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Graphical Abstract 
 

 

Abstract 
 
This paper presents the findings on the process parameters for surface roughness 
optimization of an open-source ultrasonic vibration assisted fused deposition modeling 
(FDM) printed specimen. Acrylonitrile Butadiene Styrene (ABS) material for the specimens 
and the printing temperature, layer thickness, and surface layer were determined as the 
control parameters that influenced the surface roughness. Experimental design with 
Taguchi level 9 (3*3) Orthogonal Arrays (OA) was designed with nine experimental runs. 
Three levels of each control factor was identified. In addition, data for multi-responses of 
build time and surface roughness was obtained by utilizing and conducting the nine-
requirement experimental run for Taguchi Method. The specimens were printed using an 
open-source ultrasonic vibration assisted FDM printer with a 20kHz ultrasonic vibration 
supplied to the printing platform of the printer. Analysis of variance (ANOVA) was 
conducted to determine whether p-values are significant with the model or otherwise. The 
experiments examined the build time and surface roughness, the responses were 
collected and optimized by using the grey relational grade (GRG). The result shows no 
correlation between build time and surface roughness in the grey relational grade, and 
the p-value was higher than 0.05 significant level. However, the surface roughness for 
optimal level combination setting showed the obvious result, which the settings consist of 
printing temperature (level 1), layer thickness (level 1), and surface layer (level 1). 
 
Keywords: Ultrasonic vibration, surface roughness, Taguchi method, ANOVA, FDM 
 
Abstrak 
 
Artikel ini membentangkan parameter proses untuk pengoptimuman kekasaran 
permukaan specimen cetakan bagi pemodelan pemendapan tergabung (FDM) 
berbantukan getaran ultrasonik. Filamen Acrylonitrile Butadiene Styrene (ABS) telah dipilih 
sebagai bahan kajian. Suhu cetakan, ketebalan lapisan dan lapisan permukaan adalah 
parameter kawalan yang mempengaruhi kekasaran permukaan. Taguchi level 9 (3*3) 
Orthogonal Arrays (OA) telah digunakan didalam kajian ini dengan mengambil kira 9 kali 
data experimen. Terdapat 3 tahap di dalam setiap faktor kawalan yang telah dikenal 
pasti. Di samping itu, data pelbagai tindak balas untuk masa cetakan dan kekasaran 
permukaan, diperoleh dengan menggunakan dan menjalankan 9 kali eksperimen yang 
diperlukan didalam kaedah Taguchi.  Specimen telah dihasilkan dengan 20kHz getaran 
ultrasonik yang disalurkan ke platform mesin FDM tersebut. Analisis varians (ANOVA) telah 
dijalankan untuk menentukan sama ada nilai-p adalah signifikan dengan model atau 
sebaliknya. Eksperimen ini telah mengkaji masa cetakan dan kekasaran permukaan, dan 
hasil tindak balas telahpun dikumpul dan dioptimumkan dengan menggunakan teknik 
Gray Relational Grade (GRG). Hasil kajian menunjukkan tiada korelasi diantara masa 
cetakan dan kekasaran permukaan, dan nilai-p adalah lebih tinggi daripada nilai tahap 
ketara iaitu 0.05. Walau bagaimanapun, nilai kekasaran permukaan untuk gabungan 
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1.0 INTRODUCTION 
 
Additive manufacturing (AM) is a process that creates 
3D object from CAD model by adding material layer 
by layer. AM has been continuously customized, 
redesigned and reimagined to a broad application in 
the industrial sector such as automotive, medical, 
architectural, aerospace, artistic and others [1]. AM 
gained the imagination of researchers and the public 
in various types of fields and obtained high popularity 
in media and brought revolution and improvement in 
the process of the product [2]. By using the layer-wise 
additive method, a complex shape can be built by 
using a wide variety of materials [3]. AM is different 
from conventional method as it perform by adding 
material and in contrast conventional manufacturing 
remove material to produce a part [4]. AM can boost 
creativity, production and service lead times cost-
effectively while offering a high degree of 
manufacturing flexibility [5]. The implementation of 
low-risk, defect-tolerant modeling strategies is a 
guiding force for developing AM systems in real-world 
applications [6]. 

