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Abstract 
 
In the polypropylene (PP) industry, melt index (MI) is the most important quality 
variable. Different grades of PP have their specific range of MI. Accurate 
prediction of MI is essential for efficient monitoring and off-grade reduction. 
Artificial Neural Network (ANN) models are proposed as the technique for MI 
estimation. It has powerful adaptive capabilities in response to nonlinear 
behaviour. In this research, ANN models for PP polymerization to predict the MI 
based on reactor parameters were developed. Three types of ANN models, the 
single hidden layer ANN (shallow ANN), stacked neural network (SNN) and 
deep learning are compared. The simulation results show that deep learning 
can perform better than shallow ANN and SNN by considering the accuracy of 
the prediction and detection of process fluctuation. All three model have 
proven that ANN are able to perform non-linear function approximation. Thus, 
ANN models are effective for supporting MI prediction such as for soft-sensors 
and process optimization in the polymer industry.  
 
Keywords: Artificial Neural Network, Deep Learning, Melt Index, Polypropylene, 
Stacked Neural Network 

 
Abstrak 
 
Dalam industri polipropilena (PP), indeks leburan (MI) adalah kualiti yang paling 
penting. Ramalan MI yang tepat adalah penting untuk pemantauan yang 
cekap dan pengurangan produk tidak berkualiti. Pemodelan rangkaian saraf 
dicadangkan sebagai teknik untuk anggaran MI. Ia mempunyai keupayaan 
penyesuaian yang kuat dalam pemodelan kelakuan tidak linear. Matlamat 
penyelidikan ini adalah untuk membangunkan model rangkaian saraf untuk 
meramalkan MI berdasarkan parameter reaktor. Jenis rangkaian saraf yang 
berbeza seperti rangkaian saraf tiruan cetek (shallow ANN), rangkaian saraf 
bertindan (SNN) dan ‘deep learning’ akan dibandingkan. Keputusan simulasi 
menunjukkan bahawa ‘deep learning’ lebih baik daripada shallow ANN dan 
SNN dengan mengambil kira ketepatan ramalan dan pengesanan 
ketidakstabilan proses. Namun, ketiga-tiga pemodelan membuktikan bahawa 
rangkaian saraf mampu melakukan pemodelan bukan linear dan model 
rangkaian saraf adalah alat analisis yang berkesan yang boleh digunakan 
sebagai alat ramalan MI untuk pengoptimuman proses dalam industri polimer. 
 
Kata kunci: Deep learning, indeks leburan, rangkaian saraf bertindan, 
rangkaian saraf tiruan, polipropilena  
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1.0 INTRODUCTION 
 
Polypropylene (PP) is a versatile thermoplastic 
material with various applications, including food 
packaging, appliances, injection moulded parts for 
automobiles, textiles, labelling and toy making. It has 
intrinsic properties of good tensile strength, inert 
towards acid, high stiffness, and good processability. 
The polypropylene market is expected to have a 
compound annual growth rate (CAGR) of more than 
6% expected over the forecast period (2021-2026). 

Different grades of PP have their specific range of 
melt index (MI) that will be changed during product 
grade transition. Melt index (MI) is the weight of the 
polymer in grams extruded in 10 min under the 
application of a dead weight through a melt flow 
apparatus. It is the most widely used specification in 
the plastics industry to differentiate between different 
polymer grades. It has long been used by PP 
manufacturers to define the best end application for 
a particular grade of polymer. Material exceeding or 
lower than the intended MI can have a negative 
impact on the quality of the end product and receive 
customers’ complaints and rejects. As a result, it is 
critical to guarantee that MI is within the specification. 

Due to the high demand for different PP grades, 
the frequency of grade transition reaches almost four 
transitions per week. Higher transition frequency 
means the MI of PP produced needs to be adjusted 
frequently. Therefore, fast and efficient quality analysis 
is important to reduce the off-grade quantity. Yet, the 
problem is that MI can only be evaluated offline with 
the analytical procedure in a quality laboratory. The 
procedure is costly and also time-consuming, 
requiring between 2 to 4 hours [1]. Therefore, there is a 
need to come out with methods to estimate the 
product quality in real-time. 

