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Abstract 
 

The pendulum-cart system is a popular system plant as a case study in 

nonlinear control design and implementation. The controllability and 

system performance can be influenced by the effectivity of the actuator 

and sensor. However, actuator and sensor fault sometimes is inevitable 

and can be occurred during operation. This paper considers fault-

tolerant control (FTC) to minimize the actuator and sensor fault. The 

control objective is to track the sinusoidal reference position of the cart 

while the pendulum is maintained upright in which the faulty actuator 

and sensor occurred. Takagi-Sugeno (T-S) fuzzy tracking control is 

designed based on a compensator scheme where the Proportional-

Proportional Integral Observer (PPIO) is utilized for this scheme. The Linear 

Matrix Inequalities (LMIs) are used to calculate the controller and 

observer gains. The performance of the proposed controller is verified 

through simulation and experimental validation. The effectiveness of FTC 

in the case of actuator and sensor fault is given. The system responses for 

the compensated and uncompensated controllers (to track the 

reference signal) are compared. In the case of a sensor fault, only the 

compensated controller can converge to the reference signal. However, 

in the case of actuated fault, both compensated and uncompensated 

controllers converge to the reference signal but the error of the 

compensated controller is better than the other one.  

 

Keywords: Fault-Tolerant Control (FTC); Proportional-proportional integral 

observer (PPIO); T-S Fuzzy, LMI, Pendulum-cart system 
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1.0 INTRODUCTION 
 

Imperfect behavior in the classical pendulum-cart 

system e.g., loss of effective actuators or sensor failures 

is an inevitable event that may cause degraded 

performance. This fault can be classified as an 

actuator fault, sensor fault, and plant component 

(process) [1]. To overcome this problem, fault-tolerant 

control (FTC) can be employed so that the control 

system becomes more stable [2]. In this paper, we 

consider the actuator and sensor faults where the 

faults may result in undesired control signals and cause 

biased in measurement, respectively. They are not 

critical failures or complete loss of an actuator or 

sensor. Hence, the considered faults lie between the 

control system performances and the severity of 
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failures as described in the classification diagram of 

FTC [3] in which the performance of the faulty system 

can be maintained close to the nominal 

performance. The actuator and sensor faults can be 

represented as the variation of system parameters or 

as additional unknown input acting on the dynamics 

of the system or on the measurements. We adopt 

active fault-tolerant control (AFTC) to deal with the 

sensor and actuator faults and implement this method 

in a real laboratory-scale system, namely a pendulum-

cart system for trajectory tracking. We introduce the 

additional unknown inputs in the form of sinusoidal 

functions for fa and fs which represent the actuator 

and sensor faults, respectively. In this work, we choose 

AFTC over the passive fault-tolerant control (PFTC) 

approach because AFTC actively responds to faulty 

conditions by reconfiguring control action [2]. 

Many fault-tolerant control systems of active and 

passive methods have been used to control system 

plants. For instance, the use of passive FTC to control 

the satellite attitude [7] or other applications, namely 

flight tracking [4], DC motor [5], spacecraft attitude 

maneuver [6], and inverted pendulum system [9] using 

active FTC. The control problems were related to 

actuator failure [4] or sensor failure [11], actuator fault 

[6],[7], actuator and sensor faults with external 

disturbance [9], and simultaneous occurrence of 

actuator/sensor faults [10]. Besides tackling the 

actuator and sensor faults, FTC was used to handle 

noise and disturbance [5] or the stator and rotor faults 

in induction machines [8]. These show the applicability 

and effectiveness of fault-tolerant controllers in solving 

engineering problems. For laboratory-scale systems, 

an inverted pendulum system is well-known as a 

laboratory testbed for control engineering education 

and research purposes. The inverted pendulum 

system consisted of a pole attached to the cart where 

the pole is  stabilized upright from its initial position by 

controlling the cart. For this system, the challenging 

problem is to stabilize the pendulum upright and track 

the trajectory where the system has sensor and 

actuator faults. 

Takagi-Sugeno (T-S) fuzzy model and its 

representation are employed in fault-tolerant control 

approaches for the case of uncertain nonlinear 

systems, nonlinear systems with unknown disturbance, 

or nonlinear systems with actuator fault as discussed in 

[10], [12], and [13], respectively. The work presented 

here is an improvement of the work in [14] and [5]. In 

[14], the tracking trajectory control is provided using 

Fuzzy tracking by using an observer-based stabilizing 

compensator. However, [14] does not consider faulty 

conditions. In [5], fault-tolerant control was proposed 

using robust observer-based for simultaneous actuator 

and sensor faults problem where these faults were 

described in two auxiliary state vectors. Furthermore, 

PI structure is used to construct a single robust 

observer, and then, the proposed observer was 

formulated using LMI for robust stability. By following 

the work of [15], the faults are initially estimated using 

a proportional integral observer and then the observer 

convergence and the control existence were 

formulated in linear matrix inequalities (LMI). By 

combining the works in [5],[14], and [15], in the present 

paper, we propose fault-tolerant control using T-S 

Fuzzy controller for a nonlinear system and 

proportional-proportional integral (PPI) observer to 

estimate the sensor and actuator fault. This observer is 

used to estimate the system states and the fault and 

the observer gains are determined by LMI pole 

placement  [16]. The nominal controller is designed 

based on a parallel distributed compensation (PDC) 

