Jurnal Teknologi

KESAN KETEBALAN LAPISAN PENGANGKUT ELEKTRON TIO₂ TERHADAP PRESTASI SEL SURIA ORGANIK: KAJIAN SIMULASI

EFFECTS OF TIO₂ ELECTRON TRANSPORT LAYER THICKNESS ON THE PERFORMANCE OF ORGANIC SOLAR CELL: SIMULATION STUDY

Chi Chin Yap^{*}, Norhazirah Dahalan, Ain Hafizatul Abi Talib, Nur Izzati Mohamed Rosli

Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Graphical abstract

Abstract

Organic solar cell has gained more attention due to its low-cost production and easy fabrication process. However, the power conversion efficiency (PCE) is still low as compared to that of inorganic solar cell. One of the approaches to improve the PCE of organic solar cell is by introducing an electron transport layer which can extract the electrons effectively in between photoactive layer and cathode. Simulation study using SCAPS (Solar Cell Capacitance Simulator) software was conducted to examine the effects of TiO₂ electron transport layer thickness on the performance of organic solar cell with ITO/TiO₂/P3HT:PCBM/Ag structure. P3HT:PCBM acted as photoactive layer, whereas ITO and Ag played roles as cathode and anode, respectively. The range of studied thickness was from 30 to 180 nm. The simulation result indicates that the PCE increased with TiO₂ layer thickness in the range of 30 to 120 nm, and it saturated when the TiO₂ layer thickness was further raised to 180 nm. The highest PCE of 2.139% was obtained at TiO₂ layer thickness of 180 nm.

Keywords: Electron transport layer, organic solar cell, SCAPS, simulation, thickness

Abstrak

Sel suria organik semakin mendapat perhatian disebabkan kos penyediaan yang rendah serta proses penyediaan yang mudah. Namun demikian, kecekapan penukaran kuasa (PCE) masih agak rendah jika dibandingkan dengan sel suria tak organik. Salah satu pendekatan untuk meningkatkan PCE sel suria organik adalah dengan memperkenalkan lapisan pengangkut elektron yang mampu mengekstrak elektron dengan berkesan di antara lapisan fotoaktif dan katod. Kajian simulasi menggunakan perisian SCAPS (Solar Cell Capacitance Simulator) telah dilakukan untuk meneliti kesan ketebalan lapisan pengangkut elektron TiO₂ terhadap prestasi sel suria organik berstruktur ITO/TiO₂/P3HT:PCBM/Ag. P3HT:PCBM bertindak sebagai lapisan fotoaktif, manakala ITO dan Ag masing-masing memainkan peranan sebagai katod dan anod. Julat ketebalan yang dikaji adalah daripada 30 sehingga 180 nm. Hasil simulasi menunjukkan nilai PCE meningkat dengan pertambahan ketebalan lapisan TiO₂ dalam julat 30 hingga 120 nm, dan mencapai nilai tepu

84:6 (2022) 51–58 | https://journals.utm.my/jurnalteknologi | eISSN 2180–3722 | DOI: https://doi.org/10.11113/jurnalteknologi.v84.18565 |

Full Paper

Article history

Received 22 April 2022 Received in revised form 24 July 2022 Accepted 25 July 2022 Published Online 23 October 2022

*Corresponding author ccyap@ukm.edu.my apabila ketebalan lapisan TiO₂ terus ditingkatkan lagi ke 180 nm. Nilai PCE yang tertinggi iaitu 2.139% berjaya diperolehi pada ketebalan TiO₂ 180 nm.

Kata kunci: Ketebalan, lapisan pengangkut elektron, SCAPS, sel suria organik, simulasi

