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Abstract 
 

Due to the obvious advancement of artificial intelligence, keyword spotting has become a fast-growing technology that was 

first launched a few years ago by hidden Markov models. Keyword spotting is the technique of finding terms that have been 

pre-programmed into a machine learning model. However, because the keyword spotting system model will be installed on a 

small and resource-constrained device, it must be minimal in size. It is difficult to maintain accuracy and performance when 

minimizing the model size. We suggested in this paper to develop a TinyML model that responds to voice commands by 

detecting words that are utilized in a cascade architecture to start or control a program. The keyword detection machine 

learning model was built, trained, and tested using the edge impulse development platform. The technique follows the model-

building workflow, which includes data collection, preprocessing, training, testing, and deployment. 'On,' 'Off,' noise, and 

unknown databases were obtained from the Google speech command database V1 and applied for training and testing. 

The MFCC was used to extract features and CNN was used to generate the model, which was then optimized and deployed 

on the microcontroller. The model's evaluation represents an accuracy of 84.51% based on the datasets. Finally, the KWS was 

successfully implemented and assessed on Arduino Nano 33 BLE Sense for two studies in terms of accuracy at three different 

times and by six different persons. 
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Abstrak 
 

Disebabkan kemajuan yang jelas dalam kecerdasan buatan, pengesanan kata kunci telah menjadi teknologi yang 

berkembang pesat yang mula-mula dilancarkan beberapa tahun lalu oleh model Markov tersembunyi. Pengesanan kata 

kunci ialah teknik mencari istilah yang telah dipraprogramkan ke dalam model pembelajaran mesin. Walau bagaimanapun, 

kerana model sistem pengesanan kata kunci akan dipasang pada peranti yang kecil dan terhad sumber, ia mestilah bersaiz 

minimum. Sukar untuk mengekalkan ketepatan dan prestasi apabila meminimumkan saiz model. Kami mencadangkan 

dalam kertas ini untuk membangunkan model TinyML yang bertindak balas kepada arahan suara dengan mengesan 

perkataan yang digunakan dalam seni bina lata untuk memulakan atau mengawal program. Model pembelajaran mesin 

pengesanan kata kunci telah dibina, dilatih dan diuji menggunakan platform pembangunan dorongan tepi. Teknik ini 

mengikut aliran kerja pembinaan model, yang merangkumi pengumpulan data, prapemprosesan, latihan, ujian dan 

penggunaan. 'Hidup,' 'Mati,' hingar dan pangkalan data yang tidak diketahui diperoleh daripada pangkalan data arahan 

pertuturan Google V1 dan digunakan untuk latihan dan ujian. MFCC digunakan untuk mengekstrak ciri dan CNN digunakan 

untuk menjana model, yang kemudiannya dioptimumkan dan digunakan pada mikropengawal. Penilaian model mewakili 

ketepatan 84.51% berdasarkan set data. Akhirnya, KWS telah berjaya dilaksanakan dan dinilai pada Arduino Nano 33 BLE 

Sense untuk dua kajian dari segi ketepatan pada tiga masa berbeza dan oleh enam orang berbeza. 

 

Kata kunci: Edge impulse, Kata kunci, Pembelajaran mesin kecil, MFCC, CNN 
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1.0 INTRODUCTION 
 

Machine learning is an intriguing branch of Artificial 

Intelligence (AI) that employs a variety of techniques 

to intelligently manage large and complex amounts 

of data. It is based on institutions from a variety of 

fields, including statistics, knowledge creation, power, 

database, causal inference, computer systems, 

machine vision, and natural language processing. 

Machine learning may also be trained to accomplish 

activities that would normally need human intellect. 

The advancement of AI techniques such as 

machine learning has accelerated the creation of 

intelligent systems [1]. Machine learning inference is 

commonly offloaded to the cloud, where computer 

resources are more abundant. Offloading, on the 

other side, raises the cost of latency, energy, and 

privacy. It also requires on-going communication 

connectivity, such as Wi-Fi. 

The concept of AI is continually expanding, and it 

has entered our sights as a new choice in life. One of 

the most prominent advancements in machine 

learning has been audio or voice recognition 

systems. However, it is a cloud-based solution for 

work completion. This technique is impractical to 

deploy because of the demand for continual 

internet connectivity and privacy concerns.  