scheme while the pole placement method is 

designed using LMIs for the input-output constraint of 

control gain. We consider the trajectory tracking 

control problem of a pendulum-cart system. We use 

active fault-tolerant control to deal with the sensor 

and actuator faults while tracking a sinusoidal 

reference signal.  

The rest of this paper can be organized as follows. 

In Section 2 we present the proposed fault-tolerant 

control. The simulation and real-time experimental 

results are provided in Section 3. Finally, the 

concluding remark is given in Section 4.  
 

 

2.0 PENDULUM-CART SYSTEM MODEL 

 

The model of a pendulum-cart system is shown in 

Figure 1. Let the state variable  𝑥1 = 𝑥 and 𝑥2 = 𝜃 i.e., 

the cart position and angular position of pendulum, 

respectively. Then, 𝑥3 = 𝑥̇, and 𝑥4 = 𝜃̇ are the 

respective state variables for cart velocity and 

pendulum angular velocity. The state-space 

representation of the pendulum-cart system [17] and 

[18] can be written as: 
𝑥̇1 = 𝑥3  

𝑥̇2 = 𝑥4 

𝑥̇3 =
𝑎(𝐹−𝑇𝑐−𝜇𝑥4 

2 sin𝑥2)

𝐽+𝜇𝑙 sin
2
𝑥2

  

+
𝑙cos𝑥2(𝜇𝑔 sin𝑥2−𝑓𝑝𝑥4)

𝐽+𝜇𝑙sin
2
𝑥2

  

𝑥̇4 =
𝑙 cos𝑥2(𝐹−𝑇𝑐−𝜇𝑥4

2 sin𝑥2)

𝐽+𝜇𝑙 sin
2
𝑥2

  

+
𝜇𝑔 sin𝑥2−𝑓𝑝𝑥4

𝐽+𝜇𝑙 sin
2
𝑥2

  (1) 

where  

 𝑎 = 𝑙2 +
𝐽

(𝑚𝑐+𝑚𝑝)
 ,  𝜇 = (𝑚𝑐 + 𝑚𝑝)𝑙 

 
Figure 1 Model of Pendulum-Cart System 



159                                  Trihastuti Agustinah et al. / Jurnal Teknologi (Sciences & Engineering) 85:2 (2023) 157–165 

 

 

𝑙 is the length of pendulum, mc and  mp are the mass 

of the cart and the mass of the pendulum, 

respectively. F is the force (control input signal), and Tc 

is the friction force. Since Tc in (1) is unknown, and 

hence, we ignore this friction force in design controller. 

The parameters of pendulum-cart system (Feedback 

Instrument, 2002) are J = 0.0139 kg.m2, fp = 0.0001 

kg.m/s, mc = 1.12 kg, mp = 0.025 kg, l = 0.402 m, and g 

= 9.8 m/s2.  

 

 

3.0 FAULT-TOLERANT CONTROL APPROACH 

 

3.1 Nominal Fuzzy Tracking Control of Pendulum-Cart 

System 

 

A fuzzy model has been proposed by Takagi and 

Sugeno (T-S) to represent the nonlinear system 

dynamic [19] To build the T-S fuzzy model, the 

nonlinear pendulum-cart system is linearized in three 

operating points, i.e., 𝑥1 = [0 0 0 0]𝑇, 𝑥2 = [0 ±
𝜋

12
 0 0]𝑇 and 𝑥3 = [0 ±

𝜋

6
 0 0]𝑇. The linear models of the 

system are obtained as follow: 

 𝑥̇(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)  

 𝑦(𝑡) = 𝐶𝑖𝑥(𝑡), 𝑖 = 1, 2, 3 (1) 

where: 

𝐴1 =

[
 
 
 
 
0 0 1 0

0 0 0 1

0 0.253 0 0

0 15.042 0 −0.008]
 
 
 
 

, 𝐵1 =

[
 
 
 
 

0

0

0.827

1.237]
 
 
 
 

  

𝐴2 =

[
 
 
 
 
0 0 1 0

0 0 0 1

0 0.218 0 0

0 14.456 0 −0.008]
 
 
 
 

, 𝐵2 =

[
 
 
 
 

0

0

0.826

1.193]
 
 
 
 

 (2) 

𝐴3 =

[
 
 
 
 
0 0 1 0

0 0 0 1

0 0.123 0 0

0 12.781 0 −0.008]
 
 
 
 