On the other hand, ultrasound has been widely 
used for machining, and it is a proven technology. A 
comparative study on traditional end-milling carbon 
fiber reinforced plastic with the one made with 
ultrasonic aided machining (UAM) [7] was done. The 
parameters of study are the surface integrity of the 
machined surface, cutting force and condition of the 
tool. In the ultrasonic machining, the piezoelectric 
ceramic material, such as barium titanate and the 
two metal electrodes constructed on the 
piezoelectric transducer's surface is employed. The 
pieces moved back and forth due to the alternating 
voltage from the wave generator to the electrodes on 
the piezoelectric transducer, causing the 
piezoelectric transducer to slightly vibrate. The 
transducer elements, which are the sonotrodes, 
vibrated at high frequencies and low amplitudes, 
causing mechanical vibration that can be utilized in 
machining processes [8]. After being compared with 
traditional machining, UAM showed a lower cutting 
force is required, better tool condition and better 
surface quality.  

In addition, a study showed that using ultrasonic 
vibration in the AM process improves the surface finish 
of the FDM printed part [9]. A piezoelectric ultrasonic 

transducer was attached to the printer platform to 
apply the vibration while the printing process 
commences. Besides, the vibration frequency used 
was 11 kHz, 16 kHz, and 21 kHz. The surface roughness 
of the sample specimen printed was measured 
through the optical microscope. The finding indicates 
that ultrasonic aided printing can decrease surface 
roughness by 20% compared with standard test 
specimens. Furthermore, the finest surface finish was 
discovered when printing with 21kHz of ultrasonic 
vibration [9]. 

This article presents findings from the optimization 
of an open-source ultrasonic vibration assisted FDM 
process parameters for the best surface roughness of 
the printed ABS filament specimen using the Taguchi 
method. The surface roughness was investigated due 
to its affect on mechanical properties of the printed 
specimens such as dimensional accuracy , tesile or 
flextural strength. The control parameters that 
influenced the surface roughness determined are the 
printing temperature, layer thickness, and surface 
layer.  
 
 
2.0 METHODOLOGY 
 
2.1 Design of Experiment 
 
As shown in Table 1, three control factors, namely, the 
printing temperature (°C), layer thickness (mm), and 
surface layer, were selected to examine the surface 
roughness of the ultrasonic vibration assisted FDM 
printing process. The three levels for each factor was 
established based on the literature review [10]. Table 
2 shows the 𝐿ଽ ሺ3ଷሻ Orthogonal Array (OA) with nine 
experimental runs included three control factors and 
two response values.  
 
Table 1 Control factor of surface roughness and their levels 

 
Control Factors Unit Levels 

1 2 3 
Printing 

Temperature 
(°C) 240 250 260 

Layer Thickness (mm) 0.1 0.2 0.3 
Surface Layer  3 4 5 

 
 

tahap yang digunakan didalam aras optimum telah menunjukkan hasil yang 
memberangsangkan, dimana kombinasi optimum terdiri daripada suhu cetakan (tahap 
1), ketebalan lapisan (tahap 1), dan lapisan permukaan (tahap 1). 
 
Kata kunci: getaran ultrasonik,  kekasaran permukaan, kaedah Taguchi, ANOVA, FDM 

 
© 2022 Penerbit UTM Press. All rights reserved 
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Table 2. Experimental data gathering plan derived based on 
𝐿ଽ Taguchi Method 
 

𝑳𝟗 ሺ𝟑𝟑ሻ Orthogonal Array 
No. 
of 

Run 

Control Factors Response Value 
Printing 
Temp. 
(°C) 

Layer 
Thickness 

(mm) 

Surface 
Layer 

Build 
Time 
(min) 

Surface 
Roughness, 

Ra (µ) 
1 240 0.1 3 Q1 P1 
2 240 0.2 4 Q2 P2 
3 240 0.3 5 Q3 P3 
4 250 0.1 4 Q4 P4 
5 250 0.2 5 Q5 P5 
6 250 0.3 3 Q6 P6 
7 260 0.1 5 Q7 P7 
8 260 0.2 3 Q8 P8 
9 260 0.3 4 Q9 P9 

