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Abstract 
 

Source signal detection plays important roles in many real-world target searching 

problems. Source detection is necessary before a full search process utilizing the 

detected signal can be performed where minimizing the detection time and 

maximizing the search space exploration or coverage are the main problems. In this 

paper, an optimized Levy Flight algorithm known as a Distributed Levy Flight (DLF) for 

swarm agents is proposed. The DLF algorithm is optimized by means of repulsive 

artificial potential force to disperse the agents in order to optimize the search space 

coverage and detection time. Additionally, to integrate cooperative behavior, an 

artificial attractive force is used to maintain communication among the agents. The 

results showed that the proposed DLF algorithm successfully improve detection time 

(113.1s) and area coverage (78.3%) compared to the existing algorithms: Brownian 

Walk (325.5s, 31.7%), Correlated Random Walk (356.2s, 35.1%), Levy Flight (201.3s, 

56.6%), Levy Flight with Artificial Potential Fields (151.9s, 70.2%).              
 

Keywords: Levy flight, source detection, source search, swarm robots, random search   

 

Abstrak 
 

Pengesanan isyarat sumber memainkan peranan penting dalam masalah pencarian 

sasaran dalam dunia sebenar. Pengesanan sumber diperlukan sebelum proses 

pencarian penuh menggunakan isyarat yang dikesan boleh dilakukan di mana 

meminimumkan masa pengesanan dan memaksimumkan penerokaan atau liputan 

ruang carian adalah masalah utama. Dalam kertas kerja ini, algoritma Penerbangan 

Levi yang optimum yang dikenali sebagai Penerbangan Levi Teragih (DLF) untuk ejen 

kawanan dicadangkan. Algoritma DLF dioptimumkan melalui daya potensi buatan 

untuk menyebarkan agen untuk mengoptimumkan liputan ruang carian dan masa 

pengesanan. Selain itu, untuk mengintegrasikan perilaku koperatif, daya tarikan 

buatan digunakan untuk mengekalkan komunikasi antara ejen. Keputusan 

menunjukkan bahawa algoritma DLF yang dicadangkan berjaya mengurangkan 

masa pengesanan (113.1s) dan liputan kawasan (78.3%) berbanding dengan 

algoritma sedia ada: Brownian Walk (325.5s, 31.7%), Correlated Random Walk 

(356.2s, 35.1%), Penerbangan Levi (201.3s, 56.6%), Penerbangan Levi dengan Medan 

Potensi Buatan (151.9s, 70.2%). 
 

Kata kunci: Penerbangan Levy, pengesanan sumber, pencarian sumber, robot 

kawanan, pencarian rawak 

© 2024 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

The research of swarm robotics in many aspects of 

tasks has shown significant gain of momentum in 

recent years due to the large potential of future 

applications. Moreover, the scalability, flexibility and 

robust characteristics of swarm robotics emerges as a 

result of simple control and coordination rules that 

make it ideal for solving complex tasks and cutting-

edge applications [1,2]. One of the tasks is target 

searching which is important in many applications 

such as search and rescue operation, landmines 

cleaning and chemical or radiation leakage 

detection [3,4]. In an underwater environment, 

searching for a flight black box after a flight crash, 

retrieving a wrecked underwater vehicle and 

tracking of marine life are the examples of target 

search [5]. These examples of source searching 

applications demonstrate the complexity of the 

operation.   

Naturally, any type of source has limited 

detectable intensity due to limited sensitivity of the 

used sensor. In other words, the source signal can 

only be detected if the intensity is strong enough. 

Typically, target search involves two steps of 

operations known as exploration and exploitation. In 

the exploration step, robots are required to explore 

the area in order to detect the target’s signal. In this 

case, the used algorithms must be independent of 

signal intensity and the execution of the exploration 

algorithm is terminated once the signal is successfully 

detected by the swarm. Exploitation on the other 

hand used the detected signal and iteratively 

moved closer towards the source. The exploitation 

step can only take place once the target signal is 

successfully detected. Thus, the actual time taken to 

search and locate a target include both exploration 

time and exploitation time. In both cases, optimizing 

the time taken always become priority as the fact 

that all robotics systems have limited power supply 

and the aims of the searching process itself is 

critically important such as to save lives (e.g., search 

and rescue after earthquake) or valuable items (i.e., 

search and recovery of underwater vehicles). As a 

result, algorithms that optimize the time taken to 

complete both exploration and exploitation are 

always needed. 