, 𝐵3 =

[
 
 
 
 

0

0

0.822

1.065]
 
 
 
 

  

𝐶𝑖 = 𝐶 = [1 0 0 0] 

Let consider a servo-compensator model [20]: 

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑒(𝑡) 

 𝑦𝑐(𝑡) = 𝑥𝑐(𝑡)   (3) 

 𝑒(𝑡) = 𝑦𝑟(𝑡) − 𝑦(𝑡)  

 

where 𝑥𝑐(𝑡) ∈ 𝑅𝑛𝑐 is the compensator states, 𝑦𝑐(𝑡) ∈ 𝑅𝑞 

is the reference signals, and 𝑒(𝑡) ∈ 𝑅𝑞  is the tracking 

error. For the sinusoidal reference signal 𝑦𝑟(𝑡) =
0.1 sin (0.2𝜋𝑡), the compensator model is 

 𝑥̇𝑐(𝑡) = [
0 1

−0.395 0
] 𝑥𝑐(𝑡) + [

0

0.063
] 𝑒(𝑡) (4) 

The controller is expected to follow the reference 

signal. The augmented system of the pendulum model 

and the compensator model is: 

 [
𝑥̇(𝑡)
𝑥̇𝑐(𝑡)

] = [
𝐴𝑖 0

−𝐵𝑖𝐶𝑖 𝐴𝑐

] [
𝑥(𝑡)

𝑥𝑐(𝑡)
]  

 + [
𝐵𝑖

0
] 𝑢(𝑡) + [

0

𝐵𝑐

] 𝑦𝑟(𝑡), 𝑖 = 1, 2, 3  (5) 

 

The control signal of (5) is obtained as follow: 

 

𝑢(𝑡) = ∑ [𝐾 𝐾𝑐] [
𝑥(𝑡)
𝑥𝑐(𝑡)

]3
𝑖=1   (6) 

 

where K is the state feedback gain, and Kc is the 

compensator gain.  Equation (5) and (6) can be 

written as follow: 

 

 𝑥̇̅(𝑡) = 𝐴̅𝑖𝑥̅(𝑡) + 𝐵̅𝑖𝑢(𝑡), 𝑖 = 1, 2, 3 (7) 

 𝑢(𝑡) = ∑ 𝐾𝑖
3
𝑖=1 𝑥̅(𝑡)  (8) 

 

The T–S fuzzy model of the augmented system is 

described by fuzzy If-Then rules and will be employed 

to deal with the control design problem. The ith rules 

of the fuzzy model [15] are: 

 

Model rule 1: 

If  𝑥2(𝑡) is M1 (about 0 rad) 

Then 𝑥̇̅(𝑡) = 𝐴̅1𝑥̅(𝑡) + 𝐵̅1𝑢(𝑡) 
  𝑦(𝑡) = 𝐶1(𝑡) 
Model Rule 2: 

If  𝑥2(𝑡) is M2 (±
𝜋

12
 rad) 

Then 𝑥̇̅(𝑡) = 𝐴̅2𝑥̅(𝑡) + 𝐵̅2𝑢(𝑡)  
  𝑦(𝑡) = 𝐶2(𝑡) 
Model Rule 3: 

If  𝑥2(𝑡) is M3 (±
𝜋

6
 rad) 

Then 𝑥̇̅(𝑡) = 𝐴̅3𝑥̅(𝑡) + 𝐵̅3𝑢(𝑡)  
  𝑦(𝑡) = 𝐶3(𝑡) 
 

where  𝐶𝑖 = [1 0 0 0]  for 𝑖 = 1, 2, 3. M1, M2, and M3 are 

the triangular fuzzy membership which represent the 

fuzzy inference function of angular pendulum. Based 

on the PDC scheme, we design the controller rules as 

follow:  

 

Control Rule 1: 

If  𝑥2(𝑡) is M1 (about 0 rad) 

Then 𝑢(𝑡) = 𝐾1𝑥(𝑡) 
Control Rule 2: 

If  𝑥2(𝑡) is M2 (±
𝜋

12
 rad) 

Then 𝑢(𝑡) = 𝐾2𝑥(𝑡) 
Control Rule 3: 

If  𝑥2(𝑡) is M3 (±
𝜋

6
 rad) 

Then 𝑢(𝑡) = 𝐾3𝑥(𝑡) 
 

The fuzzy inference is using AND conjunction operator 

while defuzzification is using the weighted average 

method. The fuzzy controller based on PDC rule can 

be written as: 
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 𝑢(𝑡) = ∑ ℎ𝑖𝐾𝑖𝑥(𝑡)3
𝑖=1   (9) 

 

where Ki is the gain controller that can be obtained 

using LMI pole placement.  