 
 
2.2 S/N Ratios in the Taguchi Method 
 
To decrease the variance and optimize the process 
parameter, orthogonal arrays by Taguchi were 
employed. An evaluation of robustness is used in 
Taguchi designs to find control factors that decrease 
product or course changeability by restricting the 
repercussions of forwarding causes (noise factors), 
also known as S/N ratios [11]. The signal-to-noise ratio 
can be calculated by utilizing the noise called 
standard deviation and the proportion of signal 
commonly called mean. S/N ratios can measure the 
quality of the product. If the S/N ratios are higher, it 
means the quality of the desired parameter is high 
and should be more relatable with other parameters 
involved. The S/N ratio has three types of the desired 
improvement which are, higher-the-better, nominal-
the-better and smaller-the-better, and their Equation 
(1) to (3) are shown below. 
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Where n- number of experiments, 𝑦௜

 – response 
value of the 𝑖th in the Orthogonal Arrays, 𝑦തଶ- as mean 
and 𝑠ଶ- as the variance of the observed data. 
 
2.3 Multi-Response Optimization Using Grey 
Relational Analysis (GRA) 
 
GRA can be used to determine the response factor 
more than one for optimal response factor. Unreliable 
finite data can be optimized, and the GRA approach 
can generate a resemblance result. Additionally, Multi 
response of performance surface roughness is shown 
below with a complete step-by-step equation and 

explanation [12]. In GRA, when the standard value 
and reference sequence range are considerably 
high, the function of the factors is neglected. When 
the standard value and reference sequence range 
are both so large, the factor will be ignored. When a 
factor has a nonidentical direction, GRA can produce 
nonsignificant results. The pre-processing data was 
created to determine the sequence from 0 to 1. This 
approach processed the data by sequence into the 
group, normalizing it in terms of grey relational 
generation, the two-quality characteristic of the 
important sequences, which are the larger-the-better 
or smaller-the-better [13]. For Equation (4), it can 
calculate the smaller-the-better and this suggested 
formula if the data desired must be less than the initial 
design parameter. 
 

 𝑥𝑖
∗ሺ𝑘ሻ ൌ  

𝑚𝑎𝑥𝑦𝑖ሺ𝑘ሻ െ 𝑦𝑖ሺ𝑘ሻ

𝑚𝑎𝑥𝑦𝑖ሺ𝑘ሻ െ 𝑚𝑖𝑛𝑦𝑖ሺ𝑘ሻ
 (4) 

 
2.3.1 Computation of Grey Relational Coefficient 
and Grade 
 
The deviation sequence of the reference sequence 
will be calculated after the sequence data is 
standardized by using Equation (5):  
 
 𝛥0𝑖ሺ𝑘ሻ ൌ |𝑥0

∗ሺ𝑘ሻ െ 𝑥𝑖
∗ሺ𝑘ሻ|  (5) 

 
Where 𝛥଴௜ሺ𝑘ሻ referred to the deviation, 𝑥଴∗ሺ𝑘ሻ 

referred to reference and 𝑥௜
∗ሺ𝑘ሻ referred to 

comparability sequences. Then, to calculate the grey 
relational coefficient (GRC), Equation (6) was utilized. 
 
 

𝜉𝑖ሺ𝑘ሻ ൌ  
𝛥𝑚𝑖𝑛ሺ𝑘ሻ െ 𝜁𝛥𝑚𝑎𝑥ሺ𝑘ሻ

𝛥0𝑖ሺ𝑘ሻ െ 𝜁𝛥𝑚𝑎𝑥ሺ𝑘ሻ
 (6) 

 
Grey relational coefficient, 𝜉௜ሺ𝑘ሻ were calculated 

and regularized as a function of 𝛥௠௜௡ and 𝛥௠௔௫ of 
every response, variable to determine whether the 
data value is minimum or the maximum deviations 
occur. The symbol of 𝜁 represents the distinguishing 
coefficient, and it can also be called the identification 
coefficient, and it is circumscribed in the range of 𝜁 ∈ 
[0,1], and usually, a value of 𝜁 is 0.5. To determine the 
GRG, Equation (7) below can be computed. 
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(7) 