Product quality prediction is a much more complex 
issue for a polymerisation process compared to 
conventional short chain reactions because the 
chemical, physical, mechanical, thermal, and 
rheological properties of polymers are strongly 
influenced by its molecular and morphological 
properties [2]. Due to the high complexity and non-
linearity of the PP process, first principle modelling 
contains many uncertainties resulting in difficulties in 
getting  accurate  prediction of PP MI. Therefore, 
instead of creating a first-principles driven predictor, a 
data-driven predictor is a better choice. In this work, 
artificial neural network (ANN) modelling is the data-
driven model chosen for the MI prediction. ANN uses 
the past relationship between the process data and 
MI results to predict future MI values. The approach of 
using ANN models has become more popular recently 
due rapidly increasing computing power and the 
ability of ANN to simulate a wide variety of complex 
engineering and scientific problems.  

ANN has been utilized in various ways in the PP 
industry.  Li and Liu [3] presented an optimized radial 
basis function (RBF) neural network to predict the MI of 
polypropylene produced in the Hypol process. The RBF 

neural network is optimized by modified Particle Swan 
Optimization – Simulated Annealing (MPSO-SA) 
algorithm. Zhang and Liu [4] proposed a fuzzy neural 
network (FNN) and introduce support vector 
regression (SVR) for parameter tuning, where the 
output function is transformed into an SVR based 
optimization problem. Zhang et al. [5] research 
proposed a soft sensor based on aggregated RBF 
neural networks trained with chaotic theory. Xu and 
Liu [1] proposed a novel predictive model of MI, fuzzy 
functions with dynamic fuzzy neural networks (FF-D-
FNN). FF-D-FNN is the combination of the universal 
approximation property of fuzzy functions and the 
parsimonious structure with high performance of 
dynamic fuzzy neural networks (D-FNN). Zhang et al. 
[6] researched MI estimation on Hypol process PP 
using a novel soft sensor based on extreme learning 
machine (ELM) and modified gravitational search 
algorithm (MGSA). Jumari and Mohd-Yusof [7] 
developed models for soft sensors to measure MI in 
industrial polypropylene loop reactors using artificial 
neural network (ANN) models, serial hybrid neural 
network (HNN) models and stacked neural network 
(SNN) models. 

In recent years, deep learning has become more 
popular because the problem of vanishing gradient 
has been solved by the ReLU activation function.  
Deep learning networks with ReLU are more easily 
optimized because gradient can flow when the input 
to the ReLU function is positive. ReLU networks can 
perform favourable generalization behaviour in 
several practical applications and benchmark tests 
[8]. Ramachandran et al. [9] mentioned that the ReLU 
activation function is the most successful and widely-
used activation function in deep networks.  The 
abundance of automated acquired training data 
and higher computational power also facilitate the 
success of deep network training. Deep learning is 
widely used in the chemical industries, although 
currently none has been found in modeling polymer 
processes. Examples on the use of deep learning in the 
chemical industries include reconstructions for 
complex chemical processes [10], chemical 
production scheduling [11], fault detection and 
diagnosis in chemical processes [12, 13], analytical 
chemistry [14], optimizing textile chemical process [15] 
and risk assessment of occupational exposure to toxic 
chemicals in coal mine workplaces [16]. 

This work studies the effectiveness of deep learning 
in predicting the MI of polypropylene using the data 
set collected from the Spheripol Process Loop 
Reactors. The other two models created are shallow 
Artificial Neural Network (ANN) and Stacked Neural 
Network (SNN). The accuracy of the prediction is 
evaluated and discussed. 
 
 
2.0 PROCESS DESCRIPTION 
 
The Spheripol process consists of three liquid-phase 
loop reactors: the baby loop for pre-polymerisation 
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and two main polymerization reactors. In order to 
develop an effective model to predict MI, variables 
from the process were identified to construct the 
model for MI prediction. Figure 1 shows the reactor 
line-up of the PP Spheripol Process. 
 

 
Figure 1 Spheripol Process  

 
 
Propylene is the main feed because it is the 

monomer for PP. There are two types of propylene 
being fed to the reactor, fresh propylene and 
recycled propylene. Both of them are stored in a big 
drum (propylene feed drum) before being pumped to 
the reactor. Therefore, the propylene flow from the 
propylene feed drum is taken as one of the variables. 