1.0 PENDAHULUAN

Beberapa tahun kebelakangan ini, sel suria organik telah berkembang pesat disebabkan kelebihannya dari segi kos, cara penyediaan dan sebagainya [1-3]. Walau bagaimanapun, kecekapan penukaran kuasa (PCE) yang dicapai adalah masih rendah berbanding dengan sel suria tak organik. Pelbagai usaha telah dilakukan untuk meningkatkan PCE sel suria organik, salah satu daripada usaha tersebut dengan memperkenalkan adalah lapisan pengangkut elektron yang sesuai di antara lapisan fotoaktif dan katod [4, 5]. Lapisan pengangkut elektron memainkan peranan penting dalam sel suria organik kerana ia dapat memudahkan proses pengekstrakan pengangkutan elektron dan daripada lapisan fotoaktif. Logam oksida TiO2 merupakan bahan yang sering kali diaplikasikan sebagai lapisan pengangkut elektron dalam sel suria organik [6–8]. TiO₂ mempunyai kestabilan yang baik, mobiliti elektron yang tinggi, dan kelutsinaran yang tinggi dalam julat gelombang cahaya nampak [9]. Selain itu, afiniti elektron TiO₂ juga sepadan dengan aras tenaga orbital molekul terendah yang tidak dihuni elektron (LUMO) bahan penerima untuk pengekstrakan elektron. Pada masa yang sama, keupayaan pengionan TiO₂ yang besar turut membolehkan ia berfungsi sebagai lapisan penghalang lohong [10].

Kajian lepas menunjukkan ketebalan lapisan pengangkut elektron mempengaruhi hasil pencirian ketumpatan arus-voltan (J-V) dan seterusnya prestasi sel suria organik. Sun et al. (2011) telah mengkaji kesan ketebalan lapisan pengangkut elektron TiO₂ terhadap prestasi sel suria oraanik berstruktur ITO/TiO₂/P3HT:PCBM/PEDOT:PSS/Ag [7]. Empat ketebalan lapisan TiO₂ yang berbeza telah dikaji iaitu 50, 100, 200 dan 500 nm. Hasil kajian mendapati bahawa, semakin nipis ketebalan lapisan TiO₂, semakin tinggi nilai PCE disebabkan cahaya yang sampai ke lapisan fotoaktif semakin bertambah. Namun demikian, Jiana et al. (2013) melaporkan keputusan yang bertentangan yang mana PCE semakin tinggi apabila ketebalan lapisan TiO₂ meningkat dalam julat 0 hingga 73 nm bagi sel suria organik berstruktur FTO/TiO₂/P3HT:PCBM/MoO₃/Ag [8]. PCE yang rendah diperolehi pada ketebalan

lapisan TiO₂ yang nipis adalah disebabkan lapisan katod FTO yang kasar tidak dapat ditutupi sepenuhnya oleh TiO₂.

© 2022 Penerbit UTM Press. All rights reserved

Walaupun beberapa kajian eksperimen telah dijalankan untuk melihat kesan ketebalan lapisan pengangkut elektron TiO₂ terhadap prestasi sel suria organik, tiada kajian simulasi seumpama yang pernah dilakukan setakat ini. Perisian SCAPS (Solar Cell Capacitance Simulator) telah digunakan secara meluas untuk tujuan simulasi peranti sel suria organik dan hasil simulasinya adalah sepadan dengan hasil kajian secara eksperimen [11-14]. Perisian SCAPS mampu memberikan maklumat simulasi elektrik yang lebih terperinci seperti taburan ketumpatan elektron/lohong, taburan kadar penggabungan semula, jalur tenaga peranti pada voltan yang berbeza dan sebagainya. Kajian simulasi bukan sahaja boleh menerangkan fenomena fizik yang terjadi, malah prestasi sel suria yang optimum dapat dikenalpasti dengan mudah. Tambahan pula, kos bahan mentah yang tinggi dan proses penyediaan sampel yang rumit juga dapat diminimumkan dengan melakukan kajian simulasi.

Perisian SCAPS telah digunakan dalam kajian ini untuk mengkaji kesan ketebalan lapisan pengangkut elektron TiO₂ terhadap prestasi sel suria organik berstruktur ITO/TiO₂/P3HT:PCBM/Ag. Hasil simulasi menunjukkan nilai PCE meningkat dengan pertambahan ketebalan lapisan TiO₂ dalam julat 30 hingga 120 nm, dan mencapai nilai tepu apabila ketebalan lapisan TiO₂ terus ditingkatkan lagi ke 180 nm. Nilai PCE yang tertinggi iaitu 2.139% berjaya dicapai pada ketebalan TiO₂ 180 nm.