There are many exploitation methods that have 

been widely studied and proposed based on swarm 

intelligence (SI) such as Particle Swarm Optimization 

[6-8], Ant Colony Optimization [9], Bean Optimization 

[10] and Bacteria Chemotaxis [11]. Other exploitation 

methods include pattern formation [12], infotaxis [13], 

behavior-based [14] and hybrid method [15]. These 

algorithms require a continuous detectable source 

signal intensity and will fail to work in case of the 

source signal is not detected.    

However, less attention has been given to the 

exploration step. Most researchers assumed that 

when the source signal is not detected, robots just 

perform random movements without considering the 

optimality of the algorithm. Thus, the actual time 

spend to locate the source is not optimize since 

random based algorithms such as random walk (RW) 

or Brownian walk [16], correlated random walk 

(CRW), biased random walk (BRW) [17], and Lévy 

flight (LF) [18] naturally have no embedded 

mechanism to ensure optimization of the time taken. 

However, among these algorithms, LF has been 

proven to have better area exploration capability 

compared to RW or any other random-based 

algorithms. This is due to the fact that LF has long 

jump characteristics which increase the possibility of 

visiting an unexplored area as observed in nature 

such as when animals search for sparsely located 

food [19]. The long jump characteristics are 

characterized by a power law distribution that 

controls the frequency of long jumps generation. In 

[20], LF is proven as a successful detection algorithm 

but the optimality of the algorithm is not studied. 

Khaluf et al. used LF as a collective detection 

algorithm but the optimality and communication 

assurance are not thoroughly studied [21].  

In general, LF has several disadvantages that 

need to be overcomed so that it can be 

implemented as an effective and optimal 

cooperative detection algorithm, has a good area 

coverage capability and provides optimal target 

signal detection. Firstly, at the individual level, LF has 

characteristics that can possibly cause robots to 

immediately revisit the previously visited area and 

has a tendency to be stuck at the boundary of 

search space when the next waypoint is located 

outside of the search space. As a result, the area 

exploration is not optimized and the time taken to 

detect the source will increase. However, these 

problems have been addressed in our previous work 

by introducing angle constraint and boundary 

reflection mechanism [22].  

Similarly, at the swarm level, multiple robots 

revisiting the same area will reduce the detection 

efficiency and thus, overall searching time. To 

overcome this problem, each robot should have 

some state information of other robots in order to 

avoid revisiting the previously explored area. 

Additionally, LF by its nature is not a cooperative 

algorithm because it defines individual movement 

instead of collective movement and its execution is 

independent of requiring information from other 

agents [23]. To overcome these problems, a 

mechanism to disperse the robots in the search 

space is needed and a communication network 

among the robots will be established in this study and 

maintained throughout the searching process. This 

will allow agents to communicate, share detection 

information and consequently, make decisions to 

optimize the source’s signal detection process. In this 

research work, a Distributed Lévy Flight (DLF) is 

proposed to solve the mentioned problems. The 

concept of repulsive artificial potential force is used 

to disperse the robots in the search space such that 

robots can minimize the cooccurrences of revisiting 
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the similar areas multiple times. Additionally, 

attractive artificial potential force is used to maintain 

communication among the agents throughout the 

searching process. The combination of both forces 

will ensure robots in the swarm will be able to 

maximize exploration of unexplored areas and at the 

same time maintain their communication for 

sustaining cooperative behavior. Additionally, the 

optimal values of DLF parameters were also 

determined in this work based on performance 

measurement parameters.  

To evaluate performance of the proposed 

algorithm, we consider an application of underwater 

acoustic source detection and Autonomous Surface 

Vehicles (ASVs) as a swarm robotics platform. The 

experiments were conducted through simulations 

where ASV is represented by a mathematical model. 

The rest of this paper is organized as follows: 

methodology, results and discussion and conclusions.         
 

 

2.0 METHODOLOGY 
 

The detection problem is illustrated in Figure 1. In this 

study, the robot platform is ASV and the interested 

target to be detected is an underwater acoustic 

source. Each robot or agent is equipped with an 

acoustic detection sensor (i.e., hydrophone), an RF-

based wireless communication module and a Global 

Positioning System (GPS) as a position sensor. Like 

many other types of sources, the detection range of 

underwater acoustic sources is limited by source 

signal strength and sensitivity of the sensor used to 

detect the signal. In this case, the acoustic source 

signal can only be detected by hydrophone if robots 

successfully move within the detectable radius of the 

source.  