Tiny machine learning was proposed for the 

improvement of machine learning on a small and 

resource-constrained device by including extremely 

resource-constrained hardware, software, machine 

learning algorithms, compilers, and tools to squeeze 

a machine learning model into a few kilobytes of 

memory [2]. TinyML is a relatively young area that 

combines machine learning with embedded 

devices. An embedded system is a tiny computing 

device that consumes relatively little electricity. 

TinyML is the greatest answer since it is a self-

contained system that does machine learning 

directly on the IoT device. TinyML may solve the 

shortcoming of dependent machine learning models 

since it is not dependent on the internet or high-end 

computational resources. 

TinyML analyses data and does inference on its 

own instead of transmitting it to the cloud. As a result, 

the data will be saved on the device, lowering the 

danger of data privacy. It would also save storage 

and infrastructure expenses by not having to transfer 

data to the cloud on a continuous basis; only 

relevant data would be kept after inference [3]. The 

model's delay or latency issue will be removed 

because the entire operation is completed on the 

device. TinyML is commonly used for keyword 

recognition, visual wake words, and anomaly 

detection [4]. The practice of finding terms that are 

utilized in a cascade architecture to start or run a 

system, such as a mobile phone that reacts to voice 

instructions, is known as keyword spotting or hot word 

detection [5],[6].  

Alexa and Siri are two examples of voice-

recognition-based products that are now being 

marketed. As the activation or wake word for a 

system, this gadget will detect a keyword. People are 

becoming increasingly interested in adopting smart 

technology as a result of the increasing need for 

technology, and there are several approaches to 

make the gadget smarter. These technologies have 

helped to feed the "Internet of Things" notion of 

intelligent settings such as smart buildings and smart 

homes [7]. Smart switches, plugs [8], light bulbs, fans, 

heating systems, and even blinds [9] might all be 

utilized to integrate smart home systems. Smart 

gadgets, which are usually paired with a personal 

assistant, enable users to do a wide range of tasks 

with little effort, generally from a distance via spoken 

commands such as Alexa turning on the lights or 

even through rudimentary automation systems that 

do not require user input [9]. However these products 

have limitations in terms of privacy issues, internet 

dependent, cloud-based dependent, big memory 

size and latency.   

The keyword spotting system (KWS) is a system 

that accepts an input signal and generates a 

particular action after detecting a term. KWS's 

conventional method is based on Hidden Markov 

Models (HMM). However, in order to perform the 

machine learning, this model demands a huge 

memory, a vast vocabulary, and a high 

computation. Deep learning algorithms have been 

shown in recent years to give an efficient solution 

because of their minimal memory footprint and 

efficient performance. As described in [10], the Deep 

Neural Network (DNN) model is built on a 

microcontroller using optimization approaches aimed 

at addressing power, memory, and real-time 

restrictions at the edge. In this technique, the 16-bit 

integers model reduces inferencing time and 

memory footprint while maintaining accuracy. 

Furthermore, the inferencing time and memory 

footprint produce an additional improvement while 

contributing to a minor loss in accuracy. 

Recently, more sophisticated neural network 

models were developed to improve the current KWS 

model. Convolutional neural networks (CNN) have 

risen in popularity in recent years as image 

recognition algorithms have improved, and they are 

widely used for KWS in embedded systems [11]. Mel-

Frequency Cepstrum Coefficients (MFCC) are used 

as a preprocessing step before feeding the neural 

network to remove unwanted noise [12]. The benefit 

of this data structure is that it can extract features 

that reflect both short-term and long-term 

relationships using 1D convolutional operators.   

In 2018, an attention-based neural network for a 

small-footprint keyword spotting was proposed using 

a convolutional recurrent neural network (CRNN). The 

CRNN-based attention model achieves 1.02% false 

rejection rate (FRR) at 1.0 false alarm (FA) per hour 

with only 84K parameters [13]. A low-power 

accelerator called MAX78000 was utilized to deploy 

the KWS system with the suggested CNN 

architecture. This model modifies according to the 

restrictions of the hardware and uses a neural 

architecture search (NAS) technique [12]. However, 
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a system with MFCC consumes high energy more 

than three times with the proposed KWS system and 

caused high latency [12]. 