2.0 METODOLOGI

Sel suria organik yang dikaji merupakan jenis heterosimpang pukal berstruktur songsang dengan konfigurasi ITO/TiO₂/P3HT:PCBM/Ag seperti yang ditunjukkan dalam Rajah 1. P3HT:PCBM bertindak sebagai lapisan fotoaktif, TiO₂ sebagai lapisan pengangkut elektron, manakala ITO dan Ag masingmasing memainkan peranan sebagai katod dan anod. Simulasi penjanaan pembawa cas dalam lapisan fotoaktif dan lapisan pengangkut elektron dilakukan dahulu dengan menggunakan kaedah pemindahan matriks dalam perisian GPVDM (General-purpose Photovoltaic Device Model) yang dibangunkan oleh Roderick MacKenzie [15–17]. Ketebalan lapisan ITO, P3HT:PCBM dan Ag masingmasing ditetapkan pada 100 nm, 150 nm dan 100 nm, manakala ketebalan lapisan TiO₂ divariasikan dalam julat 30 hingga 180 nm.

Rajah 1	I Sel suria	organik berstruktur	ITO/TiO ₂ /P3HT:PCBM/Ag
---------	-------------	---------------------	------------------------------------

Bagi mendapatkan graf J-V, perisian SCAPS yang menyelesaikan persamaan keselanjaran untuk lohong bersama-sama elektron dan dengan Poisson telah digunakan. persamaan Input parameter elektrik yang diperlukan dalam simulasi ini diperolehi daripada kajian-kajian lepas dan ditunjukkan dalam Jadual 1 [13, 14, 18]. Kecacatan neutral taburan gaussian dengan tenaga cirian 0.1 eV telah digunakan untuk lapisan pengangkut elektron TiO₂, manakala kecacatan penerima dengan aras tenaga taburan gaussian pada 100 dan 50 meV diperkenalkan pada lapisan fotoaktif [13]. Seterusnya, keratan rentas tawanan elektron dan lohong disetkan pada 9 × 10⁻¹⁵ cm² dengan kelajuan terma kedua-dua pembawa cas ditetapkan pada 10⁷ cm/s [19]. Manakala untuk antara muka di antara TiO₂ dan P3HT:PCBM, ketumpatan kecacatan antara muka disetkan pada 1.6 × 10⁹ cm⁻² [19]. Akhir sekali, fungsi kerja katod ITO dan anod Ag masing-masing ditetapkan pada 4.4 dan 4.8 eV. Rajah 2 menunjukkan aras tenaga setiap lapisan dalam sel suria organik yang dikaji. Nilai PCE dapat dikaitkan dengan nilai-nilai hasil simulasi parameter fotovoltaik iaitu voltan litar terbuka (Voc), ketumpatan arus litar pintas (Jsc) dan faktor pengisi (FF) menerusi persamaan berikut:

$$PCE = (V_{oc} \times J_{sc} \times FF) / P_{in}$$
(1)

P_{in} merupakan keamatan cahaya yang disinarkan pada sel suria.

Parameter	TiO ₂	P3HT:PCBM	
Ketebalan (nm)	berubah	150	
Jurang tenaga (eV)	3.2	1.27	
Afiniti elektron (eV)	3.9	3.7	
Ketelusan dielektrik	9.0	3.5	
Ketumpatan keadaan berkesan jalur konduksi (1/cm³)	1.0 x 10 ²¹	2.0 x 10 ¹⁸	
Ketumpatan keadaan berkesan jalur valensi (1/cm ³)	2.0 x 10 ²⁰	2.0 x 10 ¹⁸	
Kelincahan elektron	20	1.0 x 10 ⁻³	
Kelincahan lohong (cm³/Vs)	10	1.0 x 10 ⁻³	
Ketumpatan	1.0 x 10 ¹⁷	0	
Ketumpatan penerima, N_A (1/cm ³)	0	7.0 x 10 ¹⁵	

Rajah 2 Aras tenaga setiap lapisan dalam sel suria organik berstruktur ITO/TiO₂/P3HT:PCBM/Ag