Once deployed in a bounded search space, 

each ASV will follow the waypoints generated by DLF 

to explore the search space and at the same time 

sample the source signal. Throughout this process, 

ASVs will communicate with each other to share and 

exchange detection information. Thus, the 

communication network should be maintained 

throughout the search process to ensure the success 

of cooperation among the ASVs.      

 

 
 

Figure 1 Source detection problem in a bounded search 

space 

 

 

In order to detect the source, each agent (in our 

case ASV) has to explore the search environment by 

following the generated waypoints. For this purpose, 

the source detection algorithm (SDA) based on 

Distributed Levy Flight (DLF) is proposed to guide the 

ASV to navigate within the search environment. The 

waypoints are generated by DLF where the next 

waypoint, pk = (xk,yk) at the kth update step can be 

calculated by 
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where lk is the step length, xmin ≤ xk ≤ xmax and ymin ≤ yk 

≤ ymax where [xmin,xmax] and [ymin,ymax] define the 

boundary of a search space. The turning angle, φk is 

sampled directly from a continuous uniform 

distribution, U. The probability of generating long 

jumps or steps length, lk in LF is determined by the 

characteristic of a power law distribution given by  

 

( ) 3<1andfor min = −  lllClP             (2) 

 

where lmin is the minimum flight length limit and µ is 

the power law exponent. C is known as a 

normalization constant and it can be expressed as 
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From (2) and (3), we obtain  
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The parameter lmin is introduced in the DLF model 

in order to consider the limits and physical capability 

of the robots and the size workspace under 

consideration. For example, without this limit, the 

generated step length of 0.1 m is difficult to be 

followed by a large size robot platform and it is not 

practical for generating waypoints in a large search 

space such as lake, ocean, etc. 

To generate probability of step length in (4), it 

must be converted into commonly used probability, 

compatible and available in simulation software such 

as a normal distribution, U. If the cumulative 

distribution function (CDF) of the desired distribution is 

represented by FCDF, then  
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The CDF of a power-law distribution is given by  
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Solving for the inverse of the distribution function 

yields the step length in term of normal distribution 

given by 

( ) ( ) 1

1

min

1 1 +−
− −== UlUFl CDF

                          (7) 

 

From (7), there two parameters that affect the 

generated step length are lmin and μ.  

Based on our previous discussion, DLF should 

overcome two problems of the conventional Lévy 

flight: avoid revisiting similar areas frequently and 

enable communication among the robots in the 

swarm. To solve these problems, DLF is defined by 

three different zones of robot’s interaction: repulsion 

zone (robots will move away from each other), 

neutral zone (nor repulsion or attraction) and 

attraction zone (robot will be attracted to each 

other) as shown in Figure 2.  

 

 
 

Figure 2 Repulsion, neutral and attraction zones of DLF  

 

 

The zones are defined as follow: 

• Repulsion zone: If robots are located too 

close to each other, they should move away 

from each other by iteratively repulsing from 

each other.  

• Attraction zone: If a robot moves away from 

each other, it should be attracted towards 

the swarm to avoid loss of communication 

with at least one of the robots from the 

swarm to ensure the success of cooperative 

behavior implementation. 

• Neutral zone: When robots are located 

sufficiently far away from each other and the 

communication signal is sufficiently strong to 

maintain the communication network, they 

should be given freedom to explore the 

search space without any restrictions.  

The artificial repulsion and attraction forces to be 

used in DLF are defined by 
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where dij is the distance between robot i and j, Fmax is 

the maximum magnitude of the interaction force, rrep 

is the repulsive radius, rneu is the neutral radius and ratt 

is the attractive radius (i.e., ratt < rc where rc is the 

maximum communication radius). Each robot can 

only communicate with other robots to share 

information within its communication radius. 

Equation (8) can be expressed in a notation 

vector format, 
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where dij = pj - pi and pj and pi is the position of robot i 

and robot j, respectively. For three or more robots, 

the resultant force experience by robot i can be 

expressed as a summation of interaction forces of the 

neighboring robots,  
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The direction of the net interaction force can be 

computed as  
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in which a new or a redirected waypoint, pk+1,new is 

generated as follow  
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where dadj is the adjustment distance which is equal 

to the last computed generated step length.  