To provide an economical alternative and 

increase performance [6], the unique depthwise 

separable convolutional neural network (DS-CNN) 

[6],[11],[14],[15] was introduced for the embedded 

KWS. CNN is altered on each layer of convolution, 

beginning with the second layer, which includes 

depthwise and pointwise convolutions, as well as a 

batch normalization layer with ReLU activation. 

Transform a rectangle with a variety of grid shapes to 

allow the model to focus more on regions with more 

information. Deformable Convolution Network (DCN) 

is the name given to this model. 

The Recurrent Neural Network (RNN) is another 

common way of developing a smart audio 

processing system. RNN and MFCC are employed in 

the construction of the voice recognition system [16]. 

Because they outperform older methods such as 

hidden Markov models (HMMs), convolutional neural 

networks (CNNs), deep neural networks (DNNs), 

recurrent neural networks (RNNs), deformable 

convolutional networks (DCNs), and depthwise 

separable convolutional neural networks (DS-CNNs) 

have been used to replace them [17]. 

The Google Speech Commands Dataset is a 

standard dataset used for keyword spotting systems 

in audio recognition. Google Speech Command 

Dataset v1 was made up of 65000 single-speaker, 

single-word recordings of 30 distinct terms, with a 

total of 1881 speakers contributing to the dataset, 

guaranteeing a high level of speaker variety [18]. It 

has 35 words contributed by thousands of different 

individuals for v2. Based on recent research for KWS 

applications [6],[18],[19],[20],[21], the dataset is 

relabeled to form 12 classes: "Yes", "No", "Up", "Down", 

"Left", "Right", "On", "Off", "Stop", "Go" as well as 

"Silence" which contains no speech utterances and 

"Unknown" which contains data from the remaining 

20 and 25 keywords in the original dataset based on 

v1 and v2 [18]. The dataset is divided into three sets: 

training, validation, and test, with a ratio of 80:10:10 

[12]. 

To strengthen the system's resilience, an 

augmentation procedure is used where this is the 

technique of introducing real-world background 

noise to be trained using audio recordings in order to 

improve performance [11],[12]. 

In this study, we focus on constructing a keyword 

detection system for a minimal memory-footprint 

model utilizing convolutional neural networks, or 

CNN. This project’s scope is to develop a keyword 

spotting machine learning model for a 

microcontroller. It also implements optimization 

methods to optimize the model to a smaller memory 

size.  

Edge impulse is employed in the development of 

an algorithm that decreases the energy consumption 

of the system in order to generate a system that suits 

the resource-constrained device. Edge Impulse is a 

development platform used to create a machine 

learning model for the targeted edge devices [22]. 

There are a few main parts: data collection, design 

model, training, testing, and deployment phase. The 

development of the model starts with data collection 

and design. The machine learning models provides a 

high accuracy if the system has a lot of training data 

and testing data. The model's input is an MFCC 

feature extracted from the Google Speech 

Command Dataset v1 sets. During the model's 

construction, the training data was supplemented 

with noise on each audio file to improve 

performance in the presence of noise. Then, training 

is done on the cloud and the trained model can be 

deployed on the edge device. The impulse can be 

directly run on a mobile phone or computer or it can 

be exported to a library or built firmware. Finally, the 

KWS system revealed that our suggested technique is 

effective independent of time or individuals 

preferences.  
 

 

2.0 METHODOLOGY  
 

2.1 Keyword Spotting System 

 

Building a KWS using an Edge Impulse platform 

requires a few crucial steps. This system workflow 

started with data collection by building a dataset of 

voice recordings of different genders. Then, the data 

were labeled with the correct classes before being 

trained. A feature extraction, MFCC, and NN Keras 

Classifier were implemented in the model training 

and testing involving uploading files to Edge Impulse. 

Finally, the trained model was deployed on Arduino 

Nano 33 BLE Sense. The general flow involving 

software and hardware is summarized in Figure 1.  

 

 
Figure 1 Project workflow 

 

 

2.2 Data Collection 

 

The data collection aimed at developing audio 

datasets of certain keywords. A Google Speech 

Commands v1 was the ideal dataset to be used in 

this system. ‘On’, ‘Off’, noise, and unknown are the 

keywords used for the dataset. 1858 audio files were 

uploaded and labeled ‘On’ in the Edge Impulse. 