Where 𝛾௜ represent the value of GRG, 𝑖th for the 
experimental and n= number of responses. After the 
optimal level is discovered, the last step is to predict 
and prove the quality characteristics by using 
Equation (8). The good experiment value is higher 
than the predicted value and their initial design value. 
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(8) 

Where  𝛾௠ indicates the mean of grey relational 
grade and 𝛾௢ indicates the maximum average of grey 
relational grade. Finally, response values affected by 
q are denoted as the number of factors in the analysis 
of GRG. 
 
2.4 Analysis of Variance (ANOVA) 
 
The response accuracy prediction using ANOVA 
modeling to determine the correlation between 
parameters through a mathematical approach can 
be demonstrated [14]. Using ANOVA on the identified 
design, a significant effect on the response can be 
evaluated. If the value of Prob > F, often known as a 
p-value, is less than 0.05, the model is significant [15]. 
Adjusted correlation coefficient 𝑅௔ௗ௝

ଶ  is used to 
analyze the model effectiveness. On the whole, 
𝑅ଶ 𝑎𝑛𝑑 𝑅௔ௗ௝

ଶ  should be higher and comparable with 
each other to ensure the optimal design parameter is 
more reliable to the model of analysis [16]. 
 
2.5 Experimental Set-Up 
 
Acrylonitrile butadiene styrene (ABS) material was 
used in this experiment as it is a common material used 
in AM. Table 3 shows the mechanical properties of the 
ABS.  
 

Table 3 Properties of ABS; Source [17] 
 

Property ABS 
Printing temperature (°C) 210-250 

Build platform temperature (°C) 80 -110 
Raft Mandatory 

Strength Medium 
Flexibility Moderately flexible 

Heat Resistance Moderate 
Biodegradability No 

Moisture absorption Yes 
 
 

The test specimen was designed using CAD 
software and then transfered to STL file format then 
was feed to the FDM printer (UP Plus 2). Specimens 
were designed rectangle with height, width, and 
thickness of 80 mm, 30 mm, and 5 mm, respectively, as 
shown in Figure 1. The printer with the piezoelectric 
transducer mounted on the build platform as shown in 
Figure 2. The transducer was supplied with a fixed 
signal of 20kHz sine-waveform, to generate the 
ultrasonic vibration during the printing process as 
shown in Figure 3. Before the printing process began, 
the printer's parameter was set according to the 
desired experimental result. Printing speed was set to 
‘NORMAL’ in the software UP Studio which indicated 
50𝑐𝑚ଷ/ℎ. As illustrated in Figure 4 (experimental set up) 

the specimens were printed according to the 
combination level in the Taguchi Orthogonal Arrays. 

 

 
Figure 1 Specimen Dimensions 

 

 
 
Figure 2 Ultrasound transducer placed on both sides  
of the build platform 

 

 
 
Figure 3 Sine-wave was set to 20KHz frequency for both 
output channel 1 (CH1) and channel 2 (CH2)  
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Figure 4 Ultrasound-assisted FDM experimental setup 
 
 

To conduct a surface roughness test, a touch 
probe of Mitutoyo Suftest SJ-301 was used to measure 
the surface roughness. The machine was set, and the 
area of surface roughness experiment was 
determined. The probe was put on the specimens as 
shown in Figure 5 and surface roughness was 
measured several times to gather reliable value of 
surface roughness, and the average value was 
calculated on each printed specimen. After all 
surface roughness value was collected, the next step 
was to perform the microscopic inspection using the 
Meiji Stereo Microscope. Figure 6 displays the 
specimens that were placed on the microscope and 
the image was recorded. The desired images were 
then captured using tools or software that come with 
the microscope machine itself. Images containing the 
surface inspection were utilized and studied whether 
there are defects on the surface or otherwise. The 
data gathered was then concluded to determine 
which combination of parameters was the most 
significant in determining the good surface finish of the 
test specimen. 

