6. Three 
values of (Q) are employed as (Q=1000 N/m2, 
Q=2000 N/m2, Q=3000 N/m2). Under the influence of 
increased excitation force, the three types of 
reinforcement are thought to behave in the same 
way. It can be seen that the excitation force has a 
strong impact on the vibration response. When 
raising the excitation force, the vibration amplitude 
will increase greatly. 

 

 
 
Figure 6 Effect of excitation force (Q) on the nonlinear time-
displacement response for porous FGM cylindrical panel. 
a=b=1.5 m, k=0.5, R=3 m, h=0.01 m, Ω=600 
 
 
4.0 CONCLUSION 
 
In the current work, fundamental natural frequencies 
and non-linear dynamic responses of functionally 
graded porous ceramic-metal shells are theoretically 
analyzed employing the classical thin shell theory. 
The numerical Galerkin method and fourth-order 
Runge–Kutta technique is exploited to solve the 
governing equation of motion incrementally by 
writing a code in the MATLAB program. The 
properties of the material are graded continuously 
with porosity through the shell thickness and modeled 
by the power-law distributions. Based on the results, 
the following observations are made: (1) It can be 
observed that the natural frequencies of the shell 

decrease by 5.74% with the increased porous 
characteristics by 10 % because of a reduction in 
bending rigidity (2) An increase in material 
distribution parameters led to a decrease in the 
natural frequencies due to a rise in the volumetric 
percentage of the metal (3) Increasing both the 
porosity and volume fraction index leads to an 
increase in the amplitude of nonlinear vibration 
response (4) The layer thickness of porous FGMs has a 
significant effect on the time-displacement curve, as 
increasing the thickness leads to a decrease in the 
response curve (5) The non-linear vibration 
frequencies of shells without porosity are greater than 
those of shells with porosity (6) When the structure is 
hit with an excitation force, the time-displacement 
curve will change a lot. 
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ENGLISH SYMBOLS 
 

Notation Description Units 
a Panel length m 
b Span length m 
R Panel radius  m 
h Panel thickness  m 
c Ceramic  
m Metal  
Vc Volume fraction of ceramic   
Vm Volume fraction of metal   
k Power law index Unitless  

x, y, z Panel coordinates m 
E Young modulus N/ m2 
𝐸𝑚  Elastic modulus for metal N/ m2 
𝐸𝑐  Elastic modulus for ceramic  N/ m2 

u, v Displacement components along x, y 
directions   

m 

w The deflection of the panel m 
𝑁𝑥 ,𝑁𝑦  
𝑁𝑥𝑦  

Forces resultants 
 

Newton 

𝑀𝑥 ,𝑀𝑦  
𝑀𝑥𝑦  

Moment’s resultants N.m 

𝐼𝑖𝑗  Coefficients explained in the Appendix  N/ m2 
𝑞 Uniformly distributed pressure of intensity Pascal  
𝜑 The stress function  

Γ𝑖𝑗 ,Λ𝑖𝑗 ,Ξ𝑖𝑗  Coefficients described in the Appendix  N/ m2 
m Axial wave number Unitless 
n Circumferential wave number  Unitless 

𝜉, 𝜇, �  Coefficients described in the Appendix  
𝑄 Excitation force  N/ m2 

 

 
GREEK SYMBOLS 
 

Notation Description Units 
𝜌 Mass density Kg/ m3 
𝜈 Poisson's ratio Unitless 

𝜀𝑥 , 𝜀𝑦  The normal strains component  Unitless 
𝛾𝑥𝑦  The shear strain component Unitless 
𝜎 Stress component N/ m2 
𝜏 Shear stress component N/ m2 
𝛺 Rotational velocity Rad/s 
𝜔𝐿 Linear fundamental frequencies Hertz (HZ) 
𝜂 Amplitude of nonlinear vibration m 
𝜔𝑁𝐿 Nonlinear vibration frequency Hertz (HZ) 
𝛾𝑥𝑧 , 𝛾𝑦𝑧  The transverse shear strains components in 

the planesሺ𝑥𝑧, 𝑦𝑧ሻ 
 

𝛽 The factor of the Porosity  Unitless 
 

 