Moreover, the ‘Off’ keyword consists of 1860 files with 

audio of various people. As many as 1123 u2nknown 

words were added in the dataset containing other 

words than ‘On’ and ‘Off’. 1131 noise including noise 

from dish wash, cat meowing, exercise bike, air 

conditioner, airport announcement, babble, copy 

machine, munching, shutting the door, typing, 

vacuum cleaner, bus, cafe, car, field, hallway, 

kitchen, living room, metro, park, restaurant, chair, 
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tap, station, and traffic were successfully uploaded 

and labeled as noise.  

Each audio file was ensured to be at least 1 

second in length before proceeding to the training 

process. The dataset was automatically divided into 

training and testing sets with a ratio of 80:20 

respectively. Therefore, a total of 1858,1860,1131 and 

1123 audio files labeled ‘On’, ‘Off’, noise and 

unknown for training and 454 ‘On’, 469 ‘Off’, 263 

noise and 267 unknown files for testing purposes. 

 

2.3 Training 

 

Training and building models are based on Edge 

Impulse. 80% of the data was used for training to 

produce 4 output features, which are On, Off, Noise, 

and Unknown. All audios were set to a 1 second 

window size with a 16 kHz before being fed to the 

feature extraction part. Then, it uses signal processing 

to extract features and a learning block to classify 

new data.  

Due to many unrelated disturbances, the raw 

data signal for KWS and speech or voice recognition 

will not be used as input for the neural network. As a 

result, before feeding the data to the neural network, 

the signal's characteristics must be removed. For 

signal processing, the Mel-Frequency Cepstral 

Coefficient was deployed. Mel-frequency cepstral 

coefficients were the most common feature 

extraction method (MFCCs). The raw data was 

processed by MFCC to extract features, where a 

discrete cosine transform is applied to each filter 

bank. The data becomes easier to analyze with the 

classifier.  

The MFCC features are the input of the learning 

block called as NN Keras Classifier. During this 

process, the data were classified based on the 

percentage of the identified outputs. Two 

hyperparameters were fixed from the training settings 

which are the training cycles of 100, a learning rate 

of 0.005 and 20 validation set size. Therefore, there 

are 100 epochs to train the neural network and the 

learning rate shows how fast the network learns. If 

overfitting happens, the learning rate needs to be 

lowered. 

Figure 2 shows the neural network architecture 

used in the development of this model. Neural 

network architecture consists of an input layer and 3 

1D convolutional layers with 8, 16, and 32 neurons or 

filters respectively with 3 kernel sizes and 1 layer. 3 

layer was fixed to be used in the model because 

using a lower layer and a higher layer caused the 

degradation of the classification accuracy. Use a 

dropout rate of 20%–50% of neurons on average, with 

20% serving as a suitable starting point. A probability 

that is too low has little impact, whereas a probability 

that is too high prevents the network from learning 

enough. Each convolutional layer or conv layer is 

followed by a dropout layer with a rate of 0.25 as it 

gives high performance. Dropout can reduce the risk 

of a model overfitting the dataset by randomly 

cutting a fraction of network connections during 

training. The last layer is the flatten layer. It flattens 

the multi-dimensional data into a single dimension 

and provides an output for the classification.  

The training process is done with data 

augmentation. The function of this is to increase 

accuracy by randomly transforming data during 

training. Therefore, it allows the model to run more 

cycles without overfitting. Adding a low random 

noise to each spectrogram is one of the methods. 

The presence of noise on the spectrogram was used 

to evaluate the network performance.   

 

The model trained has 4 output classes: 

a. On 

b. Off 

c. Noise 

d. Unknown 

 

The tiny machine learning model training is to verify 

whether it can distinguish the keywords and classify 

them according to the expected results. 

 

 
 

Figure 2 Neural network architecture 

 

 

2.4 Testing 

 

The testing process followed the same steps in 

training but with a different audio file. For each class, 

a model was trained and tested before deployment. 