Hydrogen gas is the chain transfer agent injected 
into the loop reactors to initiate chain termination. It 
controls the length of the polymer and its molecular 
weights [17]. Hydrogen is the main component that 
alter the MI of the polymer. Another chemical added 
is the donor. Donor is a stereo regulating agent that 
affects the tacticity of the polymer [18], affecting the 
molecular weight of the polymer. Therefore, both 
hydrogen concentration and donor flow rate are 
taken as the input variables.  

The next input variable for the ANN model is the 
heat generated from the reactions in the loop 
reactors. This variable is calculated using the 
temperature difference from the reactor jacket water. 
The ‘density’ (proportion of solid polypropylene over 
the liquid propylene) inside the reactor is also taken 
into account. Density inside the reactors is directly 
proportional to the residence time of the polymer 
inside the reactor. High density means less propylene 
flows into the reactor, enabling higher residence time 
for the polymer inside the loop reactors before being 
replaced by the new incoming propylene flow. Both 
of these variables cause MI changes in the polymer. 

Instead of taking the catalyst flow rate, the 
calculated production rate is taken as one of the 
variables. Although production rate is controlled by 
the catalyst flow rate, it is not suitable to take catalyst 
flow rate as a variable. The reason is the concentration 
of the catalyst cannot be made constant because it 
is manually mixed with white mineral oil and grease, 
causing variations in the concentration. Thus, it is 
better to take the calculated production rate 
compared to the catalyst flow rate. Catalyst type is 
kept constant throughout the research. 

Pressure and temperature of the reactors are also 
taken into the account.  Although temperature and 
pressure seldom deviate from their controlled value, 
MI is affected if they deviate from the normal value 
because polymerization can take place in non-
favourable conditions. Table 1 shows the summary of 
the input and output variables used to train the neural 
networks. 
 

Table 1 Neural networks input and output variables 
 

Type Variable Justification 

Input 1 1st loop hydrogen 
concentration 

Hydrogen (chain 
transfer agent) 

concentration to 
control the length 

of the polymer 
chain. 

Input 2 2nd loop hydrogen 
concentration 

Input 3 Propylene to 
donor ratio 

Flow ratio of 
propylene to donor  

Input 4 Propylene flow 
rate 

Feed rate of 
monomer for 

polymerisation 
reaction 

Input 5 Prepoly reaction 
heat Calculated heat 

produced by the 
reaction of 

respective reactors 

Input 6 1st loop reaction 
heat 

Input 7 2nd loop reaction 
heat 

Input 8 Production rate Calculated PP 
production rate 

Input 9 Reactor Pressure 

Pressure of the 
reactors  

(Prepoly, 1st and 2nd 
loop reactors) 

Input 10 1st loop reactor 
pump kW 

Measurement of 
the reactor density 
by using 1st and 2nd 
loop reactor pump 

kW  Input 11 2nd loop reactor 
pump kW 

Input 12 1st loop reactor 
density 

Measurement of 
the reactor density 
by using 1st and 2nd 

loop reactor 
gamma ray 
detection 

Input 13 2nd loop reactor 
density 

Input 14 Donor flow rate 

Flow rate of the 
stereoregulating 
agent to control 

atactic content of 
polymer 

Input 15 1st loop reactor 
temperature 

The temperature of 
the reactor (1st 

loop reactor and 
2nd loop reactor) Input 16 2nd loop reactor 

temperature 

Output 
MI of polymer 

produced from 
reactor 

Polymer quality 
specification of 
desired polymer 

grade 
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3.0 METHODOLOGY 
 
Data collected for the neural networks must be 
sufficient and significant enough to cover the possible 
known variation in the problem domain [19]. The MI of 
the data collected is within the range of 1 to 17 
g/10mins, with the input variables that correspond 
with the MI range. Collected data is divided into two 
distinct sets for training and validation. 
 
3.1 Development, Simulation and Validation of 
Shallow ANN Models 
 
The shallow ANN models with single hidden layer were 
developed to predict MI using reactor parameters 
collected. For the shallow ANN topology, the hidden 
layer is log sigmoid transfer function and the output 
layer was pure linear transfer function. Based on 
Hagan et al. [20], this type of topology can be trained 
to estimate most of the functions well. The model was 
trained using “nntools” function in MATLAB. Feed-
Forward Back Propagation (FFBP) was used as the 
network architecture and Levenberg-Marquardt as 
the optimization algorithm for fast convergence of the 
weights and biases [7].  

Data normalization is used before the training of 
the neural networks. The normalization formula to 
calculate X normalized is as follows. 
 