The block diagram of the overall nominal fuzzy 

tracking control system can be described in Figure 2. It 

shown in Figure 2 that 𝑢1(𝑡) is the respective control 

input nominal system in one operating point. This 

control input is acquired from the compensator and 

fuzzy controller. The other control input 𝑢2(𝑡) and 𝑢3(𝑡) 
are related for nominal system in different operating 

points. 

 

 
 

Figure 2 Overall controller for nominal system 

 

 

As shown in Figure 3, the desired poles of the 

closed loop system are determined in the left half 

plane of region D and it can be fulfilled and 

guaranteed by the use of LMI. This region D is the 

intersection of pole regions for the prescribed stability 

degree and prescribed relative damping of 

continuous-time system [21]. 

 

 
Figure 3 Pole regions for closed loop continuous system 

 

 

Let the closed-loop system is given as follow: 

 𝑥̇̅(𝑡) = (𝐴̅ + 𝐵̅𝐾)𝑥̅(𝑡) (10) 

The inequality equation to obtain state feedback gain 

is: 

𝑃−1 > 0 

(𝐴̅ + 𝐵̅𝐾)𝑃−1(𝐴̅ + 𝐵̅𝐾)𝑇 + 2𝛾𝑃−1 < 0 (11) 

 [
sin 𝜃 𝐻11 cos 𝜃  𝐻21

cos 𝜃  𝐻12
𝑇 sin 𝜃 𝐻22

] < 0  

where θ is angle between the real axis and upper 

region D, and γ is the limit line on the left half plane of 

the desired poles. Furthermore, we have: 

𝐻11 = 𝐴̅𝑃−1 + 𝑃−1𝐵̅𝑇 + 𝐵̅𝐾𝑃−1 + 𝑃−1𝐾𝑇𝐵̅𝑇  

𝐻12 = 𝐴̅𝑃−1 − 𝑃−1𝐴̅𝑇 + 𝐵̅𝐾𝑃−1 + 𝑃−1𝐾𝑇𝐵̅𝑇 (12) 

𝐻22 = 𝐻11, 𝐻21 = 𝐻12  

By substituting 𝑌 = 𝐾𝑃−1 and 𝑄 = 𝑃−1 into (11), then we 

have: 
 𝑄𝑖 > 0  

 𝐴̅𝑖𝑄𝑖 + 𝑄𝑖𝐴̅𝑖
𝑇 + 𝐵̅𝑖𝑌𝑖 + 𝑌𝑖

𝑇𝐵̅𝑖 + 2𝛾𝑃 < 0 (13) 

 [
sin 𝜃 𝐺1 cos 𝜃  𝐺2

∗ sin 𝜃 𝐺3
𝑇 ] < 0, 𝑖 = 1, 2, 3  

with 

 𝐺1 = 𝐺3 = 𝐴̅𝑖𝑄𝑖 + 𝑄𝑖𝐴̅𝑖
𝑇 + 𝐵̅𝑖𝑌𝑖 + 𝑌𝑖

𝑇𝐵̅𝑖  

  𝐺2 = 𝐴̅𝑖𝑄𝑖 − 𝑄𝑖𝐴̅𝑖
𝑇 + 𝐵̅𝑖𝑌𝑖 − 𝑌𝑖

𝑇𝐵̅𝑖 (14) 

i.e., the LMI that ensures the stability of the closed-loop 

pendulum-cart system. Moreover, as if the closed-loop 

stability is fulfilled, we are also required to have input 

and output constraints. This can be obtained by giving 

constraints for the following equations: 

 [
−𝑄 −𝑌𝑖

𝑇

∗ −
𝑢𝑚𝑎𝑥

2

𝛽

] < 0 (15) 

 [
−𝑄 −𝑄𝐶𝑧

𝑇

∗ −
𝑢𝑚𝑎𝑥

2

𝛽

] < 0 (16) 

where β is related to the Lyapunov function: 

 𝑉(𝑥(𝑡)) = 𝑥(𝑡)𝑇𝑃𝑥(𝑡) ≤ 𝛽 (17) 

while zmax is corresponded to 

 ‖𝐶𝑧𝑥(𝑡)‖  ≤  𝑧𝑚𝑎𝑥 (18) 

The matrix Q and Yi are given: 

 𝑄 = 𝑃−1, 𝑌𝑖𝑃
−1 (19) 

Then the controller gains can be obtained in the 

following: 

 𝐾𝑖 = 𝑌𝑖𝑃, 𝑖 = 1, 2, 3 (20) 

 

3.2 Sensor Fault Observer Design Based on T-S Fuzzy 

PPIO 

 

Based on augmented system, we develop sensor fault 

observer using T-S Fuzzy with the premise of state 

angular pendulum, 𝑥2(𝑡). There are three rules 

developed in this system as discussed in previous 

subsection, i.e., 
2 ( )x t is 0 rad, ±𝜋 12⁄  rad, and ±𝜋 6⁄  

rad.  