 

 
 

Figure 5 Mitutoyo Suftest SJ-301 to measure the surface 
roughness 

 

 
 

Figure 6 Meiji Stereo Microscope used to analyze the surface 
of printed specimens  
 
 
3.0 RESULT AND DISCUSSION 
 
Table 4 were transformed to S/N ratios to investigate 
Taguchi’s 𝐿ଽ Orthogonal Arrays using Grey Relational 
Analysis. In this study, response value of build time and 
surface roughness was investigated with the affect of 
the control factors namely the printing temperature, 
layer thickness, and surface layer. The affect of factors 
on multiple responses was examined using attributes 
of aspect smaller-the-better, as build time and surface 
roughness lower values were desired. 
 
Table 4 Taguchi 𝐿9 Orthogonal Array and multi-response 
results with signal to noise (S/N) Ratio 

 
Run Control Factors Response Values S/N 

Ratio 
(dB) 

Printing 
Temperature 

(°C) 

Layer 
Height 
(mm) 

Surface 
Layer 

Build 
Time 
(min) 

Surface 
Roughness, 

Ra (µm) 

Built 
Time 

1 240 0.1 3 85 0.644 -38.5884 
2 240 0.2 4 42 2.348 -32.465 
3 240 0.3 5 29 2.284 -29.248 
4 250 0.1 4 84 1.156 -38.4856 
5 250 0.2 5 45 2.004 -33.0643 
6 250 0.3 3 25 3.046 -27.9588 
7 260 0.1 5 86 2.076 -38.69 
8 260 0.2 3 39 3.084 -31.8213 
9 260 0.3 4 27 3.204 -28.6273 

 
 
3.1 Effect of the Control Factors on Build time 
 
The experiment data of build time in Table 4 were 
converted into S/N ratios using Minitab@19 statistical 
software. Delta statistics in the response table for S/N 
ratios as shown in Table 5 below represent the leading 
control factors. The highest and the lowest of each 
factor were calculated to produce the delta statistics. 
The value delta which is the highest was assigned the 
first in the rank and represents the leader of the factor 
that affects build time. The most significant factor in 
Table 5 is the layer thickness with the delta value of 
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9.98. The surface layer is the second most influential 
factor with the delta value of 0.88, followed by the 
printing temperature of 0.39. 
 

Table 5 Response table for S/N ratios of build time (min) 
 

Level Printing 
Temperature 

(°C) 

Layer 
Thickness 

(mm) 

Surface 
Layer 

1 -33.43 -38.59 െ32.79ଵ 
2 -33.17 -32.45 -33.19 
3 െ33.05ଵ െ33.05ଵ -33.67 

Delta 0.39 9.98 0.88 
Rank 3 1 2 

 ଵ Desired factor levels 
 
 

From the response in Table 5, the main effects plot 
for S/N ratios was generated as illustrated in Figure 7. 
Build time is strongly impacted by variations in the 
layer thickness as indicated in the trend of the plot. As 
can be translated from Table 5, the build time is 
decreased when the layer thickness is increased. The 
observation of the aspect of the response is 
enhanced when the layer thickness increase, this is 
strengthened by increasing the trend of S/N ratios for 
build time from 0.1 mm to 0.3 mm in the layer thickness. 
The printing temperature shows a slight increase in the 
S/N ratio trend from 240 °C to 260 °C. The S/N showed 
a slightly decreased trend for the surface layer which 
was from 3 layers to the 5 layers. The primary effect 
plot for S/N ratios in Figure 7 recommends that Printing 
Temperature (Level 3), Layer Thickness (Level 3) and 
Surface Layer (Level 1) are the desired factor levels to 
obtain high S/N ratios and lower values of build time 
(min). 
 