 𝑋 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ൌ  
𝑋 െ 𝑋 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑋 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 െ 𝑋 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 (1)

 
where X is Input data. X minimum is the lowest value 
within the input data range. X maximum is the highest 
value within the input data range. 

Figure 2 shows the input variables and the output 
variable of the shallow ANN modelling. 
 

 
Figure 2 Shallow ANN topology 

 
 

To determine the best shallow ANN model, the 
number of hidden nodes is systematically altered 
between 16 ~ 48 nodes during training. Prediction from 
each shallow ANN model with different numbers of 
nodes is cross-validated with the unseen data outside 
the training inputs. The number of nodes with the best 
prediction is presented. 
 
 
 

3.2 Development, Simulation and Validation of SNN 
Models 
 
Stacked neural network (SNN) was proposed to 
improve the accuracy of the model. Model accuracy 
is improved by combining several neural networks. 
Figure 3 shows the model for stacked neural networks. 
 

 
Figure 3 Stack neural networks topology 

 
 

In order to produce SNN models, four different 
shallow ANN models (ANN 1, ANN 2, ANN 3 and ANN 
4) are trained with different numbers of hidden layer 
nodes. ANN 1 and ANN 2 were trained by using the MI 
range of 1 – 5 and ANN 3 and ANN 4 were trained 
using MI range between 11 – 17. Subsequently, all the 
MI results predicted from each ANN are served as the 
training input data for the last shallow ANN (ANN Level 
1), along with the original input variables. The reason 
for choosing MI ranges 1 – 5 and 11 – 17 is due to there 
are commercial products within these ranges and 
more input data are available for training and testing 
within these ranges.  

For ANN 1 and ANN 2, the number of hidden nodes 
is systematically altered between 16 ~ 48 nodes and 
re-trained. The two best neural networks models which 
have the best prediction are chosen as ANN 1 and 
ANN 2. The method is then repeated for ANN 3 and 
ANN 4 for MI range 11 – 17. Table 2 shows the 
specification of the ANN n for the SNN models. 
 

Table 2 Specification of ANN n 
 

ANN n Specification 
ANN 1 ANN with 18 nodes trained for MI 1-5 
ANN 2 ANN with 24 nodes trained for MI 1-5 
ANN 3 ANN with 20 nodes trained for MI 11 - 17 
ANN 4 ANN with 22 nodes trained for MI 11 - 17 
 
 

 

Lastly, the number of hidden nodes for ANN Level 
1 is systematically altered between 20 ~ 40 nodes and 
re-trained. Prediction from each SNN with different 
numbers of nodes is cross-validated with the unseen 
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data outside the training inputs. The number of nodes 
with the best prediction will be presented. 

 
3.3 Development, Simulation and Validation of Deep 
Learning Models 
 
Deep learning was proposed to solve the problem of 
vanishing gradients and overfitting. Different from 
shallow ANN, Rectified Linear Unit (ReLU) transfer 
function was chosen instead of the log sigmoid 
transfer function. ReLU transfer function is used to solve 
the problem of vanishing gradients, which arises when 
applying the chain rule in layered networks of 
sigmoidal units. The deep learning topology that is 
focused on in this study is deep neural networks. Figure 
4 shows the deep neural networks topology. 
 

 
Figure 4 Deep Learning Topology 

 
 

For deep learning training in MATLAB, instead of 
using “nntool”, it trains using the “trianNetwork” 
function. Input and output variables are specified 
before the model was created. After that, the number 
of nodes for 1st, 2nd hidden layers and output layer are 
specified. Then, the deep neural network model is 
configured as the topology in Figure 4. In addition, 
training options have to be determined. Finally, 
training can be started once the input variables, 
output variables and neural network topology have 
been given to the “trianNetwork” function. The deep 
neural network has the full connection between all the 
input, hidden and output layers, and no connections 
between the same node in the same layer. The input 
and output variables are the same as those in shallow 
ANN model. After the training, the number of 1st and 
2nd hidden nodes are systematically altered between 
16 ~ 48 nodes and re-trained. Both 1st hidden and 2nd 
hidden layers have the same number of nodes to 
prevent the combination between the 1st and 2nd 
hidden nodes to be too complicated. Prediction from 
each deep learning with different numbers of nodes is 
cross-validated with the unseen data outside the 
training inputs. The number of nodes with the best 
prediction will be presented. Table 3 shows the 
summary of neural networks models used in this study. 
 