 

Rule-1:  

If   is M1 (around 0 rad)  

Then  

𝑥̇̂̅(𝑡) = 𝐴̅1𝑥̂̅(𝑡) + 𝐵̅1(𝑢(𝑡) + 𝑓𝑎(𝑡) 
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+𝐷̅𝑓𝑓𝑠(𝑡) + 𝐿̅1𝐶𝑐̅𝑒𝑥(𝑡)) 

𝑓̇
𝑠(𝑡) = 𝐹̅1𝐶𝑐̅(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡)) 

Rule-2: 

If  𝑥2(𝑡) is M2 (±
𝜋

12
 rad) 

Then  

𝑥̇̂̅(𝑡) = 𝐴̅2𝑥̂̅(𝑡) + 𝐵̅2(𝑢(𝑡) + 𝑓𝑎(𝑡) 

+𝐷̅𝑓𝑓𝑠(𝑡) + 𝐿̅2𝐶𝑐̅𝑒𝑥(𝑡)) 

𝑓̇
𝑠(𝑡) = 𝐹̅2𝐶𝑐̅(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡)) 

Rule-3:  

If  𝑥2(𝑡) is M3 (±
𝜋

6
 rad)  

Then 

   𝑥̇̂̅(𝑡) = 𝐴̅3𝑥̂̅(𝑡) + 𝐵̅3(𝑢(𝑡) + 𝑓𝑎(𝑡) 

+𝐷̅𝑓𝑓𝑠(𝑡) + 𝐿̅3𝐶𝑐̅𝑒𝑥(𝑡)) 

𝑓̇
𝑠(𝑡) = 𝐹̅3𝐶𝑐̅(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡)) 

The simplified T-S Fuzzy rules are: 

𝑥̇̂̅(𝑡) = 𝐴̅(𝑝)𝑥̂̅(𝑡) + 𝐵̅(𝑝)(𝑢(𝑡) + 𝑓𝑎(𝑡) 

 +𝐷̅𝑠𝑓𝑠(𝑡) + 𝐿̅(𝑝)𝐶𝑐̅𝑒𝑥(𝑡) (21) 

 𝑓̇
𝑠(𝑡) = 𝐹̅(𝑝)𝐶𝑐̅(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡))  

 

where 𝑥̇̂̅(𝑡) ∈ ℝ𝑛 is state estimation, 𝑓̇
𝑠 is sensor fault 

estimation which obtained from observer, 𝐿̅(𝑝) ∈

ℝ(𝑛+𝑙)×𝑙  and 𝐹̅(𝑝) ∈ ℝ𝑔×𝑙 are observer gains which 

designed based on T-S fuzzy model and 𝑒𝑥(𝑡) is error 

estimation. The error estimation, the proportional gain 

and observer proportional integral gain are:  

 𝑒𝑥 = 𝑥̅(𝑡) − 𝑥̂̅(𝑡)  (22) 

 𝐿̅(𝑝) = ∑ ℎ𝑖𝐿̅𝑖
𝑟
𝑖=1  (23) 

 𝐹̅(𝑝) = ∑ ℎ𝑖
𝑟
𝑖=1 𝐹̅𝑖 (24) 

It follows from (22), 

 𝑒̇𝑥 = 𝑥̇̅(𝑡) − 𝑥̇̂̅(𝑡) 

 = (𝐴̅(𝑝) − 𝐿̅(𝑝)𝐶𝑒̅𝑒𝑥(𝑡) + 𝐷̅𝑓𝑒𝑓𝑠(𝑡) (25) 

 +𝐵̅(𝑝)𝑒𝑓𝑠(𝑡)  

where sensor error estimation 𝑒𝑓𝑠 and actuator error 

estimation 𝑒𝑓𝑎 are given by: 

 𝑒𝑓𝑠 = 𝑓𝑠(𝑡) − 𝑓𝑠(𝑡) 

 𝑒𝑓𝑎(𝑡) = 𝑓𝑎(𝑡) − 𝑓𝑎(𝑡) (26) 

then we have: 

𝑒̇𝑓𝑠(𝑡) = −𝐹̅(𝑝)𝐶̅(𝐴̅(𝑝) − 𝐿̅(𝑝)𝐶̅ + 𝐼)𝑒𝑥(𝑡) 

+𝑓𝑠̇(𝑡) − 𝐹̅(𝑝)𝐶̅𝐷̅𝑓𝑒𝑓𝑠(𝑡) 

 −𝐹̅(𝑝)𝐶̅𝐵̅(𝑝)𝑒𝑓𝑎(𝑡) (27) 

By choosing Lyapunov candidate as: 

 𝑉(𝑒̃𝑎𝑠(𝑡)) = 𝑒̃𝑎𝑠
𝑇 (𝑡)𝑃̅𝑒̃𝑎𝑠(𝑡) (28) 

where 𝑒̃𝑎𝑠(𝑡) = [𝑒𝑥(𝑡) 𝑒𝑓𝑠(𝑡)]𝑇 and  

 𝑃̅ = ∑ ℎ𝑖
3
𝑖=1 (𝑥)𝑃𝑖 ,  𝑖 = 1, 2, 3 (29) 