The main purpose of model testing is the same as 

training which is to classify the specific word 

detected by comparing it to the existing dataset and 

training model. 20% of the datasets are tested to see 

the accuracy and performance of the model for all 

keywords in the dataset.  

 

2.5 Deployment 

 

A low-end embedded device which is Arduino Nano 

33 BLE Sense was used for the inferencing of the 

machine learning model. This selection is due to the 

fact that this device has a built-in microphone for the 
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purpose of collecting data.  Arduino Nano 33 BLE 

Sense meets the characteristic of tiny- embedded 

device with a 1MB on-board flash memory and 256KB 

SRAM. For deployment on Arduino Nano 33 BLE 

Sense, the keyword spotting model is converted to 

Arduino library to make the model can run without 

an internet connection, low latency, and low power 

consumption. During the conversion, the model 

undergoes optimization methods using quantization. 

The EON compiler was turned on to quantize the 

model to an 8-bit network for increasing the on-

device performance. After quantization, the 

accuracy may increase a little compared to 

unoptimized models. However, the optimization may 

reduce the accuracy of the training model.  

Arduino IDE was used to upload the library. Some 

changes have been made to the code for 

analyzation of the model. The built-in microphone 

and LED on Arduino Nano 33 BLE Sense were utilized 

in completing the system. The microphone was used 

to collect the input data which is the audio that may 

consist of keywords. For built-in LED, Arduino has three 

colors: Red, Green, and Blue. Red is used to indicate 

the ‘Off ‘keyword while green turn on when the 

system detects the ‘On’ keyword. The evaluation was 

made based on the detection of the ‘On’ and the 

‘Off’ keywords. The system was tested on the 

microcontroller based on three different times and six 

different people. The system performance was tested 

at three different times is to prove the system able to 

response and operate well at any time.  Six different 

people will contribute different voice tones of the 

input, which is the keyword of the system, and we will 

analyze the response of the system toward the voice. 

A system with high performance should be able to 

detect the keywords at any time and voice tone.  

 

 

3.0 RESULTS AND DISCUSSION 
 

The keyword spotting system runs the training and 

testing based on the dataset. The main focus of the 

study is to classify the voice as belonging to ‘On’ or 

‘Off’. The amount of time and number of samples 

used for model training and testing for all the classes 

are listed in Table 1. Each sample data has a 

sampling rate of 16 Hz.  

This tiny machine learning model's training data 

was specifically for keyword categorization. 'On' and 

'Off' keywords were learned using 80% of the total 

data obtained, including noise and unknown terms. 

Table 2 depicts the training model performance 

outcomes for both keywords. The results show the 

classification accuracy and loss during training. The 

training models had an accuracy of 88% and a loss 

of 0.36. The picture also depicts the confusion matrix 

with F1 Score for each class. This result indicates that 

the model did well in the training dataset. 

According to the results, noise, 'Off,' and 'On' had 

greater accuracy than unknown. Noise accuracy 

was 98.2 percent, 93%, and 93.9%, respectively. 

Unknown receives just 60% accuracy due to a higher 

confusion categorization than other classes. 12.4% of 

unknown terms were identified as 'Off.' This is 

because the unknown words sound close to 'Off,' 

and the model misidentified the unknown. 21.8% 

were incorrectly categorized as 'On' rather than 

unknown. Due to the close term to 'On,' such as 

‘One’, the model identifies the categorization of 'On' 

higher than unknown. As a result, the accuracy for 

unknown is lower than for others. 

 

Table 1 Training and testing datasets 

 
 On Off Noise Unknown Total 

Trai-

ning 

data 

30m22s 

 

1858 

samples 

 

30m35s 

 

1860 

samples  

18m51s 

 

1131 

samples 

18m43s 

 

1123 

samples 

1h38m3

1s 

5972 

samples 

Test 

data 

7m27s 

 

454 

samples 

7m42s 

 

469 

samples 

4m23s 

 

263 

samples 

4m27s 

 

267 

samples 

24m 

 

1453 

samples 

Total 37m49s 

 

2312 

samples 

38m17s 

 

2329 

samples  

23m14s 

 

1394 

samples 

23m10s 

 

1390 

samples  

2h26m3

1s 

7425 

samples  

 

Table 2 Training result 

 
 

 

The testing models went through the same 

process as the training model. The goal of the testing 

is to categorize the terms 'On' and 'Off.' 20% of the 

data collected was used for testing. 