 
 

Figure 7 Main effect plot for S/N Ratios of Build time 
 
 
After that, to determine the factor levels, Table 6 

shows an ANOVA was performed to gather each 
factor of percentage contribution that affect the 
build time. Layer thickness with a contribution of 98.94 
%, has the highest dominance on the build time 
followed by surface layer, with a contribution of 0.76 
%, and then printing temperature with 0.15 % of the 
contribution. At a 95% confidence level, factors 
having a p-value less than 0.05 are considered 

significant [18]. The change in the build time was 
significantly contributed by the 𝑝 െ 𝑣𝑎𝑙𝑢𝑒𝑠 of layer 
thickness which is less than 0.05. Also, it can be seen 
from the Table 6 that are high and comparable values 
𝑅ଶ and 𝑅௔ௗ௝ଶ  with each other. This is signed the rightness 
served of the model [19]. 
 

Table 6 ANOVA for S/N ratio of build time (min) 
 

Source DF Adj 
SS 

Adj 
MS F F Contribut

ion (%) Remarks 

Printing 
Temperature 2 2.67 1.33 0.57 0.636 0.05 Not 

significant 

Layer 
Thickness 2 5438 2719 1165.

29 0.001 99.49 Significant 

Surface 
Layer 2 20.67 10.33 4.43 0.184 0.38 Not 

significant 
Error 2 4.67 2.33   0.09  

Total 8 5466  S = 1.52753 𝑅ଶ = 
99.91% 

𝑅௔ௗ௝
ଶ  = 

99.66% 

 
 
3.3 Confirmation Test for Build Time (min) 
 
To abolish the disturbance about the preferred control 
factors, acceptance of responses, and experimental 
design, the tool is commonly used as a confirmation 
test from the parameter design by the Taguchi 
method as mentioned in the previous study by [20]. 
Once the optimal setting has been identified, the next 
step is trying to predict and verify the performance 
improvement of the responses whether there are 
some improvement products from the experiment 
value. The good in confirmation experiment result with 
the prediction value is shown in Table 7. The predicted 
S/N ratio was calculated using Equation (3) which 
considers smaller the better for the value. It can be 
decoded from Table 7, the optimal process 
parameters for the experiment value, the percentage 
reduction of build time shown an improvement of 
13.79% which is comparable with the prediction value 
of 14.93%. In terms of the improvement in the S/N ratio, 
there are some increases in the experiment value by 
1.2892 from the initial design parameters of the S/N 
ratio value and also proportionate with the value of 
prediction of improvement in S/N ratio of 1.4046 points. 
This improvement in the experimental result over the 
initial design parameter guaranteed the effectiveness 
of the S/N ratio analysis from the Taguchi method for 
ultrasonic vibration-assisted FDM. 

 
Table 7 Results of the confirmation experiment Build time 

 
Initial process parameter Optimal process parameters 

Prediction Experiment 
Setting level PT(1) – LT(1) – 

SL(3) 
PT(3) – LT(3) – 

SL(1) 
PT(3) – LT(3) – 

SL(1) 
Surface 

roughness, 
Ra (µm) 

29 24.67 25 

S/N ratio (dB) -29.248 -27.8434 -27.9588 
Improvement 

in S/N ratio 
(dB) 

 1.4046 1.2892 

Percentage 
reduction of 

surface 
roughness 

 14.93% 13.79% 
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3.2 Effect of the Control Factors on Surface 
Roughness, Ra (µm) 
 
To determine the factors influencing the surface 
roughness, the S/N ratios of the experimental data of 
Ra were calculated as shown in Table 8. Similar to 
build time analysis, smaller-the-better characteristic of 
the Taguchi method was selected to investigate 
factor effects. The response table for the S/N ratios of 
Ra was then generated, as shown in Table 8. The 
results indicate that the layer thickness, with a delta of 
7.727, has the highest effect on Ra, followed by 
printing temperature and surface layer, with deltas of 
5.158 and 1.307, respectively. 
 
Table 8 Response table for S/N ratios of Surface Roughness, 
Ra (µm) 

 
Level Printing 

Temperature (°C) 
Layer Thickness 

(mm) 
Surface 
Layer 

1 -3.589 ଵ -1.260 ଵ -5.212 ଵ 
2 -5.657 -7.745 -6.262 
3 -8.747 -8.987 -6.519 

Delta 5.158 7.727 1.307 
Rank 2 1 3 

 ଵ Desired factor levels 
 
 

As illustrated in Figure 8, the response table for S/N 
ratios was then used to obtain the plot of primary 
effects for surface roughness. Ratio decreases with an 
increase in the printing temperature and layer 
thickness can be analyzed. In the case of the surface 
layer, there is a slight decrease in the ratio between 3 
to 5 layers. Figure 8 shows that the desirable values of 
S/N of surface roughness are achieved at the first level 
of Printing temperature (Level 1), the first level of layer 
thickness (Level 1), and the first level of the surface 
layer (Level 1). Besides, printing temperature mainly 
affects the delta statistics, followed by layer thickness 
and surface layer. 
 