3.0 HASIL DAN PERBINCANGAN

Untuk tujuan pengesahihan hasil simulasi dengan input parameter elektrik, nilai-nilai hasil simulasi parameter fotovoltaik Voc, Jsc, FF dan PCE untuk sampel dengan ketebalan lapisan pengangkut elektron TiO₂ bernilai 60 nm telah dibandingkan dengan nilai-nilai minimum dan maksimum eksperimen yang dilaporkan seperti dalam Jadual 2 [10, 20, 21]. Kajian-kajian lepas yang dibandingkan mempunyai struktur sel suria organik yang terdiri daripada lapisan pengangkut elektron TiO2 dan lapisan fotoaktif P3HT:PCBM yang sama. Berdasarkan Jadual 2, hasil perbandingan menunjukkan peratus perbezaan yang boleh diterima iaitu di bawah 20% bagi keempat-empat parameter fotovoltaik sel suria. Peratus perbezaan ini mengambil kira perbezaan nilai simulasi dengan nilai-nilai minimum atau maksimum eksperimen yang dilaporkan. Keputusan ini menunjukkan input parameter elektrik yang digunakan dalam simulasi ini adalah sepadan dengan parameter elektrik sel suria organik yang sebenar.

Jadual 2 Perbandingan hasil simulasi dengan hasil kajian ekperimen lepas

Parameter	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)
Simulasi	0.59	10.45	32	1.96
Maksimum	0.54	8.18	41	1.71
	[10]	[21]	[21]	[21]
Minimum	0.40	5.45	36	0.87
	[20]	[20]	[10]	[20]

Simulasi penjanaan pembawa cas telah dijalankan untuk sel suria organik pada ketebalan lapisan pengangkut elektron TiO₂ 30, 60, 90, 120, 150 dan 180 nm. Rajah 3 menunjukkan graf kadar penjanaan elektron dalam lapisan fotoaktif P3HT:PCBM dengan ketebalan lapisan TiO₂ yang berbeza. Didapati corak graf kadar penjanaan elektron adalah tidak jauh berbeza untuk ketebalan lapisan TiO₂ yang berbeza dan penjanaan elektron secara keseluruhan menurun sedikit dengan pertambahan ketebalan lapisan TiO₂. Oleh kerana lapisan TiO₂ mempunyai jurang tenaga yang besar dan tidak menyerap cahaya nampak, maka cahaya yang sampai ke lapisan fotoaktif adalah tidak dipengaruhi oleh perubahan ketebalan lapisan TiO2. Selaras dengan laporan kajian lepas, lapisan TiO₂ yang dimendapkan pada substrat ITO yang disinari cahaya juga tidak mempengaruhi pantulan cahaya daripada lapisan katod Ag [22]. Ini dapat dibuktikan dengan kedudukan puncak penjanaan pembawa cas yang hampir sama iaitu sekitar 63 hingga 65 nm untuk ketebalan TiO₂ yang berbeza.

Rajah 4 menunjukkan graf J-V bagi peranti dengan ketebalan lapisan pengangkut elektron TiO₂ yang berbeza. Nilai-nilai V_{oc}, J_{sc}, FF dan PCE yang dicerap daripada graf J-V ditunjukkan dalam Jadual 3 dan diplot sebagai fungsi ketebalan lapisan TiO₂ dalam Rajah 5. Secara amnya, kesemua nilai-nilai V_{oc}, J_{sc}, FF dan PCE meningkat dengan pertambahan ketebalan lapisan TiO₂ dalam julat 30 hingga 120 nm, dan mencapai nilai tepu apabila ketebalan lapisan TiO₂ terus ditingkatkan lagi ke 180 nm. Nilai PCE yang optimum iaitu 2.139% dicapai pada ketebalan TiO₂ 180 nm.

Rajah 4 Graf J-V bagi sel suria organik dengan ketebalan lapisan TiO $_2$ yang berbeza

 $\mbox{Jadual}~3$ Parameter fotovoltaik bagi sel suria organik dengan ketebalan lapisan \mbox{TiO}_2 yang berbeza

Ketebalan lapisan TiO2 (nm)	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)
30	0.4708	8.58	28.42	1.148
60	0.5917	10.45	31.70	1.960
90	0.6094	10.94	31.95	2.130
120	0.6107	10.95	31.99	2.138
150	0.6107	10.92	31.93	2.129
180	0.6111	10.92	32.04	2.139