 
 
 
 
 
 

Table 3 Summary of neural networks models 
 

Model Specification 
Shallow 

ANN 
- Shallow neural networks model 
- One hidden layer  
- Log sigmoid transfer function for the 

hidden layer 
SNN - Stacking of 4 different ANN models 

with different numbers of nodes as 
shown in Table 2 

- Output from the ANN 1 – 4 serves as 
the input variables for ANN level 1 
along with the input variables in Table 
1 

- All ANN in Level 0 and Level 1 use log 
sigmoid transfer function for the 
hidden layer  

Deep 
Learning 

- Deep neural networks model 
- Two hidden layers 
- ReLU transfer function for the hidden 

layer 
 
 
3.4 Performance Verification of Neural Networks 
 
The model was validated using the cross-validation 
(unseen) data for all MI. The output of the network is 
compared to the target value of the testing data set 
by calculating the root mean square error (RMSE). The 
initial weights and biases that yield the smallest RMSE 
are recorded for each network being constructed. If 
the smallest RMSE cannot be achieved, the network 
construction is redeveloped by adjusting the number 
of hidden nodes. The formula for RMSE is as follows. 
 

 𝑅𝑀𝑆𝐸 ൌ ඨ
∑ ሺ𝑞, െ 𝑞ሻଶ௡
௜ୀ଴

𝑛
 (2)

 
where n is the number of data. q’ is the value from the 
data set (actual). q is the value from simulation 
(predicted). 
 
 
4.0 RESULTS AND DISCUSSION 
 
The neural network models (shallow ANN, SNN and 
deep learning) were developed by using data set 
collected from PP Spheripol Plant. 163 data sets for 
training and 49 data sets for testing with the MI ranges 
from 1 - 17 g/10mins.  

Table 4 shows the performance comparison of 
different models on the reactor dataset. The best 
model developed to estimate the MI value would 
have the lowest RMSE value and the highest R2 value. 
The RMSE result for shallow ANN, SNN and deep 
learning are 0.0586, 0.0624 and 0.0604 respectively, 
while the R2 results are 0.9700, 0.9706 and 0.9717. 
Figure 5 to 7 are the graphs for the actual and 
predicted MI comparison.  
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Table 4 Performance comparison of different models (MI 
range of 1 – 17) 

 

Model RMSE R2 
Shallow ANN 0.0586 0.9700 

SNN 0.0624 0.9706 
Deep Learning 0.0604 0.9717 

 

 
 

Figure 5 Predicted and actual MI (Shallow ANN MI 1 - 17) 
 

 
 

Figure 6 Predicted and actual MI (SNN MI 1 - 17) 
 
 

 
 

Figure 7 Predicted and actual MI (Deep Learning MI 1 - 17) 

As shown in Table 4, the shallow ANN model predicted 
the MI with the lowest RSME, which is the highest in 
accuracy, followed by deep learning and then SNN 
model. On the other hand, deep learning prediction 
has the highest correlation with the actual data, with 
R2 = 0.9717, followed by SNN model and then the 
shallow ANN model.  

The shallow ANN model can represent complex 
and poorly understood behaviour very well. Although 
it does not use any structure that reflects the physical 
structure of the system, the shallow ANN model gives 
an input-output relation of the process and is useful in 
understanding the non-linear relationship between 
the variables involved. SNN and deep learning are the 
models improvised from the shallow ANN model. SNN 
targets to improve the generalisation capability of 
shallow ANN by combining several networks to 
improve model predictions on unknown data [21]. 
Deep learning aims to produce a better performance 
model by adding the number of hidden layers to 
increase the complexity and abstraction of the neural 
networks. 

Table 4 shows that the performance of the 3 
models are showing comparable results, and able to 
predict the MI of PP with great accuracy. Based on 
the result in Table 4, SNN model does not outperform 
shallow ANN models. This situation is similar to the result 
from Jumari and Mohd-Yusof [7], in which the SNN 
model prediction of a wide MI range does not 
outperform the shallow ANN model prediction. Results 
from Qazi and Yeung [22] also showed that the result 
from the SNN model was not significantly better than 
the shallow ANN model. This is because with the 
computational power nowadays, the shallow ANN 
models can be created with a large number of 
hidden nodes. Therefore, when the shallow ANN 
model is trained with a large number of data sets and 
high number of hidden nodes, the generalisation 
capability improves and the advantage of stacking 
the ANN become relatively small.  In addition, the 
variability of the MI prediction is not wide enough to 
require different models to be stacked, which is the 
strength of SNN, resulting in similar results with the 
shallow ANN. 