The implementation of the DLF on the individual 

robot is given by Algorithm 1. From the algorithm, 

some parts of the algorithm which involve the 

improvement of the LF at the individual level were 

proposed and discussed in our previous work (refer to 

[22]). In this algorithm, equations (1) through (12) are 

used to execute DLF based SDA. As stated earlier, 

target search involves two steps of operations known 

as exploration and exploitation. SDA is the 

exploration algorithm to optimize exploration of an 

area while the source tracing algorithm (STA) is not 

included as part of this paper and will be our future 

work where STA can be any target signal exploitation 

algorithm such as Particle Swarm Optimization.  
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As mentioned earlier, the test of the proposed 

algorithm is conducted by using ASVs as the swarm 

platforms to detect the presence of underwater 

acoustic sources. The idea is to replicate the process 

of searching a plane black box when it crashed into 

the sea or searching or recovery for a failure 

underwater vehicle. Since this study is conducted 

based on simulation to evaluate the proposed 

algorithm, a suitable model of ASV is needed. We 

assume that the ASV used for this purpose is a non-

conventional model but a specialized design ASV for 

swarming application as we proposed in [24]. The 

illustration of the proposed ASV model is shown in 

Figure 3. The proposed ASV platform is equipped with 

a GPS module for positioning, a compass for 

heading, an RF module for communication and a 

hydrophone for detection of acoustic intensity. In the 

exploration process, SDA is used to generate the 

required waypoints to be followed by the ASV and 

the navigation of the ASV (represented by a 

mathematical model) while following the way points 

is guided by the sliding mode controller.    

 

Figure 3 Physical model of the ASV for swarming application 

 

 

To represent the actual ASV as a swarm platform 

in a virtual simulation environment, a complete 

mathematical model of the ASV should be derived. 

The dynamics model of the ASV that closely 

represent the physical model is given by  
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where R(ѱ) is the rotation matrix, v is the linear-

angular velocities vector, τ is the vector of control 

inputs. M is the mass-inertia matrix and D is the 

damping matrix which are given by 
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The thruster for and moment matrix is given by  

 

  T

ru  0=τ                               (16) 

 

where 
 

TRTLu FF +=                                (17) 

( )TRTLr FFb −=
2

1
                             (18) 

 

FTL and FTR is the thrust force produced by the left and 

right thrusters, respectively. The value for each 

parameter used in simulation is listed in Table 1. 

Based on the given model, the performance 

evaluation of the algorithm can be expressed in time 

domain instead of number of steps.  
 

Algorithm: DLF SDA for robot n 

1. Set: lmin, ϕmin, ϕmax, θmin, rrep, rneu, ratt, rc, PDTH 

2. pi(t = 0) = initialization(), i 

3. while (Stopping criteria is not satisfied) do 

4. [Ns, IDs] = find_neighbors()  

5. generate l(k) 

6. generate ϕ(k) 

7. calculate p(k+1) 

8. for j = 1 : Ns 

9.      calculate dij = || pj(t)- pi(k)|| 

10.       if 0 ≤ dij ≤ rrep 

11.           calculate Fij = - Fij·d̂ij = - Fij·dij/|| dij|| 

12.       else 

13.           set Fij = 0 

14.       end 

15. end for  

16. calculate  Fi  

17. if Fi ≠ 0 

18.  calculate ϕnew,i(k+1) 

19.  calculate p(k+1) 

20. end if 

21. calculate  θ(k) 

22. if θ(k) < θmin  

23. calculate ϕnew(k)  

24. calculate p(k+1) 

25. end if  

26. if  p(k) ∈ pmax/min 

27.     calculate d̂k,k+1 

28.     calculate p(k+1)  

29. end 

30. p(k+1) = check_boundary_limit() 

31. while (p(t) !=  p(k+1))  do 

32.      calculate dij = || pj(t)- pi(t)|| 

33.  if rneu < dj ≤ ratt      

34.      calculate Fij = Fij·d̂ij 

35.      calculate  ϕnew(k)  

36.      calculate p(k+1) 

37.  end if 

38. k = k+1 

39. end while  

40. end while 
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Table 1 ASV model parameters 
 

Category Parameters Final Values 

Mass-Inertia Jz 0.1094 

Added-

mass 

Xu̇ -0.2151 

Yv̇ -0.1757 

Nṙ -0.0082 

Damping Xu -0.9031 

Yv -0.5119 

Nr -0.0143 
 

 

The controller is designed based on methodology 

proposed in [25]. The used decoupled controller 

consists of PI speed controller given by           
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where ud is the desired velocity, Kp is the proportional 

term and Ki is the integral term and heading 

controller sliding mode heading controller  
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where the unknown control parameters are ηch and 

Φh. The value of each controller parameters used in 

this simulation are summarized in Table 2.   