Nilai J_{sc} sangat berkait rapat dengan penyerapan cahaya dan penjanaan pembawa cas dalam lapisan fotoaktif. Akan tetapi, berlakunya penurunan kecil dalam kadar penjanaan pembawa cas apabila ketebalan lapisan pengangkut elektron TiO₂ bertambah seperti yang ditunjukkan dalam Rajah 3. Jadi, faktor ini tidak dapat menjelaskan mengapa nilai J_{sc} meningkat apabila ketebalan lapisan TiO₂ bertambah. Bagi memahami isu ini dengan lebih mendalam, graf ketumpatan elektron dan lohong melawan kedudukan pada keadaan litar pintas (Rajah 6) telah diteliti. Rajah 6a menunjukkan ketumpatan lohong dalam lapisan fotoaktif sel suria dengan ketebalan lapisan TiO₂ 30 nm adalah paling tinggi. Ketumpatan lohong yang tinggi dalam lapisan fotoaktif menyebabkan kebarangkalian berlakunya penggabungan semula elektron-lohong meningkat, dan seterusnya mengurangkan bilangan elektron yang dapat diekstrak ke lapisan TiO2. Ini dapat disokong dengan ketumpatan elektron dalam lapisan TiO₂ yang rendah berbanding dengan yang dalam lapisan fotoaktif (Rajah 6b). Faktor ini menjelaskan mengapa nilai J_{sc} yang terendah diperolehi pada ketebalan lapisan TiO2 bernilai 30 nm walaupun kadar penjanaan pembawa cas adalah tertinggi.

Seperti Jsc, Voc juga sensitif terhadap peningkatan ketebalan TiO₂ terutamanya dalam julat 30 hingga 60 nm. Nilai V_{oc} meningkat hampir 25% iaitu daripada 0.4708 kepada 0.5917 V apabila ketebalan $\rm TiO_2$ bertambah daripada 30 kepada 60 nm. Kajian lepas menyatakan salah satu punca utama berlakunya peningkatan nilai V_{oc} adalah disebabkan penurunan penggabungan semula elektron-lohong dalam lapisan fotoaktif [23]. Peningkatan ketara Voc dalam kajian ini dapat dijelaskan dengan merujuk kepada graf kadar penggabungan semula melawan kedudukan seperti dalam Rajah 7. Rajah 7 menunjukkan kadar penggabungan semula untuk sel suria organik dengan ketebalan lapisan TiO₂ 30 nm adalah jauh lebih besar berbanding dengan peranti yang lain. Keadaan ini menjelaskan mengapa nilai Voc terendah diperolehi pada ketebalan lapisan TiO₂ 30 nm. Pada ketebalan ini, ketumpatan lohong dalam lapisan fotoaktif adalah tinggi dan seterusnya mengakibatkan berlakunya penggabungan semula pembawa cas. Apabila ketebalan TiO₂ ditingkatkan, didapati kadar penggabungan semula terus menurun dan hampir tidak berubah. Ini dapat digambarkan menerusi nilai V_{oc} yang bernilai ~0.61 V untuk julat ketebalan lapisan TiO₂ 90 hingga 180 nm.

Rajah 5 a) Nilai V_{oc} , b) J_{sc} , c) FF dan d) PCE sebagai fungsi ketebalan lapisan TiO₂

(d)

100

Ketebalan Lapisan TiO₂ (nm)

150

200

1.2

1.0

0

50

(b)

Kedudukan Dari Anod Ag (nm)

Rajah 6 a) Ketumpatan lohong dalam lapisan fotoaktif dan b) ketumpatan elektron dalam lapisan fotoaktif dan TiO_2 dengan ketebalan lapisan TiO_2 yang berbeza

 $Rajah\ 7\ Kadar\ penggabungan\ semula\ elektron-lohong dalam lapisan fotoaktif dengan ketebalan lapisan TiO_2 yang berbeza$

Seperti J_{sc} dan V_{oc}, FF juga menunjukkan peningkatan ketara apabila ketebalan lapisan pengangkut elektron TiO₂ bertambah daripada 30 kepada 60 nm. Nilai FF juga banyak dipengaruhi oleh pengaabungan semula yang berlaku dalam lapisan fotoaktif [24]. Penggabungan semula yang tinggi pada ketebalan TiO₂ 30 nm seperti yang ditunjukkan dalam Rajah 7 mengakibatkan nilai FF yang rendah diperolehi. Selain itu, FF turut bergantung kepada nilai rintangan siri yang disumbangkan oleh rintangan pukal setiap lapisan dalam sel suria [25]. Walaupun rintangan siri dijangka menaik akibat daripada ketebalan lapisan TiO2 yang semakin bertambah, kesan pengurangan dalam penggabungan semula mampu mengimbanginya. Sehubungan dengan itu, nilai FF didapati tidak banyak berubah dalam julat ketebalan TiO₂ 90 hingga 180 nm.