It follows from (28) that the derivative of Lyapunov 

function is: 

 𝑉̇(𝑒̃𝑎𝑠(𝑡)) = 𝑒̃𝑎𝑠
𝑇 (𝑡)(𝐴̃𝑠

𝑇𝑃̅ + 𝑃̅𝐴̃𝑠)𝑒̃𝑎𝑠(𝑡)  

 +𝑒̃𝑎𝑠
𝑇 (𝑡)𝑃̅𝑁̅𝑧̃ + 𝑧̃𝑇𝑁̅𝑇𝑃̅𝑒̃𝑎𝑠(𝑡) (30) 

where 

 𝐴̃𝑠 = [
𝐴̅(𝑝) − 𝐿̅(𝑝)𝐶𝑐̅ 𝐷̅𝑓

−𝐹̅(𝑝)𝐶̅(𝐴̅(𝑝) − 𝐿̅(𝑝)𝐶𝑐̅ + 𝐼 −𝐹̅(𝑝)𝐶̅𝐷̅𝑓

] 

 𝑁̃ = [
𝐵̅(𝑝) 0

−𝐹̅(𝑝)𝐶̅𝐵̅(𝑝) 𝐼
], 𝑧̃ = [

𝑒𝑓𝑎(𝑡)

𝑓𝑠̇
] (31) 

and by calculating Equation (30) such that  𝑉̇(𝑒̃𝑎𝑠(𝑡)) <
0, and with Schur complement method, then the LMI 

can be obtained. Furthermore, by adding some 

design criterion e.g. (a) to improve observer 

performance that ensures fast fault estimation, and 

(b) to assign observer poles in a certain region that 

may improve the performance (like overshoot), then 

we have LMI as follow: 

 min (𝛾 + 𝜇) 

 

[
 
 
 
 
 𝑤11

∗
∗
∗
∗
∗

𝑤12
𝑤22
∗
∗
∗
∗

𝑤13
𝑤23

−𝛾𝐼
∗
∗
∗

0
𝐼
0

−𝛾𝐼
∗
∗

𝐶𝑝1
𝑇

0
0
0

−𝛾𝐼
∗

0
𝐶𝑝2

𝑇

0
0
0

−𝛾𝐼]
 
 
 
 
 

< 0 

 [
𝜇𝐼 𝐷̅𝑓𝑃1 − 𝐹̅(𝑝)𝐶𝑐̅

∗ 𝜇𝐼
] > 0 (32) 

 ∑ + ∑ +2𝜌𝑃̅𝑇
𝑖 < 0𝑖  

 [
𝑠𝑖𝑛𝜃[Σ𝑖 + Σ𝑖

𝑇] 𝑐𝑜𝑠𝜃[Σ𝑖 + Σ𝑖
𝑇]

∗ 𝑠𝑖𝑛𝜃[Σ𝑖 + Σ𝑖
𝑇]

] < 0 

where 

𝑤13 = 𝑃1𝐵̅(𝑝), 𝑤22 = −2𝐷̅𝑓
𝑇𝑃1𝐷̅𝑓 

𝑤23 = −2𝐷̅𝑓
𝑇𝑃1𝐵̅(𝑝),  

𝑤11 = 𝑃1𝐴̅(𝑝) + (𝑃1𝐴̅(𝑝))𝑇 − 𝐻̅(𝑝)𝐶𝑐̅ − (𝐻̅(𝑝)𝐶𝑐)
𝑇 

𝑤12 = −(𝐴̅𝑇(𝑝)𝑃1𝐷𝑓 − 𝐶𝑐̅
𝑇𝐻̅𝑇(𝑝)𝐷̅𝑓 

Σ𝑖 = 𝑃̅𝐴𝑠(𝑝, 𝑝)

= [
𝑃1𝐴̅(𝑝) − 𝐻̅(𝑝)𝐶𝑐̅ 𝑃1𝐷̅𝑓

−(𝐴̅𝑇(𝑝)𝑃1𝐷̅𝑓 − 𝐶𝑐̅
𝑇𝐻̅𝑇𝐷̅𝑓 + 𝑃1𝐷̅𝑓) −𝐷̅𝑓

𝑇𝑃1𝐷̅𝑓

] 

 

The observer gains of proportional and proportional-

integral in Equation (32) can be obtained by:  

𝐿̅(𝑝) = 𝑃1
−1𝐻̅(𝑝) 

 𝐹̅(𝑝) (33) 

With fault sensor estimation: 

 𝑓𝑠(𝑡) = 𝐹̅(𝑝)𝐶𝑐̅ ∫(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡))𝑑𝑡 (34) 

 

3.3 Actuator Fault Observer Design Based on T-S 

Fuzzy PPIO 

 