 
Table 2 Controller parameters 

 

Subsystem Controller Parameter Value 

Propulsion PI Kp 140.61 

Ki 10.71 

Heading SMC ηch 3.50 

Φh 1.50 

ph1 -1.50 

ph2 -1.40 

 

 

Simulation was done in MATLAB where each ASV 

is represented by a complete mathematical model, 

SDA is used to generate waypoints of the robot and 

controller is used to navigate the ASV to closely 

follow the generated way points.  

 

 

3.0 RESULTS AND DISCUSSION 
 

As seen from equation (8), there are two parameters 

that will affect the generated step length and its 

distribution. The first parameter is minimum step 

length, lmin which determines the shortest possible 

step length will be generated by DLF. The second 

parameter is the power law exponent, µ which 

determines the weighted distribution pattern of the 

tail of a power law distribution. These two parameters 

have a direct impact on the exploration capability of 

the individual robot. Thus, in this paper, the optimal 

value of these two parameters is determined by 

evaluating the average steps length and the area 

coverage of movement of a robot in a specified 

search area. The average step length, lavg is defined 

as follow:  

( )
= =

=
run stpk

j

k

kstprun

avg kl
kk

l
1 1

1                                              (21) 

 

where kstp and krun is the number of steps and number 

of runs (i.e., number of simulation repetitions) 

respectively. Note that kmax is the maximum number 

of steps set for simulation where a step is represented 

by distance between two waypoints generated by 

the SDA.   

Figure 4 demonstrates the effect of lmin on the lavg 

from where it can be observed that the average 

steps length, lavg decreases as the value of µ 

decreases and the value of lavg increases as the 

value of lmin increases. It also can be observed that 

as the value of μ gets closer to 1, the average step 

length increases as the motion mimics towards a 

ballistic motion and as the value of μ gets closer to 3, 

the average step length becomes smaller because 

movement of the agent tends to exhibit Brownian 

motion. Figure 5 illustrates the exploration capability 

of DLF for different value lmin and µ.  

 

 
 

Figure 4 Average steps length for different values of lmin for 

kstp = 1000 and krun = 100 

 

 
 

Figure 5 Exploration performance for increasing value of lmin 

from row and increasing number of μ from the column for nA 

= 1 for kmax = 100. Blue line and green circle indicate robot 

trace and visited grids, respectively 
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From the figure, it can be observed that a small value 

of μ provides better exploration performance 

compared to a larger value of μ for a similar number 

of generated steps and value of lmin. It also can be 

observed that the larger the value of lmin, the larger 

the area is explored by a single agent. 

Additionally, the distance travelled by an agent is 

longer when μ approaches 1.1 compared to μ 

approaches 3 regardless of the value of lmin as can 

be observed in Figure 6. However, these observations 

only give information of how the size of the average 

step length changes for different values of lmin and μ 

but the optimal value of the two parameters for 

optimal search space exploration cannot be fully 

decided yet.  

 

 
 

Figure 6 Distance travel by an agent for different values of 

lmin and μ in a search space nA = 1 for kmax = 100  

 

 

As previously mentioned, source detection can be 

optimized by optimizing search space exploration. 

The search space exploration can be optimized by 

minimizing the frequency of revisiting search sites that 

have been previously visited. Thus, to achieve 

optimal detection efficiency, revisiting a similar area 

must be minimized and the area of coverage must 

be maximized. Thus, the Percentage Area Coverage 

(PAC) and Frequency of Visiting (FoV) can be used 

as performance matrices to select optimal values of 

the LF parameters. The percentage area coverage 

(PAC) is calculated as a ratio of number of visited 

grids, NGvis over a total number of grids, NGtot as 

follow:  

%100=
tot

vis

NG

NG
PAC

                                                 (22) 

 