For deep learning, by adding one more layer in the 
ANN, deep neural networks model can detect the 
process fluctuation during MI dipped from 14 g/min to 
12 g/min. Deep neural networks model has more 
complex architectures, where each layer performs 
specific operations on the inputs to provide various 
usable representations of the original signal. Neurons 
between consecutive layers are densely connected 
for the model to learn advanced characteristics and 
do hard tasks like resolving nonlinearly separable 
issues [23].  

The research further investigates the training and 
testing of shallow ANN and deep learning modelling 
for a shorter range of MI. 77 data sets for training and 
41 data sets for testing of MI range of 11 – 17. 

Table 5 shows the performance comparison of 
different models on the reactor dataset. The RMSE 
result for shallow ANN and deep learning are 0.3213, 
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and 0.2513 respectively, while the R2 results are 0.0248 
and 0.0287. Figure 8 to 9 are the graphs for the actual 
and predicted MI comparison for the MI range of 11 - 
17.  
 
Table 5 Performance comparison of different models (MI 
range of 11 – 17) 

 

Model RMSE R2 
Shallow ANN 0.3213 0.0248 

Deep Learning 0.2513 0.0287 
 

 
 

Figure 8 Predicted and actual MI (Shallow ANN MI 11 - 17) 
 

 
 

Figure 9 Predicted and actual MI (Deep Learning MI 11 - 17) 
 
 

The prediction comparison between Figure 8 and 
Figure 9 show that deep learning prediction with 18 
nodes in the 1st and 2nd hidden layer is better 
compared to ANN with 20 nodes in the hidden layer. 
The difference between the actual and predicted MI 
in deep learning is mostly around ±1g/10min, which 
can be considered as a descent MI predictor. 
Compared to the sigmoid and tanh activation 
function in ANN, deep networks with ReLUs are more 
easily optimized because gradients can flow when 
the input to the ReLU function is positive.  

 

 𝐿𝑜𝑔 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ሺ𝑥ሻ ൌ
1

1 ൅  𝑒ି௫
 (3)

 
Based on equation 3, the log sigmoid transfer 

function limits the output to a range of 0 to 1. The 
vanishing gradient problem results from the 
logarithmic sigmoid function's output becoming 
saturated for higher and lower inputs. The vanishing 
gradient problem describes a situation in which, while 
training a network using stochastic gradient descent, 
the gradient of the objective function with respect to 
a parameter approaches zero and almost completely 
disappears. Therefore, in the case of a vanishing 
gradient, training is virtually destroyed. Additionally, 
the lack of zero-centric output results in poor 
convergence for log sigmoid transfer function [24]. 
 

 𝑅𝑒𝐿𝑈 ሺ𝑥ሻ ൌ 𝑚𝑎𝑥ሺ0, 𝑥ሻ ൌ ൜
𝑥, 𝑖𝑓 𝑥 ൒ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4)

 
From equation 4, deep networks with ReLU are 

easier to optimise than networks with log sigmoid 
because gradients can flow when the input to the 
ReLU function is positive [9]. Besides that, it is more 
computationally efficient to compute than Sigmoid 
functions since ReLU just needs to pick max(0,x) and 
not perform expensive exponential operations as in 
sigmoid function.  

Oostwal et al. [8] found that for the sigmoidal 
transfer function, the neural network has a high 
likelihood to be trapped in an unfavourable 
configuration unless prior knowledge about the target 
is available. On the other hand, ReLU activation 
function does not have this issue and can produce 
good generalization from large training sets. 

 
 

5.0 CONCLUSION 
 
In this work, the shallow artificial neural network (ANN), 
stacked neural network (SNN) and deep learning 
were successfully developed to predict melt index 
(MI) of PP produced by Spheripol process. The results 
show that the three types of models are able to 
predict the MI of the polymer to a high degree of 
accuracy within a broad range of MI (1 – 17 g/10mins). 