In a similar manner as in sensor fault procedure, the 

observer gain for actuator fault can be obtained and 

it is given by: 
min (𝛾𝑎 + 𝜇𝑎) 
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[
 
 
 
 
 𝑤11

∗
∗
∗
∗
∗

𝑤12
𝑤22
∗
∗
∗
∗

𝑤13
𝑤23

−𝛾𝑎𝐼
∗
∗
∗

0
𝐼
0

−𝛾𝑎𝐼
∗
∗

𝐶𝑝1
𝑇

0
0
0

−𝛾𝑎𝐼
∗

0
𝐶𝑝2

𝑇

0
0
0

−𝛾𝑎𝐼]
 
 
 
 
 

< 0 

 [
𝜇𝑎𝐼 𝐵(𝑝)𝑇𝑃𝑎 − 𝐹𝑎(𝑝)𝐶𝑐

∗ 𝜇𝑎𝐼
] > 0 (35) 

Σ𝑎𝑖 + Σ𝑎𝑖
𝑇 + 2𝜌𝑃𝑎 < 0 [

𝑠𝑖𝑛𝜃[Σ𝑎𝑖 + Σ𝑎𝑖
𝑇 ] 𝑐𝑜𝑠𝜃[Σ𝑎𝑖 + Σ𝑎𝑖

𝑇 ]

∗ 𝑠𝑖𝑛𝜃[Σ𝑎𝑖 + Σ𝑎𝑖
𝑇 ]

] < 0 

with 

𝑤11 = 𝑃𝑎𝐴(𝑝) + (𝑃𝑎𝐴(𝑝))𝑇 − 𝐻(𝑝)𝐶𝑐 − (𝐻(𝑝)𝐶𝑐)
𝑇 

𝑤12 = −(𝐴𝑇(𝑝)𝑃𝑎𝐵(𝑝) − 𝐶𝑐
𝑇𝐻𝑇(𝑝)𝐵(𝑝)) 

𝑤13 = −𝐻(𝑝)𝐷𝑓, 𝑤22 = −(𝐵(𝑝)𝑇𝑃𝑎𝐵(𝑝) + 𝐵(𝑝)𝑃𝑎𝐵(𝑝)𝑇) 

𝑤23 = −𝐵(𝑝)𝑇𝐻(𝑝)𝐷𝑓 

Σ𝑎𝑖 = 𝑃𝑎1𝐴𝑠(𝑝, 𝑝) = [
𝑃𝑎1𝐴(𝑝) − 𝐻(𝑝)𝐶𝑐 𝑃𝑎1𝐵(𝑝)

−𝐴21 −𝐵(𝑝)𝑇𝑃𝑎1𝐵(𝑝)
] 

𝐴21 = (𝐴(𝑝)𝑇𝑃𝑎1𝐵(𝑝) − 𝐶𝑐
𝑇𝐻𝑇𝐵(𝑝) + 𝐵(𝑝)𝑇𝑃𝑎1(𝑡) 

The observer gains for actuator fault can be obtained 

from: 
 𝐿𝑎(𝑝) = 𝑃𝑎

−1𝐻(𝑝) 
 𝐹𝑎(𝑝) (36) 

 with actuator fault estimation: 

 𝑓𝑎(𝑡) = 𝐹𝑎(𝑝)𝐶𝑐 ∫(𝑒̇𝑥(𝑡) + 𝑒𝑥(𝑡))𝑑𝑡 (37) 

The overall structure for sensor and actuator fault can 

be illustrated in Figure 4. In this figure, the actuator and 

sensor fault observers are shown in red lines and they 

are fed to control input and output node, respectively. 

 

 
 

Figure 4 Overall control structure with actuator and sensor 

fault observers 

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Simulation Results 

 

To verify the effectiveness of the proposed fault-

tolerant control for trajectory tracking problems in the 

pendulum-cart system, we conduct simulation and 

experimental validation. In the simulation, we use 

numerical simulation using Matlab/Simulink. 

 

A. Simulation Results without Sensor or Actuator Fault 

 

The simulation results for the nominal system are given 

in Figure 5, 6, and 7 for the pendulum position, the cart 

position, and the control input, respectively. We 

compare the simulation of the nominal system for two 

cases. In the first case, the initial pendulum velocity is 

0.2 rad/s and the initial cart velocity is -0.77 rad/s, while 

for the second case, the initial pendulum velocity is 0.4 

rad/s and initial cart velocity is -1.43 rad/s. From both 

cases, all the responses for the pendulum position and 

the cart position converge to zeros and to reference 

signals, respectively. However, the position of the 

pendulum in the first case converges faster than the 

second one, while for the position of the cart, both 

responses converge at the same time around 3 

seconds. 
 