Each grid must be visited at least once to be 

considered as a visited grid. The result of the 

coverage area performance for a single robot using 

various values of μ is shown in Figure 7. From the 

figure, it can be observed that the value of PAC is 

initially increasing for all values of μ but after some 

optimal value of lmin, the PAC value later decreases 

as lmin increases for all values of μ. For small values of 

lmin, the value of μ corresponding to a near Ballistic 

motion (i.e., μ →1) achieves better PAC performance 

compared to value of μ closer to the Brownian 

motion (i.e., μ→3) as shown in Figure 8. This is 

because in a bounded search space longer steps 

length means robot can reach farther compared to 

shorter steps length. However, after some optimal 

values of lmin the PAC for all values of μ decreases as 

the value of lmin increases. The reason is that as the 

steps length becomes too large, the desired 

waypoint of the robot overpassed or frequently 

collided with the boundary of the search space. In 

this situation, robot might be temporarily stuck at the 

boundary while waiting for the next turning angle to 

turn away from the boundary. 
 

 
Figure 7 PAC by a single robot for different values of μ and 

for large values of lmin  for nA = 1 

 
Figure 8 PAC by a single robot for different values of μ and 

for small values of lmin   for nA = 1 where optimal lmin is found to 

be lmin,opt ≈ 1.5 m when μ = 1.1 

 

 

It also can be observed that for any value of lmin 

larger than the optimal value of lmin, a larger value of 

μ shows better PAC performance compared to a 

smaller value of μ. This is due to the fact that LF with a 

large value of μ tends to have smaller average steps 

length which has less tendency to overpass the 

search boundary compared to a small value of μ. 

Thus, for a bounded search space, a small value of μ 

provides better area coverage when lmin is small and 

a larger value of μ gives better area coverage when 

lmin is large. 

For a specified search space, an average 

frequency of a visiting (FoV) is defined by a total 

frequency of visited grids over a total number of 

visited grids can be used to evaluate performance of 

the robot. Mathematically, FoV can be expressed as 

 


=

=
visNG

i

i

vis

avg FoV
NG

FoV
1

1

                                             (23) 
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where NGvis is the number of visited grids. Small value 

of FoVavg means small frequency of revisiting a similar 

search site and vice versa. Notice that from equation 

(16), FoV = 1 means the robot never visited a similar 

grid more than once. Figure 9 shows the effect of lmin 

and µ on the FoV. 

 
Figure 9 FoV for k = 10000 with (a) lmin = 1.5, μ = 1.1 (b) lmin = 

15, μ = 1.1 (c) lmin = 50, μ = 1.1 and (d) lmin = 1.5, μ = 3.0 €  lmin 

= 15, μ = 3.0 (f) lmin = 50, μ = 3.0 

 

 

The average FoV for different values of lmin, μ and 

kmax is shown in Figure 10 for a nA = 1. From the figure, 

the FoV increases as lmin increases or μ decreases. As 

evidenced from the figure, a large value of lmin results 

in a high possibility of revisiting the same area when μ 

is kept constant. This is because a large value of lmin 

means the robot may move farther from the current 

position due to the large size of minimum step length, 

lmin. As a result, for a fixed search space the potential 

of the robot to revisit the previously explored search 

space increases. A similar pattern is observed for 

different values of kmax when the same size of search 

space is considered.  

For clarity, a heat map representing FoV for kmax = 

100 is plotted as depicted in Figure 11. From the heat 

map, it can be clearly observed that a large value of 

lmin when μ is small gives a large value of FoV and 

vice versa. From the previous PAC analysis, μ = 1.1 is 

found to give optimal PAC when lmin is small. From the 

figure the average FoV is found to be lowest when 

lmin = 1.5 m when μ = 1.1. Thus, these values optimize 

PAC and at the same time minimize FoV which in this 

study are selected to be optimal parameters value of 

LF for source detection in a bounded search space. 

 
Figure 10 Average frequency of visiting for different values 

of lmin, μ and k for a search space 25×50 m2 or nA = 1 

 

 
Figure 11 Heat map of average FoV for different values of μ 

and lmin for kmax = 100 iterations 

 

 

In order to generalize this finding, a similar 

simulation is repeated for different sizes of search 

space. The average PAC for different values of lmin in 

different sizes of search space is shown in Figure 13. A 

similar pattern of performance can be observed for 

different sizes of search space but the corresponding 

value of PAC decreases as the size of search space 

increases. Thus, for any size of a bounded search 

space, movement with small value of μ performs 

better compared to the one with larger value of μ for 

small values of lmin and vice-versa. In addition, as the 

size of the search space increases, the optimal PAC 

value decreases for all values of μ where a small 

value of μ has better performance compared to a 

larger value of μ as shown in Figure 14. 