Table 3 depicts the model's performance against 

the test set data. The model is 91.6% accurate for 

noise, 90.6% accurate for 'Off,' 90.3% accurate for 

'On,' and 55.4% accurate for unknown. The 

degradation of each class's accuracy is due to 

incorrect detection and uncertainty. When the 

model detects two classes at the same time, the 

situation becomes uncertain. For example, the 

actual word is 'House,' but the model detects it as 

unknown and 'Off' with nearly identical values, so the 

model outputs uncertain rather than a class with 

higher values. The accuracy of the testing model is 

82.4%, which is slightly lower than that of the training 

model. 

The model was then deployed on an Arduino 

Nano 33 BLE sense using an optimization model. 
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Table 4 depicts the quantized model running on the 

microcontroller. When compared to the unoptimized 

model, the optimized model with 8 bits has a higher 

accuracy. The model, which had an accuracy of 

84.51 percent and a latency of 26ms, was converted 

to the Arduino library for deployment. Following that, 

some coding changes were made to ensure that the 

model includes led lights to indicate classification. 

The coding was compiled and run on the 

microcontroller using the Arduino IDE, where the 

model is modified. Following the completion of the 

uploading process, the model was tested on the 

microcontroller itself. 

Two experiments are carried out to evaluate the 

model's functionality and performance on the 

microcontroller. The first is to test the machine 

learning model's performance three times. The model 

should perform the same regardless of time. The 

model will detect the keywords without issue in the 

morning, day, and night. This is because each time 

has a different external noise from the environment. 

The model's performance is then tested using 

different people's voice commands. Different people 

have different voice tones that can cause the model 

to misclassify the keywords. Any voice command 

containing the keywords was expected to trigger a 

response from the model. 

 
Table 3 Testing result 

 
 
 

Then, the results were calculated based on the 

student’s t-test method to know the confidence 

interval of the data. In the student’s t-test, the t-

distribution table was used, which shows the critical 

values of the t-distribution. In this case, a one-tailed 

test was chosen to find the average range of the 

data with the upper level and lower level. The 

confidence interval was calculated using a 95% 

confidence level. A 95% confidence level shows the 

estimated data would match the results from the 

population if it was repeated and it can almost be 

positive that the results are the same as the samples. 

Therefore, without repeating the same experiments 

we can know the estimated mean for the result.  A 

confidence interval for the mean is a method of 

estimating the true population mean with a margin 

of error by using this equation  

 

       
𝑥 ± 𝑡

𝜎

 𝑛
 

                                   (1) 

 

According to the results, noise, 'Off,' and 'On' had 

greater accuracy than unknown. Noise accuracy 

was 98.2 percent, 93%, and 93.9%, respectively. 

Unknown receives just 60% accuracy due to a higher 

confusion categorization than other classes. 12.4% of 

unknown terms were identified as 'Off.' This is 

because the unknown words sound close to 'Off,' 

and the model misidentified the unknown. 21.8% 

were incorrectly categorized as 'On' rather than 

unknown. Due to the close term to 'On,' such as one, 

the model identifies the categorization of 'On' higher 

than unknown. As a result, the accuracy for unknown 

is lower than for others. 

 

3.1 Different Times 

 

The model was tested at various times of day and 

night to see how it performed at different times. 'On' 

and 'Off' were tested at 9 a.m., 3 p.m., and 9 p.m. An 

accurate result from a total of 200 'On' and 'Off' 

cycles achieved by a single person is illustrated in 

Table 5. 

 
Table 4 Optimization model 

 

 
 

 

During the morning, 200 times repeated keywords 

for each class were tested, generating positive results 

of 174 and 176 for 'On' and 'Off,' respectively. This 

achieves an accuracy of 87% for 'On' and 88% for 

'Off.' 

We tested again, but this time around 3 p.m., to 

ensure that the model fits every time. Out of 200 

times, only 23 were misclassified for 'On' and 14 were 

misclassified for 'Off'. For 'On' and 'Off,' the accuracy 

was 88.5% and 93%, respectively. The accuracy has a 

small increasing value. This is due to the experiment 

at this time being done with less external noise in the 

environment.  