 
 
Figure 8 Main effect plot for S/N Ratios of Surface Roughness 
 
 

Subsequently, ANOVA was performed in Table 9 
below and studied to determine the significant factors 
and the percentage of contribution of each factor to 
the response of surface roughness. Layer thickness has 
the highest percentage contribution of 45.72%, 

followed by printing temperature of 33.62% and 
surface layer 20.54%. Further, p-values of each factor 
that contribute to surface roughness are all less than 
0.05. The experiment's outcome p-values less than 0.05 
offered strong evidence that the data obtained 
solidly supported the null hypothesis [21]. It can be 
concluded that all the parameters are essential to 
determine the surface roughness performance of 
ultrasonic vibration assisted FDM. The high and 
comparable 𝑹𝟐 = 99.88% with 𝑹𝒂𝒅𝒋𝟐  = 99.51%, affirms 
that the model is good and valid. 
 
 Table 9 ANOVA for S/N ratio of Surface Roughness, Ra (µm) 

 

Source DF Adj SS Adj 
MS F F Contributi

on (%) Remarks 

Printing 
Temperature 2 7.5751 3.7875

5 273.11 0.004 33.62 Significant 

Layer 
Thickness 2 10.302

1 
5.1510

3 371.42 0.003 45.72 Significant 

Surface 
Layer 2 4.6274 2.3137

2 166.84 0.006 20.54 Significant 

Error 2 0.0277 0.0128
7   0.12  

Total 8 5466  S = 0.117764 𝑅ଶ = 
99.99% 

𝑅௔ௗ௝
ଶ  = 99.51% 

 
 

3.3 Confirmation Test for Surface Roughness, Ra 
 
Table 10 shows the confirmation experiment surface 
roughness after the initial process parameter has been 
identified. Since the deltas of S/N ratios ranked and 
agreed with the previous initial experiment, the value 
of surface roughness is the same, which is 0.644 µm, 
and there is no need to run the new investigation. The 
result for the confirmation experiment with the 
prediction value desire has complied with each other, 
and it presented the goodness of the analysis model. 
The experiment value shows some reduction from the 
initial design parameter of 2.284 µm reduce to 0.644 
µm, and the prediction value also admits it of 0.898 µm 
for ‘Setting Level’ of the printing time (level 1), layer 
thickness (level 1), and surface layer (level 1). This result 
proves by the improvement in the S/N ratio by 3.351 
points and higher than the initial design parameter 
and prediction value which are -7.1739 and 0.9345, 
respectively. Percentage reduction of surface 
roughness value of 71.8 % is comparable with the 
prediction value of 60.68 %. It is also representing the 
good of the model used in this analysis. 
 
Table 10 Results of the confirmation experiment surface 
roughness, Ra 

 
Initial process parameter Optimal process parameters 

Prediction Experiment 
Setting level PT(1) – LT(1) – 

SL(3) 
PT(3) – LT(3) – 

SL(1) 
PT(3) – LT(3) – 

SL(1) 
Surface 

roughness, Ra 
(µm) 

2.284 0.898 0.644 

S/N ratio (dB) -7.1739 0.9345 3.8223 
Improvement 

in S/N ratio 
(dB) 

 6.2394 3.351 

Percentage 
reduction of 

surface 
roughness 

 60.68% 71.80% 
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3.3 Confirmation Test of GRG 
 
Even though the null hypothesis is accepted, the result 
have to be confirmed in case the p-value produce 
the wrong value, because some of the experiment 
produces the wrong p-value and resulting in the 
wrong discussion [22]. The predicted GRG was 
calculated using Equation (8). The grey relational 
grade (GRG) was calculated and averaged from the 
three runs. The optimized level has been determined 
from the response GRG Table 11 and the new result for 
build time and surface roughness were 24 (min) and 
2.182 (µm), respectively.  