 

 
Figure 13 Average PAC for difference values of lmin and sizes 

of search space 
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Figure 14 Area coverage for different sizes of search space 

for μ = 1.1 and lmin = 1.5 m and kmax = 1000    
 

 

In the previous discussion, the optimal values of 

the LF parameters have been investigated for a 

single robot. The determined parameters value from 

the discussion are μopt = 1.1 and lmin = 1.5 m for a 

search space with size of 25×50 m2. Based on these 

optimal parameters, the performance of the SDA 

algorithm can be further investigated for multiple 

robots. For the next simulation studies of the SDA, a 

similar search space of 25 × 50 m is considered. The 

relationship between the PAC value and number of 

robots and number of iterations is shown in Figure 15. 

From the figure, the PAC value increases as both the 

number of robots and number of iterations increases. 

For a small number of robots, a relatively high 

number of iterations is needed to achieve high PAC. 

On the other hand, using large a number of robots 

reduces the required number of iterations to achieve 

high PAC performance. 

 

 
Figure 15 PAC for different number of robot and number of 

iteration for μopt = 1.1 and lmin,opt = 1.5 m for 25 × 50 m2 unit 

search space for kmax = 1000 

 

 

In this section, a complete DLF SDA performance 

at the swarm level is evaluated. Firstly, two factors 

that directly influence the detection performance of 

LF are the radius of detection, rd (i.e., signal strength) 

and number of robots involved (i.e., swarm 

population size) as shown in Figure 20. From the 

figure, it can be observed that as the number of 

robots in the swarm increases, it significantly improves 

the source detection performance (i.e., the time 

taken to detect the source decreases). In addition, 

as the detection radius increases the detection time 

also decreases. However, as more and more robots 

are added to the swarm, the performance becomes 

saturated regardless of the detection radius.   

Since it is known that LF performance is directly 

related to the detection radius of the source, to 

evaluate the impact of dispersion algorithm in DLF 

performance, the detection radius is fixed to rd = 8 m 

and the size of search space is fixed to 25×50 m (i.e., 

nA = 1). For the purpose of comparison, several 

benchmarking algorithms were selected. The 

comparison of the algorithm’s performance for 

different population sizes of search space is shown in 

Figure 17. From the figure, DLF demonstrated a better 

performance especially for a small number of robots 

compared to benchmark algorithms for rc = 20 m 

with ratt = 19 m, and rneu = 16 m.  

 

 
Figure 16 Time taken for LF to complete detection for different 

population size and different radius of detection for nA = 1 
 

 

 
 
Figure 17 Comparison of time taken for different random 

detection algorithm for N = 5, nA = 1, rd  = 8 m, rc = 20 m with ratt = 

19 m, and rneu = 16 m 

 

 

The Brownian walk (BW) is a pure random walk 

where its exploration is limited by its step’s length. The 

correlated random walk (CRW) is similar to BW but its 

steps are correlated to the previous direction. The 

CRW has capability to drive direction of motion 

towards a certain direction if prior information about 

the source is available. However, in case the source 

is not detected, CRW will fail to perform efficiently. 

Lévy flight (LF) has capability of jumping to a new 

unexplored search space due to power law 

distribution of step lengths. As a result, its exploration 

capability is higher compared to BW and CRW. LF 

with artificial potential field (LFAPF) has capability of 

dispersing the robots in the search space. 

Consequently, LFAPF has improved detection time 

compared to LF. The proposed DLF algorithm has 

better performance compared to LFAPF by 124.5 
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seconds difference and other algorithms due to the 

fact that DLF has capability of repulsion to disperse 

the robots in the search space and remain neutral if 

robots are located at a sufficient distance from each 

other.  

In addition, unlike LFAPF where robot dispersion is 

checked when robot updates its position (i.e., from t 

to t + Δt) which distorted the characteristic of the LF 

(i.e., exploration capability), DLF check for dispersion 

requirement every step update (i.e., from k to k + 1). 

Some other comparisons parameters are listed in 

Table 2 where DLF is clearly has better performance 

in term of highest area coverage at half of detection 

time (i.e., 78.6%), lowest detection time (i.e., 864.8 s 

with standards deviation of 113.1 s) and shortest 

average travel distance to reach detection (i.e., 

166.1 m) compared to other algorithms. Thus, it is 

proven that the proposed DLF has better exploration 

and detection capability compared to other 

algorithms. 