Kajian-kajian eksperimen lepas melaporkan corak perubahan parameter fotovoltaik dengan ketebalan lapisan pengangkut elektron TiO₂ yang bertentangan. Sebagai contoh, Sun et al. (2011) melaporkan bahawa PCE semakin berkurang dengan pertambahan ketebalan lapisan TiO₂ [7]. Keadaan ini berlaku kerana lapisan TiO₂ yang tebal menyerap lebih banyak cahaya dalam julat panjang gelombang 340 hingga 450 nm. Maka, cahaya yang sampai ke lapisan fotoaktif berkurang dan seterusnya menyebabkan PCE menurun. Penyerapan cahaya nampak oleh lapisan TiO₂ dalam kajian eksperimen adalah disebabkan oleh kewujudan bendasing semasa proses penyediaan sampel. Dalam kajian simulasi pula, lapisan TiO₂ dianggap ideal dan hanya menyerap cahaya dalam julat cahaya ultraungu. Selain itu, Jiang et al. (2013) pula melaporkan bahawa PCE bertambah dengan pertambahan ketebalan lapisan TiO₂ [8]. Punca peningkatan PCE adalah lapisan FTO yang kasar dapat ditutupi dengan lebih baik oleh lapisan TiO₂ yang lebih tebal. Faktor kekasaran tidak diambil kira dalam kajian simulasi kerana setiap lapisan adalah dianggap rata sepenuhnya. Selain dua faktor yang dijumpai dalam kajian eksperimen, kajian simulasi ini menunjukkan perilaku elektrik dalam lapisan fotoaktif seperti ketumpatan lohong dan penggabungan semula juga bergantung kepada ketebalan lapisan TiO2. Penemuan ini dapat menguatkan pemahaman peranan lapisan pengangkut elektron dalam mengoptimumkan prestasi sel suria organik.

4.0 KESIMPULAN

Kesan ketebalan lapisan pengangkut elektron TiO₂ terhadap prestasi sel suria organik berstruktur ITO/TiO₂/P3HT:PCBM/Ag telah dikaji secara simulasi. Walaupun hasil simulasi menunjukkan kadar penjanaan pasangan elektron-lohong dalam lapisan fotoaktif tidak dipengaruhi oleh ketebalan lapisan pengangkut elektron TiO₂, tetapi kadar penggabungan semula elektron-lohong bertambah tinggi khususnya pada ketebalan lapisan TiO₂ yang nipis iaitu 30 nm. Nilai-nilai parameter fotovoltaik menunjukkan peningkatan apabila ketebalan lapisan TiO₂ ditingkatkan dan PCE tertinggi dicapai pada ketebalan 180 nm. Hasil kajian ini menunjukkan ketebalan lapisan pengangkut elektron turut memainkan peranan penting dalam mengoptimumkan prestasi sel suria organik.

Penghargaan

Pengarang ingin mengucapkan terima kasih kepada Dr. Roderick MacKenzie dan Dr. Marc Burgelman yang masing-masing memberikan kebenaran untuk menggunakan perisian GPVDM dan SCAPS bagi kajian ini.

Rujukan

- [1] Kadam, K. D., Kim, H., Rehman, S., Patil, H., Aziz, J., Dongale, T. D., Khan, M. F., & Kim, D.-K. 2021. Compositional Dynamics of the Electron Transport Layer (ZnO:PEIE) in P3HT:PC₆₁BM Organic Solar Cells. Materials Science in Semiconductor Processing. 136: 106118. DOI: http://dx.doi.org/10.1016/j.mssp.2021.106118.
- [2] Aoki, R. M., Torres, E. T. D. S., de Jesus, J. P. A., Lourenço, S. A., Fernandes, R. V., Laureto, E., & Toledo da Silva, M. A. 2021. Application of Heterostructured CdS/ZnS Quantum Dots as Luminescence Down-shifting Layer in P3HT:PCBM Solar Cells. *Journal of Luminescence*. 237: 118178. DOI: http://dx.doi.org/10.1016/j.jlumin.2021.118178.
- [3] Khairulaman, F. L., Yap, C. C., & Jumali, M. H. H. 2021. Improved Performance of Inverted Type Organic Solar Cell using Copper Iodide-doped P3HT: PCBM as Active Layer for Low Light Application. *Materials Letters* 283: 128827.