For prediction of MI range of 1 – 17g/10min, the 
shallow ANN model is able to predict the MI with the 
lowest RMSE, which is the highest in accuracy, 
followed by deep learning and then SNN model. Their 
RMSE are 0.0586, 0.0604 and 0.0624 respectively. 
Based on the analysis, although the shallow ANN has 
a slightly better prediction compared to deep 
learning, deep learning modelling is able to detect 
the process fluctuation when MI dipped from 14 
g/10min to 12 g/10min, meaning that a more complex 
neural network is required to model a more complex 
problem by using the same training data. 

The research continues with the prediction for MI 
range 11 – 17g/10min. Within this MI range, deep 
learning performed better with lower RMSE. The RMSE 
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result for shallow ANN and deep learning are 0.3213, 
and 0.2513 respectively. 

Based on the results obtained in this study, it is 
proven that all the neural network models developed 
are able to perform non-linear function approximation 
for predicting MI. This indicates that neural network 
model (shallow ANN, SNN and deep learning) is an 
effective analytical tool that can be adopted to 
support MI prediction, such as for process optimization 
and model for soft sensors, in the polymer industry. 
 
 

Acknowledgement 
 
The authors would like to thank the Ministry of Higher 
Education Malaysia and Universiti Teknologi Malaysia 
for supporting this work through the Research Grant 
JPT.S(BPKl)2000/09/01 Jld.28 (6) under the cost centre 
number R.J130000.7809.5F112. 
 
 
References 
 
[1] Xu, S. and Liu, X. 2014. Melt Index Prediction by Fuzzy 

Functions with Dynamic Fuzzy Neural Networks. 
Neurocomputing. 142: 291-298. 
DOI: https://doi.org/10.1016/j.neucom.2014.03.056. 

[2] Kiparissides, C. 1996. Polymerization Reactor Modeling: A 
Review of Recent Developments and Future Directions. 
Chemical Engineering Science. 51(10): 1637-1659. 
DOI: https://doi.org/10.1016/0009-2509(96)00024-3. 

[3] Li, J. and Liu, X. 2011. Melt Index Prediction by RBF Neural 
Network Optimized with an MPSO-SA Hybrid Algorithm. 
Neurocomputing. 74(5): 735-740. 
DOI: https://doi.org/10.1016/j.neucom.2010.09.019. 

[4] Zhang, M. and Liu, X. 2013. A Soft Sensor based on Adaptive 
Fuzzy Neural Network and Support Vector Regression for 
Industrial Melt Index Prediction. Chemometrics and 
Intelligent Laboratory Systems. 126: 83-90. 
DOI: https://doi.org/10.1016/j.chemolab.2013.04.018. 

[5] Zhang, Z., Wang, T. and Liu, X. 2014. Melt Index Prediction 
by Aggregated RBF Neural Networks Trained with Chaotic 
Theory. Neurocomputing. 131: 368-376. 
DOI: https://doi.org/10.1016/j.neucom.2013.10.006. 

[6] Zhang, M., Liu, X. and Zhang, Z. 2016. A Soft Sensor for 
Industrial Melt Index Prediction based on Evolutionary 
Extreme Learning Machine. Chinese Journal of Chemical 
Engineering. 24(8): 1013-1019. 
DOI: https://doi.org/10.1016/j.cjche.2016.05.030. 

[7] Jumari, N. F. and Mohd-Yusof, K. 2016. Comparison of 
Product Quality Estimation of Propylene Polymerization in 
Loop Reactors using Artificial Neural Network Models. 
Jurnal Teknologi. 78: 6-13. 
DOI: https://doi.org/10.11113/jt.v78.9279. 

[8] Oostwal, E., Straat, M. and Biehl, M. 2021. Hidden Unit 
Specialization in Layered Neural Networks: ReLU vs. 
Sigmoidal Activation. Physica A: Statistical Mechanics and 
its Applications. 564: 125517. 
DOI: https://doi.org/10.1016/j.physa.2020.125517. 

[9] Ramachandran, P., Zoph, B. and Le, Q. V. 2017. Searching 
for Activation Functions. arXiv preprint arXiv:1710.05941. 

[10] Li, H., Tang, X., Zhao, W. and Yang, B. 2021. Approaches to 
Deep Learning based Manipulating Strategy 

Reconstructions for Complex Chemical Processes. Journal 
of Process Control. 107: 127-140. 
DOI: https://doi.org/10.1016/j.jprocont.2021.10.009. 