 
Figure 5 Pendulum position responses for nominal system with 

different initial conditions 
 

 
Figure 6 Cart position responses for nominal system with 

different initial conditions 
 

 
Figure 7 Control input for nominal system with different initial 

conditions 

 

 

B. Simulation Results with Sensor and Actuator Faults 

 

We conduct the simulation to observe the system 

response in the situation when there are faulty 
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conditions in the sensor and actuator as given in 

Figure 8 and 9, respectively. For each faulty condition, 

we compare the system response with 

uncompensated and compensated controllers. 

In the case of sensor fault, as shown in Figure 8, the 

cart position's response for the compensated 

controller converges to the reference signal after 

some time, while the response of the uncompensated 

controller does not converge (to reference signal) 

even though the pendulum is still stable. In the second 

situation when there is actuator fault as given in Figure 

9, the cart position's response for both compensated 

and uncompensated converge to the reference 

signal. However, the error for the uncompensated 

controller is larger than the compensated controller. 
 

 
Figure 8 Cart position responses for simulated sensor fault with 
𝑓𝑠 = 0.15 sin(0.5𝜋) 
 

 
Figure 9 Cart position responses for simulated actuator fault 

with 𝑓𝑎 = 30 sin (0.5𝜋) 
 

 
 

Figure 10 A testbed of pendulum-cart system 

 

 

3.2 Experimental Results 
 

The procedure to conduct the real-time pendulum-

cart experiment can be described as follow. First, the 

initial position of the pendulum is at the bottom. We 

run the program and then manually bring up the 

pendulum to its upper position. Immediately after the 

pendulum is closer to the equilibrium point, the system 

responses to stabilize the pendulum upright and to 

track the commanded reference signal. 

Consequently, the initial positions of the pendulum 

shown in Figure 11 and Figure 14 are larger compared 

to simulation results. Furthermore, in Figure 12, 15, and 

16, the cart positions are starting from zeros because 

the cart is held during positioning the pendulum to the 

upper position. 

We conduct real-time implementation using a 

pendulum-cart system testbed in Figure 10. First, we 

run the experiment for the nominal system, and the 

results are shown in Figure 11, 12, and 13 for the 

pendulum, cart, and control input, respectively. 

Secondly, we run the experiment with the situation 

when there are sensor or actuator faults. 
 

 
Figure 11 Pendulum position response for nominal system 

 

 
Figure 12 Cart position response for nominal system 

 

 
Figure 13 Control input response for nominal system 
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A. Experiment Results without Sensor or Actuator Fault 

 

For the nominal system as given in Figure 11, 12, and 

13, there is no faulty condition occurred. Both the 

pendulum position and cart position converge to the 

equilibrium point and the reference signal. The control 

input is shown in Figure 13 where the signal starts from 

zero and then after some time the control input 

stabilizes the pendulum upright and tracks the 

reference signal. 

 

B. Experiment Results with Sensor and Actuator Faults 

 

To observe the performance of the proposed 

controller in a real-time experiment, we conduct 

experiments for sensor fault and actuator fault 

conditions. The results are shown in Figure 14 through 

Figure 16.  

 

 
Figure 14 Pendulum position responses for sensor fault 

 
Figure 15. Cart position responses for sensor fault 

 

 
Figure 16.  Cart position responses for actuator fault 

 

 

In Figure 14 and Figure 15, we set the simulated sensor 

fault model as sinusoidal function with fs = 0.5 

sin(0.5π)u(t-15). Figure 14 shows the pendulum 

positions for uncompensated and compensated 

controllers that converge to equilibrium points. 

Furthermore, there are substantial differences in the 

cart positions shown in Figure 15. 

In the case of the actuator fault shown in Figure 16, 

the actuator fault model is given by the sinusoidal 

function of fa = 4 sin(0.5π)u(t-25). It is shown in this figure 

that the compensated and uncompensated 

controllers both converge to the reference signal. The 

cart position for the uncompensated controller has a 

larger error compared to the cart position for the 

compensated controller. 

For the given actuator and sensor fault models on 

the cart-pendulum system, we found that the sensor 

fault has a significant effect on the system 

performance compared to actuator faults as given in 

Figure 8 and Figure 15. 

 

 

4.0 CONCLUSION 
 

Fault-tolerant control for sensor and actuator fault of 

the pendulum-cart system is proposed. T-S Fuzzy 

controller is used for nonlinear pendulum-cart system 

and proportional-proportional integral observer is 

employed to estimate the sensor and actuator fault. 

Based on the augmented system, the sensor fault 

observer is developed using T-S Fuzzy with the premise 

of state angular pendulum and by some design 

criterion, the control gain and observer gain are 

obtained using LMI. The proposed controller is 

implemented and the effectiveness of the controller is 

verified in simulation and experiment. It is shown that 

the proposed fault-tolerant control can compensate 

the sensor and actuator fault for different scenarios. 

We conclude that the fault-tolerant control for fuzzy 

tracking of the pendulum-cart system has satisfactory 

results with good tracking performance. 
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