An example of a complete source detection 

execution is shown in Figure 18 for a source located 

at coordinate (20, 0). Starting from the same 

deployment site at (-23, -10), and since the source is 

not detected, robots perform a detection process 

until one of the robots detect the source. From the 

same region, robots were dispersed through a 

dispersion algorithm to optimize exploration using DLF 

where the communication connections among the 

robots are maintained as shown by magenta color 

lines. In this example, the time taken to complete the 

detection process is 138 s with 1380 step updates.    

 
Table 2 Performance of DLF and benchmark algorithms 

 
Algorithm Detection Time (s) Average 

Travel 

Distance 

(m) 

Average 

PAC (%) 

at t = 

tmean/2 

Mean Standard 

Deviation 

DLF 864.8 113.1 166.1 78.3 

Levy [26] 1431.1 201.3 193.8 56.6 

LF+APF 

[27] 

989.3  151.9 198.7 70.2 

BW [28] 2215.7 325.5 288.6 31.7 

CRW [28] 2814.1 356.2 315.8 35.1 

 

 
Figure 18 Robot trace during source detection with μ = 1.1, lmin 

= 1.5 m, rc = 20 m, ratt = 19 m, rneu ¬= 16 m, rrep = 5 m and rd = 6 m. 

Trace indicator: blue (R1), red (R2), yellow (R3), purple (R4), 

green (R5)   

To evaluate performance of the proposed DLF in 

order to maintain communication connectivity 

during the source detection process, a number of 

neighborhood robots connected to a specific robot 

at a specific time is used. To show the reliability of the 

proposed DLF algorithm in ensuring communication 

connectivity, the average number of neighbors for 

each robot as time evolved is recorded. The idea is 

that if any robot fails to maintain communication 

connectivity with at least one of its neighbors, the 

neighborhood count will be zero. Figure 19 illustrates 

the connectivity among the robots during a 600 s of 

source detection period using the proposed DLF 

without attractive force implemented for the 

attractive radius for rc = 20 m with ratt = 19 m, and rneu -

= 16 m. From the figure, one can clearly see that 

some robots have lost their connectivity with its 

neighbors for some period of time. Notice that since 

robots were deployed from the same initial position, 

they were initially connected to each other but as 

they explore the search space, some of them (i.e., R1, 

R3 and R4 after approximately t = 430 s) start to lose 

communication with their neighbors in the absence of 

the ability to reconnect the network.  

A similar simulation was repeated with attractive 

force components included to maintain a 

communication connectivity as shown in Figure 20. 

From the figure, it can be observed that the proposed 

attraction force successfully maintains communication 

network for the entire searching period where each 

robot maintains its connectivity with at least one of its 

neighbors. In this example, each robot is forced to stay 

within the communication radius in order to avoid 

communication losses by adjusting its position with 

respect to the nearest robot. 
 

 
 

Figure 19 Communication connectivity among the robots 

without attraction force for rc = 20 m with ratt = 19 m, and rneu = 16 

 
 

Figure 20 Communication connectivity among the robots with 

attraction force for rc = 20 m with ratt = 19 m, and rneu = 16 m 
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4.0 CONCLUSION 
 

This paper presents a source detection algorithm 

based on an improved LF known as DLF. The LF is 

improved to ensure optimal area coverage and 

maintain communication among the robots in the 

swarm. To ensure the optimal area coverage, an 

artificial repulsive force is used to disperse the robots 

and avoid the robots search within the same area. To 

maintain communication and promote cooperative 

behavior among the agents, artificial attractive 

forces are proposed. Additionally, optimal LF 

parameters were identified through analysis of FoV 

and PAC. The results show that the proposed 

improvements performed better compared to 

existing or the benchmark algorithms. The DLF 

algorithm successfully improve detection time (113.1s) and 

area coverage (78.3%) compared to the existing algorithms: 

Brownian Walk (325.5s, 31.7%), Correlated Random Walk 

(356.2s, 35.1%), Levy Flight (201.3s, 56.6%), Levy Flight with 

Artificial Potential Fields (151.9s, 70.2%). In the near future, 

a complementary algorithm (i.e., tracing algorithm) 

utilizing the detected signal by DLF will be developed 

to complete the searching process. Additionally, a 

real-world experiment will be conducted using real 

hardware based on the framework proposed in this 

paper. 
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