Further, it can be inferred from Table 11 that the 
result of the experiment value prove that the null 
hypothesis was correct because the value gathered 
does not exceed the initial design value and 
decreased the value of grey relational analysis to (-
10.77%) even though the prediction value says it will 
increase the grey relational value by 13.45%. This result 
affirms that the p-value state that the result of the 
experiment will not be relatable with each of the 
response parameters, and it is proved p-values less 
than 0.05 only provide a significant result [23]. 
 

Table 11 Results of the experiment 
 

Initial Design Parameters Optimal Design Parameters 
Prediction Experiment 

Setting Level PT (1)-LT (3)-
SL (3) 

PT (1)-LT (3)-SL 
(1) 

PT (1)-LT (3)-SL 
(1) 

Grey relational 
grade 

0.6612 0.750124 0.589881 

Improvement in 
GRG 

 13.45% -10.77% 

*PT-printing temperature, LT-layer thickness, SL-surface layer 
 
 
3.4 Macroscopic Inspection 
 
Macroscopic inspection for optimal surface roughness 
was done. The specimens printed were examined by 
macroscopic inspection using the Meiji Stereo 
Microscope to find the structure difference on the 
specimen, as shown in Figure 9. To examine the 
printed sample surface, the magnification of 1.5X to 
420X and accuracy of 0.05 mm are set accordingly. 
This stereo microscope is connected with a digital 
camera and personal computer as it is used to 
capture the visual of the sample surface and display 
it. There is no evidence of gaping and air bubbles 
trapped in between the layer of the printed specimen. 
The surface of the specimen has a small and fine gap 
between extruded material of 0.1 mm layer thickness, 
then created smooth surface roughness, which is an 
average of 0.644 µm. 
 

 
 
Figure 9 Printed specimen by optimal surface roughness 
setting level of printing speed (level 1), layer thickness (level 
1), and surface layer (level 1) 
 
 
3.5 Macroscopic Inspection for Optimal Grey 
Relational Grade (GRG) 
 
Macroscopic inspection for the optimal grey relational 
grade was examined by determining the changes in 
the surface roughness of printed specimen with 
optimized level, as shown in Figure 10. However, the 
surface roughness for this printed specimen is not very 
smooth, and the value of surface roughness, Ra is 
2.182 µm. The wavy and big gap created by the 
extruded material of layer thickness of 0.3 mm is unlike 
that already described in the optimal surface 
roughness section. Figure 10 also indicates no 
evidence of crack or bubble on the specimen and 
concludes this specimen is still reliable. Nonetheless, in 
terms of build time, regardless of surface roughness, 
the specimen printed in optimal GRG has an excellent 
build time of 25 min was one of the lowest build times 
in the experiment. 
 

 
 
Figure 10 Printed specimen by optimal grey relational grade 
(GRG) setting level of printing speed (level 1), layer thickness 
(level 3), and surface layer (level 1) 
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4.0 CONCLUSION 
 
This paper aims to optimize the parameter of an open-
source ultrasonic vibration assisted FDM printer for 
surface roughness. Initially, the outcome of control 
factors which are printing temperature, layer 
thickness, and surface layer on the GRG, does not 
meet the desired value, which means there is no 
relatable surface roughness and build time. This is also 
proven by the p-values that indicated higher than 0.05 
of significant level. The parameter for surface 
roughness was then optimized by using ANOVA on 
signal-to-noise ratios (S/N ratios). The value of surface 
roughness was 0.644µm, which shows that the surface 
of the specimen was very smooth, and the gap 
between extruded material hardly appears. There is 
also no crack or bubble present. To conclude, the 
ANOVA model did improve the surface roughness of 
the printed specimen, and the setting level of printing 
temperature (level 1), layer thickness (level 1), and 
surface layer (level 1) has revealed to be the most 
optimal control response in the model experiment. 
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