DOI: http://dx.doi.org/10.1016/j.matlet.2020.128827.

- Palilis, L. C., Vasilopoulou, M., Verykios, A., Soultati, A., Polydorou, E., Argitis, P., Davazoglou, D., Mohd Yusoff, A. R. B., & Nazeeruddin, M. K. 2020. Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials. 10(27): 2000910. DOI: http://dx.doi.org/10.1002/aenm.202000910.
- [5] Kim, T., Lim, J., & Song, S. 2020. Recent Progress and Challenges of Electron Transport Layers in Organic⊎Inorganic Perovskite Solar Cells. Energies. 13(21): 5572.

DOI: http://dx.doi.org/10.3390/en13215572.

- [6] Kırbıyık, Ç., Akın Kara, D., Kara, K., Büyükçelebi, S., Yiğit, M. Z., Can, M., & Kuş, M. 2019. Improving the Performance of Inverted Polymer Solar Cells through Modification of Compact TiO₂ Layer by Different Boronic Acid Functionalized Self-assembled Monolayers. Applied Surface Science. 479: 177-184. DOI: http://dx.doi.org/10.1016/j.apsusc.2019.01.268.
- [7] Sun, H., Weickert, J., Hesse, H. C., & Schmidt-Mende, L. 2011. UV Light Protection through TiO₂ Blocking Layers for Inverted Organic Solar Cells. Solar Energy Materials and Solar Cells. 95(12): 3450-3454. DOI: http://dx.doi.org/https://doi.org/10.1016/j.solmat.2011.08.0 04.
- [8] Jiang, Z., Yang, D., Wang, N., Zhang, F., Zhao, B., Tan, S., & Zhang, J. 2013. Inverted Polymer Solar Cells with TiO₂ Electron Extraction Layers Prepared by Magnetron Sputtering. Science China Chemistry. 56(11): 1573-1577. DOI: http://dx.doi.org/10.1007/s11426-013-4901-1.

[9] Yan, Y., Cai, F., Yang, L., Li, J., Zhang, Y., Qin, F., Xiong, C., Zhou, Y., Lidzey, D. G., & Wang, T. 2017. Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO₂ Electron-Transport Layer. Advanced Materials. 29(1): 1604044.

DOI: http://dx.doi.org/10.1002/adma.201604044.

- [10] Örnek, O., Kösemen, Z. A., Öztürk, S., Canımkubey, B., Fındık, Ş., Erkovan, M., & Kösemen, A. 2017. Performance Enhancement of Inverted Type Organic Solar Cells by using Eu Doped TiO₂ Thin Film. *Surfaces and Interfaces*. 9: 64-69. DOI: http://dx.doi.org/10.1016/j.surfin.2017.08.003.
- [11] Burgelman, M., Nollet, P., & Degrave, S. 2000. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films. 361-362: 527-532.

DOI: http://dx.doi.org/10.1016/S0040-6090(99)00825-1.

- [12] Kaharudin, K. E., & Salehuddin, F. 2022. Predictive Modeling of Mixed Halide Perovskite Cell using Hybrid L27 OA Taguchi-based GA-MLR-GA Approach. Jurnal Teknologi. 84(1): 1-9.
- DOI: http://dx.doi.org/10.11113/jurnalteknologi.v84.15550.
- [13] Hacène, S. B., & Benouaz, T. 2014. Influence of Charge Carrier Mobility and Surface Recombination Velocity on the Characteristics of P3HT:PCBM Organic Solar Cells. *Physica Status Solidi (A) Applications and Materials Science*. 211(4): 862-868. DOI: http://dx.doi.org/10.1002/pssa.201330320.