[11] Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E. and 
Wassick, J. M. 2020. A Deep Reinforcement Learning 
Approach for Chemical Production Scheduling. 
Computers & Chemical Engineering. 141: 106982. 
DOI: 
https://doi.org/10.1016/j.compchemeng.2020.106982. 

[12] Agarwal, P., Tamer, M. and Budman, H. 2021. Explainability: 
Relevance based Dynamic Deep Learning Algorithm for 
Fault Detection and Diagnosis in Chemical Processes. 
Computers & Chemical Engineering. 154: 107467. 
DOI: 
https://doi.org/10.1016/j.compchemeng.2021.107467. 

[13] Wang, Y., Wu, D. and Yuan, X. 2020. LDA-based Deep 
Transfer Learning for Fault Diagnosis in Industrial Chemical 
Processes. Computers & Chemical Engineering. 140: 
106964. 
DOI: 
https://doi.org/10.1016/j.compchemeng.2020.106964. 

[14] Debus, B., Parastar, H., Harrington, P. and Kirsanov, D. 2021. 
Deep Learning in Analytical Chemistry. TrAC Trends in 
Analytical Chemistry. 145: 116459. 
DOI: https://doi.org/10.1016/j.trac.2021.116459. 

[15] He, Z., Tran, K.-P., Thomassey, S., Zeng, X., Xu, J. and Yi, C. 
2021. A Deep Reinforcement Learning based Multi-criteria 
Decision Support System for Optimizing Textile Chemical 
Process. Computers in Industry. 125: 103373. 
DOI: https://doi.org/10.1016/j.compind.2020.103373. 

[16] Fan, Z. and Xu, F. 2021. Health Risks of Occupational 
Exposure to Toxic Chemicals in Coal Mine Workplaces 
based on Risk Assessment Mathematical Model based on 
Deep Learning. Environmental Technology & Innovation. 
22: 101500. 
DOI: https://doi.org/10.1016/j.eti.2021.101500. 

[17] Niyomthai, T., Jongsomjit, B. and Praserthdam, P. 2017. 
Investigation of Alkoxysilanes in the Presence of Hydrogen 
with Ziegler-Natta Catalysts in Ethylene Polymerization. 
Engineering Journal (Eng. J.). 21(7): 171-180. 
DOI: https://doi.org/10.4186/ej.2017.21.7.171. 

[18] Alshaiban, A. and Soares, J. B. 2012. Effect of Hydrogen, 
Electron Donor, and Polymerization Temperature on Poly 
(Propylene) Microstructure. Macromolecular Symposia. 
312(1): 72-80. 
DOI: https://doi.org/10.1002/masy.201100023. 

[19] Funes, E., Allouche, Y., Beltrán, G. and Jiménez, A. 2015. A 
Review: Artificial Neural Networks as Tool for Control Food 
Industry Process. Journal of Sensor Technology. 5(01): 28. 
DOI: https://doi.org/10.4236/jst.2015.51004. 

[20] Hagan, M. T., Demuth, H. B., Beale, M. H. and De Jesús, O. 
1996. Neural Network Design. Pws Pub. Boston. 

[21] Mukherjee, A. and Zhang, J. 2008. A Reliable Multi-
objective Control Strategy for Batch Processes based on 
Bootstrap Aggregated Neural Network Models. Journal of 
Process Control. 18(7): 720-734. 
DOI: https://doi.org/10.1016/j.jprocont.2007.11.008. 

[22] Qazi, N. and Yeung, H. 2014 Modeling of Gas–liquid 
Separation through Stacked Neural Network. Asia-Pacific 
Journal of Chemical Engineering. 9. 
DOI: https://doi.org/10.1002/apj.1777. 

[23] Debus, B., Parastar, H., Harrington, P. and Kirsanov, D. 2021 
Deep learning in analytical chemistry. TrAC Trends in 
Analytical Chemistry. 145: 116459. 
DOI: https://doi.org/10.1016/j.trac.2021.116459. 

[24] Dubey, S. R., Singh, S. K. and Chaudhuri, B. B. 2022 
Activation Functions in Deep Learning: A Comprehensive 
Survey and Benchmark. Neurocomputing. 503: 92-108. 
DOI: https://doi.org/10.1016/j.neucom.2022.06.111. 

 