Next, the performance on the night was positive, 

with 173 correct out of 200 for 'On' classifications and 

only 25 'Off' classifications misclassified. In summary, 

the classification accuracy for the night test is 86.5% 

for 'On' and 87.5% for 'Off’. Based on the data, at 3 

pm the accuracy is the highest but there is not much 

significant difference with other times. Therefore, we 

can conclude that the systems are able to operate 

and react correctly to the keywords regardless of the 
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time. Figure 3 depicts the accuracy of the 

experiment at various times. 

According to the results of the experiments, the 

mean of the samples for 'On' is 174.67 with a 

standard deviation of 2.082, while the mean for 'Off' is 

179 with a standard deviation of 6.083. This yields a 

mean accuracy of 87.33% for 'On' and 89.5% for 'Off'. 

The samples were subjected to a student's t-test with 

a 95% confidence level. Using the one-tail t-

distribution table, a t value of 4.303 was obtained 

with two degrees of freedom. The value of the results 

ranges from 174.67±5.172 with 179.84 as the upper 

level and 169.50 as a lower level values for ‘On’. By 

the range from 179±15.11, the upper level for ‘Off’ is 

184.11 and lower level is 173.88. 

 
Table 5 Accurate inferencing data for different times 

 

 On Offf 

9am 174 176 

3pm 177 186 

9pm 173 175 

 

Figure 3 Accuracy for 3 different times 

 

 

3.2 Different Persons 
 

The model was evaluated using voice commands 

from people of various genders and ages. It was 

tested with six different people during the day. Two 

females and four males ranging in age from 16 to 52 

years. Each person repeated the 'On' and 'Off' 

keywords 50 times. The model was tested because it 

should have high accuracy and good performance 

for any keyword spoken by anyone. The model was 

expected to detect the keyword regardless of the 

person's gender or age. 

As shown in Table 6, the outcome of the 

experiment does not differ significantly between 

individuals. Persons 2 and 4 have the highest 

accuracy for 'On' classification with 94 %, while 

Persons 1 and 3 have the highest accuracy for ‘Off’ 

classification with 94 %. The system's lowest accuracy 

was 88 % for Person for ‘Off' classification due to an 

uncertain class, as in Figure 4. The mean for 'On' and 

'Off' is calculated to be 46.33 and 45.67, respectively. 

On this data, a student's t-test was also performed 

after first calculating the standard deviation. The 

standard deviations for each class, 'On' and 'Off,' are 

0.5164 and 1.2111, respectively. Using the one-tail t-

distribution table, a t value of 2.571 was obtained 

with a 95 % confidence level and 6 samples. The 

value of the results ranges from 46.33±0.542 with 46.87 

upper level and 45.79 lower level values for ‘On’. By 

the range from 45.67±1.271, the upper level is 46.94 

and lower level is 44.4 for ‘Off’. 

 
Table 6 Accurate inferencing data for different persons 

 

 On Off 

Person 1 46 47 

Person 2 47 45 

Person 3 46 47 

Person 4 47 46 

Person 5 46 45 

Person 6 46 44 
 

 
Figure 4 Result of different person's accuracy 

 

 

4.0 CONCLUSION 

 

Finally, the development of the Keyword Spotting 

System was completed successfully, and the system's 

accuracy was validated using Edge Impulse and the 

Arduino Nano 33 BLE Sense board. The MFCC and 

CNN were implemented on the model system that 

utilizes augmented data on Edge Impulse for the 

training and testing phases. After being quantized to 

an 8-bit integer for live validation accuracy, the 

model was deployed on the Arduino Nano 33 BLE 

Sense. According to the data, training, and testing 

resulted in 88% and 84.24 % accuracy, respectively. 

The model can acknowledge the keywords and 

perform successfully at any time and with every 

voice command according to the training and 

testing of the dataset using the Edge Impulse. The 

mean accuracy for the 'On' and 'Off' classes is 87.33 

% and 89.5 % for various times, while it is 92.67 % and 

91.33 % for different people respectively. This 

technique highlights how important data collecting 

was before building the model. Because of the use of 

an existing dataset, the model's performance is quite 

accurate.  
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