[14] Lee, Y.-J., Adkison, B. L., Xu, L., Kramer, A. A., & Hsu, J. W. P. 2016. Comparison of Conventional and Inverted Organic

2016. Comparison of Conventional and Inverted Organic Photovoltaic Devices with Controlled Illumination Area and Extraction Layers. *Solar Energy Materials and Solar Cells*, 144: 592-599.

DOI: http://dx.doi.org/10.1016/j.solmat.2015.09.059.

- MacKenzie, R. C. I., Kirchartz, T., Dibb, G. F. A., & Nelson, J.
 2011. Modeling Nongeminate Recombination in P3HT:PCBM Solar Cells. Journal of Physical Chemistry C.
 115(19): 9806-9813.
 DOI: http://dx.doi.org/10.1021/jp200234m.
- [16] MacKenzie, R. C. I., Shuttle, C. G., Chabinyc, M. L., & Nelson, J. 2012. Extracting Microscopic Device Parameters from Transient Photocurrent Measurements of P3HT:PCBM Solar Cells. Advanced Energy Materials. 2(6): 662-669. DOI: http://dx.doi.org/10.1002/aenm.201100709.
- [17] Mackenzie, R. C. I., Shuttle, C. G., Dibb, G. F., Treat, N., von Hauff, E., Robb, M. J., Hawker, C. J., Chabinyc, M. L., & Nelson, J. 2013. Interpreting the Density of States Extracted from Organic Solar Cells using Transient Photocurrent Measurements. *Journal of Physical Chemistry C.* 117(24): 12407-12414.

DOI: http://dx.doi.org/10.1021/jp4010828.

- [18] Gan, Y., Bi, X., Liu, Y., Qin, B., Li, Q., Jiang, Q., & Mo, P. 2020. Numerical Investigation Energy Conversion Performance of Tin-based Perovskite Solar Cells using Cell Capacitance Simulator. *Energies*. 13(22): 5907. DOI: http://dx.doi.org/10.3390/en13225907.
- [19] Abdelaziz, W., Zekry, A., Shaker, A., & Abouelatta, M. 2020. Numerical Study of Organic Graded Bulk Heterojunction Solar Cell using SCAPS Simulation. *Solar Energy*. 211: 375-382.

DOI: http://dx.doi.org/10.1016/j.solener.2020.09.068.

[20] Wu, J., Zhang, Y., He, Y., Liu, C., Guo, W., & Ruan, S. 2014. Application of Solution-processed V₂O₅ in Inverted Polymer Solar Cells based on Fluorine-doped TiN Oxide Substrate. *Journal of Nanoscience and Nanotechnology*. 14(6): 4214-4217.

DOI: http://dx.doi.org/10.1166/jnn.2014.8037.

Yerli, Y., Alparslan, Z., Ksemen, A., Örnek, O., & San, S. E. 2011. TiO₂-based Organic Hybrid Solar Cells with Mn⁺² Doping. International Journal of Photoenergy. 2011: 734618.

DOI: http://dx.doi.org/10.1155/2011/734618.

[22] Mehdizadeh Rad, H., Zhu, F., & Singh, J. 2018. Profiling Exciton Generation and Recombination in Conventional and Inverted Bulk Heterojunction Organic Solar Cells. Journal of Applied Physics. 124: 083103. DOI: http://dx.doi.org/10.1063/1.5031062.

- [23] Thakur, A. K., Wantz, G., Garcia-Belmonte, G., Bisquert, J., & Hirsch, L. 2011. Temperature Dependence of Opencircuit Voltage and Recombination Processes in Polymerfullerene based Solar Cells. Solar Energy Materials and Solar Cells. 95(8): 2131-2135.
- DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.012.
- [24] Zhao, N., Osedach, T. P., Chang, L.-Y., Geyer, S. M., Wanger, D., Binda, M. T., Arango, A. C., Bawendi, M. G., &

Bulovic, V. 2010. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano. 4(7): 3743-3752. DOI: http://dx.doi.org/10.1021/nn100129j.

[25] Guerrero, A., Ripolles-Sanchis, T., Boix, P. P., & Garcia-Belmonte, G. 2012. Series Resistance in Organic Bulkheterojunction Solar Devices: Modulating Carrier Transport with Fullerene Electron Traps. Organic Electronics. 13(11): 2326-2332.

DOI: http://dx.doi.org/10.1016/j.orgel.2012.06.043.